mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
polish code with new pre-commit rule (#2923)
This commit is contained in:
@@ -13,6 +13,7 @@
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
"""
|
||||
|
||||
from __future__ import annotations
|
||||
|
||||
import os
|
||||
@@ -32,7 +33,7 @@ from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector
|
||||
from fastdeploy.utils import EngineError, console_logger, llm_logger
|
||||
|
||||
|
||||
class ExpertService(object):
|
||||
class ExpertService:
|
||||
"""
|
||||
Engine class responsible for managing the Large Language Model (LLM) operations.
|
||||
|
||||
@@ -51,17 +52,14 @@ class ExpertService(object):
|
||||
self.cfg = cfg
|
||||
start_pos = (local_data_parallel_id * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
|
||||
end_pos = ((local_data_parallel_id + 1) * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
|
||||
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[
|
||||
start_pos:end_pos]
|
||||
self.cfg.local_device_ids = self.cfg.device_ids.split(
|
||||
",")[start_pos:end_pos]
|
||||
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[start_pos:end_pos]
|
||||
self.cfg.local_device_ids = self.cfg.device_ids.split(",")[start_pos:end_pos]
|
||||
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
||||
self.cfg.disaggregate_info = None
|
||||
|
||||
self.scheduler = cfg.scheduler_config.scheduler()
|
||||
|
||||
self.scheduler.reset_nodeid(
|
||||
f"{self.scheduler.infer.nodeid}_{str(local_data_parallel_id)}")
|
||||
self.scheduler.reset_nodeid(f"{self.scheduler.infer.nodeid}_{local_data_parallel_id!s}")
|
||||
|
||||
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
||||
|
||||
@@ -73,33 +71,41 @@ class ExpertService(object):
|
||||
num_client=cfg.tensor_parallel_size,
|
||||
local_data_parallel_id=local_data_parallel_id,
|
||||
)
|
||||
self.resource_manager = ResourceManager(cfg.max_num_seqs, cfg, \
|
||||
cfg.tensor_parallel_size, cfg.splitwise_role, local_data_parallel_id)
|
||||
self.resource_manager = ResourceManager(
|
||||
cfg.max_num_seqs,
|
||||
cfg,
|
||||
cfg.tensor_parallel_size,
|
||||
cfg.splitwise_role,
|
||||
local_data_parallel_id,
|
||||
)
|
||||
|
||||
if len(self.cfg.cache_config.pd_comm_port) == 1:
|
||||
self.cfg.cache_config.pd_comm_port[0] = int(
|
||||
self.cfg.cache_config.pd_comm_port[0]) + local_data_parallel_id
|
||||
self.cfg.cache_config.pd_comm_port[0] = int(self.cfg.cache_config.pd_comm_port[0]) + local_data_parallel_id
|
||||
else:
|
||||
self.cfg.cache_config.pd_comm_port = [
|
||||
self.cfg.cache_config.pd_comm_port[local_data_parallel_id]
|
||||
]
|
||||
self.cfg.cache_config.pd_comm_port = [self.cfg.cache_config.pd_comm_port[local_data_parallel_id]]
|
||||
|
||||
self.split_connector = SplitwiseConnector(self.cfg, self.scheduler,
|
||||
self.engine_worker_queue,
|
||||
self.resource_manager)
|
||||
self.split_connector = SplitwiseConnector(
|
||||
self.cfg,
|
||||
self.scheduler,
|
||||
self.engine_worker_queue,
|
||||
self.resource_manager,
|
||||
)
|
||||
|
||||
self.token_processor = TokenProcessor(
|
||||
cfg=cfg,
|
||||
cached_generated_tokens=self.scheduler,
|
||||
engine_worker_queue=self.engine_worker_queue,
|
||||
split_connector=self.split_connector)
|
||||
split_connector=self.split_connector,
|
||||
)
|
||||
self.token_processor.set_resource_manager(self.resource_manager)
|
||||
|
||||
self.partial_chunked_tokens = [0] * (
|
||||
self.cfg.max_num_partial_prefills + 1)
|
||||
self.partial_chunked_tokens = [0] * (self.cfg.max_num_partial_prefills + 1)
