mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-09-27 12:52:29 +08:00
367 lines
15 KiB
Python
367 lines
15 KiB
Python
"""
|
|
# Copyright (c) 2025 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License"
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
"""
|
|
|
|
from __future__ import annotations
|
|
|
|
import os
|
|
import signal
|
|
import threading
|
|
import time
|
|
import traceback
|
|
import weakref
|
|
|
|
import numpy as np
|
|
|
|
from fastdeploy.engine.resource_manager import ResourceManager
|
|
from fastdeploy.inter_communicator import EngineWorkerQueue
|
|
from fastdeploy.metrics.metrics import main_process_metrics
|
|
from fastdeploy.output.token_processor import TokenProcessor
|
|
from fastdeploy.splitwise.splitwise_connector import SplitwiseConnector
|
|
from fastdeploy.utils import EngineError, console_logger, llm_logger
|
|
|
|
|
|
class ExpertService:
|
|
"""
|
|
Engine class responsible for managing the Large Language Model (LLM) operations.
|
|
|
|
Attributes:
|
|
cfg (Config): Configuration object containing all the parameters.
|
|
local_data_parallel_id (int): Local data parallel ID.
|
|
"""
|
|
|
|
def __init__(self, cfg, local_data_parallel_id):
|
|
"""
|
|
Initializes the LLMEngine with the provided configuration.
|
|
|
|
Args:
|
|
cfg (Config): Config object containing all the configuration parameters.
|
|
"""
|
|
self.cfg = cfg
|
|
start_pos = (local_data_parallel_id * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
|
|
end_pos = ((local_data_parallel_id + 1) * self.cfg.tensor_parallel_size) % self.cfg.worker_num_per_node
|
|
self.cfg.cache_config.rdma_comm_ports = self.cfg.cache_config.rdma_comm_ports[start_pos:end_pos]
|
|
self.cfg.local_device_ids = self.cfg.device_ids.split(",")[start_pos:end_pos]
|
|
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
|
self.cfg.disaggregate_info = None
|
|
|
|
self.scheduler = cfg.scheduler_config.scheduler()
|
|
|
|
self.scheduler.reset_nodeid(f"{self.scheduler.infer.nodeid}_{local_data_parallel_id!s}")
|
|
|
|
self.cfg.parallel_config.local_data_parallel_id = local_data_parallel_id
|
|
|
|
address = (cfg.master_ip, cfg.engine_worker_queue_port)
|
|
self.engine_worker_queue = EngineWorkerQueue(
|
|
address=address,
|
|
is_server=False,
|
|
client_id=0,
|
|
num_client=cfg.tensor_parallel_size,
|
|
local_data_parallel_id=local_data_parallel_id,
|
|
)
|
|
self.resource_manager = ResourceManager(
|
|
cfg.max_num_seqs,
|
|
cfg,
|
|
cfg.tensor_parallel_size,
|
|
cfg.splitwise_role,
|
|
local_data_parallel_id,
|
|
)
|
|
|
|
if len(self.cfg.cache_config.pd_comm_port) == 1:
|
|
self.cfg.cache_config.pd_comm_port[0] = int(self.cfg.cache_config.pd_comm_port[0]) + local_data_parallel_id
|
|
else:
|
|
self.cfg.cache_config.pd_comm_port = [self.cfg.cache_config.pd_comm_port[local_data_parallel_id]]
|
|
|
|
self.split_connector = SplitwiseConnector(
|
|
self.cfg,
|
|
self.scheduler,
|
|
self.engine_worker_queue,
|
|
self.resource_manager,
|
|
)
|
|
|
|
self.token_processor = TokenProcessor(
|
|
cfg=cfg,
|
|
cached_generated_tokens=self.scheduler,
|
|
engine_worker_queue=self.engine_worker_queue,
|
|
split_connector=self.split_connector,
|
|
)
|
|
self.token_processor.set_resource_manager(self.resource_manager)
|
|
|
|
self.partial_chunked_tokens = [0] * (self.cfg.max_num_partial_prefills + 1)
|
|
for idx in range(1, self.cfg.max_num_partial_prefills + 1):
|
|
self.partial_chunked_tokens[idx] = (
|
|
(self.cfg.max_num_batched_tokens // idx)
|
|
// self.cfg.cache_config.block_size
|
|
* self.cfg.cache_config.block_size
|
|
)
|
|
|
|
self._finalizer = weakref.finalize(self, self._exit_sub_services)
|
|
|
|
def start(self, ipc_signal_suffix, local_data_parallel_id):
|
|
"""
|
|
Initializes the engine and starts its sub-services.
|
|
If `api_server_pid` is defined, will launch a thread
|
|
to keep getting request from zmq_server.