|
||||
for idx in range(1, self.cfg.max_num_partial_prefills + 1):
|
||||
self.partial_chunked_tokens[idx] = (self.cfg.max_num_batched_tokens // idx) \
|
||||
// self.cfg.cache_config.block_size * self.cfg.cache_config.block_size
|
||||
self.partial_chunked_tokens[idx] = (
|
||||
(self.cfg.max_num_batched_tokens // idx)
|
||||
// self.cfg.cache_config.block_size
|
||||
* self.cfg.cache_config.block_size
|
||||
)
|
||||
|
||||
self._finalizer = weakref.finalize(self, self._exit_sub_services)
|
||||
|
||||
@@ -120,17 +126,15 @@ class ExpertService(object):
|
||||
device_ids=self.cfg.local_device_ids,
|
||||
pod_ip=self.cfg.master_ip,
|
||||
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
|
||||
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}"
|
||||
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}",
|
||||
)
|
||||
|
||||
self.insert_task_to_worker_thread = threading.Thread(
|
||||
target=self._insert_task_to_worker, args=())
|
||||
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, args=())
|
||||
self.insert_task_to_worker_thread.daemon = True
|
||||
self.insert_task_to_worker_thread.start()
|
||||
|
||||
# Start TokenProcessor thread
|
||||
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(
|
||||
local_data_parallel_id + int(self.cfg.engine_worker_queue_port))
|
||||
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(local_data_parallel_id + int(self.cfg.engine_worker_queue_port))
|
||||
|
||||
self.token_processor.run()
|
||||
|
||||
@@ -144,9 +148,7 @@ class ExpertService(object):
|
||||
self.scheduler.start(role, host_ip, disaggregate)
|
||||
self.cfg.print()
|
||||
|
||||
console_logger.info(
|
||||
"Worker processes are launched with {} seconds.".format(
|
||||
time.time() - start_time))
|
||||
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.")
|
||||
return True
|
||||
|
||||
def _insert_task_to_worker(self):
|
||||
@@ -169,17 +171,17 @@ class ExpertService(object):
|
||||
|
||||
num_prefill_batch = min(
|
||||
int(self.resource_manager.available_batch()),
|
||||
self.cfg.max_prefill_batch)
|
||||
self.cfg.max_prefill_batch,
|
||||
)
|
||||
|
||||
self.resource_manager.check_and_free_block_tables()
|
||||
tasks = self.scheduler.get_requests(
|
||||
available_blocks=self.resource_manager.available_block_num(
|
||||
),
|
||||
available_blocks=self.resource_manager.available_block_num(),
|
||||
block_size=self.cfg.cache_config.block_size,
|
||||
reserved_output_blocks=self.cfg.cache_config.
|
||||
enc_dec_block_num,
|
||||
reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num,
|
||||
max_num_batched_tokens=self.cfg.max_num_batched_tokens,
|
||||
batch=num_prefill_batch)
|
||||
batch=num_prefill_batch,
|
||||
)
|
||||
|
||||
if len(tasks) == 0:
|
||||
time.sleep(0.001)
|
||||
@@ -187,8 +189,7 @@ class ExpertService(object):
|
||||
|
||||
if self.cfg.splitwise_role != "mixed":
|
||||
llm_logger.info("Inserting splitwise tasks")
|
||||
self.split_connector.send_splitwise_tasks(
|
||||
tasks, current_id)
|
||||
self.split_connector.send_splitwise_tasks(tasks, current_id)
|
||||
|
||||
current_id = (current_id + 1) % 100003
|
||||
|
||||
@@ -197,8 +198,7 @@ class ExpertService(object):
|
||||
main_process_metrics.num_requests_waiting.dec(len(tasks))
|
||||
main_process_metrics.num_requests_running.inc(len(tasks))
|
||||
except Exception as e:
|
||||
err_msg = "Error happend while insert task to engine: {}, {}.".format(
|
||||
e, str(traceback.format_exc()))
|
||||
err_msg = f"Error happend while insert task to engine: {e}, {traceback.format_exc()!s}."