|
|
"""
|
|
# assert not self.is_started, "The engine is already started."
|
|
start_time = time.time()
|
|
|
|
llm_logger.info(f"start expert service {local_data_parallel_id}")
|
|
|
|
self.cache_manager_processes = self.resource_manager.cache_manager.launch_cache_manager(
|
|
cache_config=self.cfg.cache_config,
|
|
tensor_parallel_size=self.cfg.tensor_parallel_size,
|
|
device_ids=self.cfg.local_device_ids,
|
|
pod_ip=self.cfg.master_ip,
|
|
engine_worker_queue_port=self.cfg.engine_worker_queue_port,
|
|
pid_suffix=f"{local_data_parallel_id}_{ipc_signal_suffix}",
|
|
)
|
|
|
|
self.insert_task_to_worker_thread = threading.Thread(target=self._insert_task_to_worker, args=())
|
|
self.insert_task_to_worker_thread.daemon = True
|
|
self.insert_task_to_worker_thread.start()
|
|
|
|
# Start TokenProcessor thread
|
|
os.environ["INFERENCE_MSG_QUEUE_ID"] = str(local_data_parallel_id + int(self.cfg.engine_worker_queue_port))
|
|
|
|
self.token_processor.run()
|
|
|
|
self.split_mode_get_tasks()
|
|
|
|
self.cfg.init_cache_info()
|
|
|
|
role = self.cfg.splitwise_role
|
|
host_ip = self.cfg.host_ip
|
|
disaggregate = self.cfg.disaggregate_info
|
|
self.scheduler.start(role, host_ip, disaggregate)
|
|
self.cfg.print()
|
|
|
|
console_logger.info(f"Worker processes are launched with {time.time() - start_time} seconds.")
|
|
return True
|
|
|
|
def _insert_task_to_worker(self):
|
|
"""
|
|
Insert task to engine thread, monitor scheduler request queue.
|
|
if the engine has resource, insert task to engine
|
|
"""
|
|
current_id = -1
|
|
while True:
|
|
try:
|
|
if self.resource_manager.available_batch() == 0:
|
|
time.sleep(0.001)
|
|
continue
|
|
if self.engine_worker_queue.num_tasks() > 0:
|
|
time.sleep(0.001)
|
|
continue
|
|
if len(self.split_connector.current_request_ids) > 0:
|
|
time.sleep(0.001)
|
|
continue
|
|
|
|
num_prefill_batch = min(
|
|
int(self.resource_manager.available_batch()),
|
|
self.cfg.max_prefill_batch,
|
|
)
|
|
|
|
self.resource_manager.check_and_free_block_tables()
|
|
tasks = self.scheduler.get_requests(
|
|
available_blocks=self.resource_manager.available_block_num(),
|
|
block_size=self.cfg.cache_config.block_size,
|
|
reserved_output_blocks=self.cfg.cache_config.enc_dec_block_num,
|
|
max_num_batched_tokens=self.cfg.max_num_batched_tokens,
|
|
batch=num_prefill_batch,
|
|
)
|
|
|
|
if len(tasks) == 0:
|
|
time.sleep(0.001)
|
|
continue
|
|
|
|
if self.cfg.splitwise_role != "mixed":
|
|
llm_logger.info("Inserting splitwise tasks")
|
|
self.split_connector.send_splitwise_tasks(tasks, current_id)
|
|
|
|
current_id = (current_id + 1) % 100003
|
|
|
|
self.insert_tasks(tasks, current_id)
|
|
|
|
main_process_metrics.num_requests_waiting.dec(len(tasks))
|
|
main_process_metrics.num_requests_running.inc(len(tasks))
|
|
except Exception as e:
|
|
err_msg = f"Error happend while insert task to engine: {e}, {traceback.format_exc()!s}."
|
|
llm_logger.error(err_msg)
|
|
|
|
def split_mode_get_tasks(self):
|
|
"""
|
|
Split mode get tasks
|
|
"""
|
|
waiting_requests = []
|
|
|
|
def receiver_loop():
|
|
while True:
|
|
try:
|
|
if len(waiting_requests) > 0:
|
|
for task in waiting_requests:
|
|
if self.resource_manager.is_resource_sufficient(task.prompt_token_ids_len):
|
|
self.insert_tasks([task])
|
|
waiting_requests.remove(task)
|
|
else:
|
|
break
|
|
if not self.engine_worker_queue.disaggregate_queue_empty():
|
|
items = self.engine_worker_queue.get_disaggregated_tasks()
|
|
for item in items:
|
|
role = item[0]
|
|
tasks = item[1]
|
|
if role == "prefill":
|
|
llm_logger.info("get prefill tasks")
|
|
for task in tasks:
|
|
task.max_tokens = task.min_tokens = 2
|
|
self.insert_tasks(tasks)
|
|
elif role == "decode":
|
|
llm_logger.info(f"get decode tasks {tasks}")
|
|
if hasattr(tasks[0], "finished"):
|
|
if not isinstance(tasks, list):
|
|
tasks = [tasks]
|
|
for task in tasks:
|
|
task.finished = False
|
|
# self.scheduler.put_results(tasks)
|
|
|
|
self.insert_tasks(tasks, allocated=True)
|
|
else:
|
|
if len(waiting_requests):
|
|
for task in tasks:
|
|
waiting_requests.append(task)
|
|
else:
|
|
for task in tasks:
|
|
if not self.resource_manager.is_resource_sufficient(
|
|
task.prompt_token_ids_len
|
|
):
|
|
waiting_requests.append(task)
|
|
else:
|
|
self.insert_tasks([task])
|
|
|
|
else:
|
|
time.sleep(0.001)
|
|
continue
|
|
except Exception as e:
|
|
llm_logger.error(f"get decode tasks error: {e}")
|
|
|
|
threading.Thread(target=receiver_loop, daemon=True).start()
|
|
|
|
def insert_tasks(self, tasks, current_id=-1, allocated=False):
|
|
"""
|
|
Insert tasks to engine.