|
||||
llm_logger.error(err_msg)
|
||||
|
||||
def split_mode_get_tasks(self):
|
||||
@@ -212,15 +212,13 @@ class ExpertService(object):
|
||||
try:
|
||||
if len(waiting_requests) > 0:
|
||||
for task in waiting_requests:
|
||||
if self.resource_manager.is_resource_sufficient(
|
||||
task.prompt_token_ids_len):
|
||||
if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len):
|
||||
self.insert_tasks([task])
|
||||
waiting_requests.remove(task)
|
||||
else:
|
||||
break
|
||||
if not self.engine_worker_queue.disaggregate_queue_empty():
|
||||
items = self.engine_worker_queue.get_disaggregated_tasks(
|
||||
)
|
||||
items = self.engine_worker_queue.get_disaggregated_tasks()
|
||||
for item in items:
|
||||
role = item[0]
|
||||
tasks = item[1]
|
||||
@@ -231,7 +229,7 @@ class ExpertService(object):
|
||||
self.insert_tasks(tasks)
|
||||
elif role == "decode":
|
||||
llm_logger.info(f"get decode tasks {tasks}")
|
||||
if hasattr(tasks[0], 'finished'):
|
||||
if hasattr(tasks[0], "finished"):
|
||||
if not isinstance(tasks, list):
|
||||
tasks = [tasks]
|
||||
for task in tasks:
|
||||
@@ -246,7 +244,8 @@ class ExpertService(object):
|
||||
else:
|
||||
for task in tasks:
|
||||
if not self.resource_manager.is_resource_sufficient(
|
||||
task.prompt_token_ids_len):
|
||||
task.prompt_token_ids_len
|
||||
):
|
||||
waiting_requests.append(task)
|
||||
else:
|
||||
self.insert_tasks([task])
|
||||
@@ -274,8 +273,7 @@ class ExpertService(object):
|
||||
self.resource_manager.tasks_list[cur_task_idx] = None
|
||||
self.resource_manager._recycle_block_tables(cur_task)
|
||||
if task.request_id in self.token_processor.tokens_counter:
|
||||
del self.token_processor.tokens_counter[
|
||||
task.request_id]
|
||||
del self.token_processor.tokens_counter[task.request_id]
|
||||
self.scheduler.put_results([task])
|
||||
llm_logger.warning(
|
||||
f"{task.request_id} prefill failed with msg:{task.error_msg}, recycle resource."
|
||||
@@ -285,8 +283,7 @@ class ExpertService(object):
|
||||
cur_task.prompt_token_ids[0] = task.outputs.token_ids[0]
|
||||
self.token_processor.tokens_counter[task.request_id] = 1
|
||||
current_tasks.append(cur_task)
|
||||
self.engine_worker_queue.put_tasks(
|
||||
(current_tasks, self.resource_manager.real_bsz))
|
||||
self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz))
|
||||
return True
|
||||
|
||||
self.resource_manager.check_and_free_block_tables()
|
||||
@@ -299,9 +296,7 @@ class ExpertService(object):
|
||||
|
||||
available_batch = np.sum(self.resource_manager.stop_flags)
|
||||
if len(tasks) > available_batch:
|
||||
llm_logger.error(
|
||||
"Inserting batch:{} exceeds the available batch:{}.".format(
|
||||
len(tasks), available_batch))
|
||||
llm_logger.error(f"Inserting batch:{len(tasks)} exceeds the available batch:{available_batch}.")
|
||||
llm_logger.error("The exceeded part will be ignored!")
|
||||
tasks = tasks[:available_batch]
|
||||
|
||||
@@ -325,8 +320,7 @@ class ExpertService(object):
|
||||
is_decode = True
|
||||
else:
|
||||
is_prefill = True
|
||||
self.token_processor.number_of_input_tokens += tasks[
|
||||
i].prompt_token_ids_len
|
||||
self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len
|
||||
|
||||
self.split_connector.send_cache_infos(tasks, current_id)
|
||||
for task in tasks:
|
||||
@@ -338,8 +332,7 @@ class ExpertService(object):
|
||||
self.update_requests_chunk_size(tasks)
|
||||
else:
|
||||
self.update_mm_requests_chunk_size(tasks)
|
||||
self.engine_worker_queue.put_tasks(
|
||||
(tasks, self.resource_manager.real_bsz))
|
||||
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
|
||||
return True
|
||||
|
||||
def _exit_sub_services(self):
|
||||
@@ -348,8 +341,7 @@ class ExpertService(object):
|
||||
"""
|
||||
|
||||
if hasattr(self, "cache_manager_processes"):
|
||||
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear(
|
||||
)
|
||||
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
|
||||
self.resource_manager.cache_manager.cache_ready_signal.clear()
|
||||
for p in self.cache_manager_processes:
|
||||
llm_logger.info(f"Killing cache manager process {p.pid}")
|
||||
|
Reference in New Issue
Block a user