|
|
"""
|
|
if allocated:
|
|
current_tasks = []
|
|
for task in tasks:
|
|
cur_task_idx = self.resource_manager.req_dict[task.request_id]
|
|
del self.resource_manager.req_dict[task.request_id]
|
|
cur_task = self.resource_manager.tasks_list[cur_task_idx]
|
|
if task.error_code != 200:
|
|
self.resource_manager.stop_flags[cur_task_idx] = True
|
|
self.resource_manager.tasks_list[cur_task_idx] = None
|
|
self.resource_manager._recycle_block_tables(cur_task)
|
|
if task.request_id in self.token_processor.tokens_counter:
|
|
del self.token_processor.tokens_counter[task.request_id]
|
|
self.scheduler.put_results([task])
|
|
llm_logger.warning(
|
|
f"{task.request_id} prefill failed with msg:{task.error_msg}, recycle resource."
|
|
)
|
|
continue
|
|
llm_logger.info(f"{cur_task_idx} {task.request_id}")
|
|
cur_task.prompt_token_ids[0] = task.outputs.token_ids[0]
|
|
self.token_processor.tokens_counter[task.request_id] = 1
|
|
current_tasks.append(cur_task)
|
|
self.engine_worker_queue.put_tasks((current_tasks, self.resource_manager.real_bsz))
|
|
return True
|
|
|
|
self.resource_manager.check_and_free_block_tables()
|
|
|
|
if not isinstance(tasks, list):
|
|
tasks = [tasks]
|
|
|
|
for item in tasks:
|
|
item.schedule_start_time = time.time()
|
|
|
|
available_batch = np.sum(self.resource_manager.stop_flags)
|
|
if len(tasks) > available_batch:
|
|
llm_logger.error(f"Inserting batch:{len(tasks)} exceeds the available batch:{available_batch}.")
|
|
llm_logger.error("The exceeded part will be ignored!")
|
|
tasks = tasks[:available_batch]
|
|
|
|
req_ids = [t.request_id for t in tasks]
|
|
|
|
tasks = self.resource_manager.allocate_resources_for_new_tasks(tasks)
|
|
|
|
if not tasks:
|
|
error_msg = f"The request required resources is exceed the limit, request id={req_ids}."
|
|
llm_logger.error(error_msg)
|
|
raise EngineError(error_msg, error_code=500)
|
|
return False
|
|
|
|
self.token_processor.number_of_tasks += len(tasks)
|
|
|
|
is_decode = False
|
|
is_prefill = False
|
|
for i in range(len(tasks)):
|
|
if tasks[i].disaggregate_info is not None:
|
|
if tasks[i].disaggregate_info["role"] == "decode":
|
|
is_decode = True
|
|
else:
|
|
is_prefill = True
|
|
self.token_processor.number_of_input_tokens += tasks[i].prompt_token_ids_len
|
|
|
|
self.split_connector.send_cache_infos(tasks, current_id)
|
|
for task in tasks:
|
|
task.infer_start_time = time.time()
|
|
if not is_decode:
|
|
llm_logger.info(f"Tasks are sent to engine, req_ids={req_ids}")
|
|
if not is_prefill:
|
|
if not self.cfg.enable_mm:
|
|
self.update_requests_chunk_size(tasks)
|
|
else:
|
|
self.update_mm_requests_chunk_size(tasks)
|
|
self.engine_worker_queue.put_tasks((tasks, self.resource_manager.real_bsz))
|
|
return True
|
|
|
|
def _exit_sub_services(self):
|
|
"""
|
|
exit sub services
|
|
"""
|
|
|
|
if hasattr(self, "cache_manager_processes"):
|
|
self.resource_manager.cache_manager.shm_cache_task_flag_broadcast.clear()
|
|
self.resource_manager.cache_manager.cache_ready_signal.clear()
|
|
for p in self.cache_manager_processes:
|
|
llm_logger.info(f"Killing cache manager process {p.pid}")
|
|
try:
|
|
os.killpg(p.pid, signal.SIGTERM)
|
|
except:
|
|
pass
|
|
|
|
if hasattr(self, "zmq_server") and self.zmq_server is not None:
|
|
self.zmq_server.close()
|
|
|
|
|
|
def start_expert_service(cfg, local_data_parallel_id, ipc_signal_suffix):
|
|
"""
|
|
Start expert service
|
|
"""
|
|
expert_service = ExpertService(cfg, local_data_parallel_id)
|
|
try:
|
|
expert_service.start(ipc_signal_suffix, local_data_parallel_id)
|
|
expert_service.split_connector.start_receiver()
|
|
except Exception as e:
|
|
llm_logger.exception(f"Expert service failed to start: {e}")
|