mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-05 16:48:03 +08:00
[Serving] Add a simple Python serving (#962)
* init simple serving * simple serving is working * ppyoloe demo * Update README_CN.md * update readme * complete vision result to json
This commit is contained in:
@@ -37,3 +37,4 @@ from . import vision
|
||||
from . import pipeline
|
||||
from . import text
|
||||
from .download import download, download_and_decompress, download_model
|
||||
from . import serving
|
||||
|
16
python/fastdeploy/serving/__init__.py
Normal file
16
python/fastdeploy/serving/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
|
||||
from .server import SimpleServer
|
16
python/fastdeploy/serving/handler/__init__.py
Normal file
16
python/fastdeploy/serving/handler/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from .base_handler import BaseModelHandler
|
||||
from .vision_model_handler import VisionModelHandler
|
28
python/fastdeploy/serving/handler/base_handler.py
Normal file
28
python/fastdeploy/serving/handler/base_handler.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
from abc import ABCMeta, abstractmethod
|
||||
|
||||
|
||||
class BaseModelHandler(metaclass=ABCMeta):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
@abstractmethod
|
||||
def process(cls, predictor, data, parameters):
|
||||
pass
|
||||
|
30
python/fastdeploy/serving/handler/vision_model_handler.py
Normal file
30
python/fastdeploy/serving/handler/vision_model_handler.py
Normal file
@@ -0,0 +1,30 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from .base_handler import BaseModelHandler
|
||||
from ..utils import base64_to_cv2
|
||||
from ...vision.utils import fd_result_to_json
|
||||
|
||||
|
||||
class VisionModelHandler(BaseModelHandler):
|
||||
def __init__(self):
|
||||
super().__init__()
|
||||
|
||||
@classmethod
|
||||
def process(cls, predictor, data, parameters):
|
||||
# TODO: support batch predict
|
||||
im = base64_to_cv2(data['image'])
|
||||
result = predictor.predict(im)
|
||||
r_str = fd_result_to_json(result)
|
||||
return r_str
|
57
python/fastdeploy/serving/model_manager.py
Normal file
57
python/fastdeploy/serving/model_manager.py
Normal file
@@ -0,0 +1,57 @@
|
||||
# coding:utf-8
|
||||
# copyright (c) 2022 paddlepaddle authors. all rights reserved.
|
||||
#
|
||||
# licensed under the apache license, version 2.0 (the "license"
|
||||
# you may not use this file except in compliance with the license.
|
||||
# you may obtain a copy of the license at
|
||||
#
|
||||
# http://www.apache.org/licenses/license-2.0
|
||||
#
|
||||
# unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the license is distributed on an "as is" basis,
|
||||
# without warranties or conditions of any kind, either express or implied.
|
||||
# see the license for the specific language governing permissions and
|
||||
# limitations under the license.
|
||||
|
||||
import os
|
||||
import time
|
||||
import json
|
||||
import logging
|
||||
import threading
|
||||
# from .predictor import Predictor
|
||||
from .handler import BaseModelHandler
|
||||
from .utils import lock_predictor
|
||||
|
||||
|
||||
class ModelManager:
|
||||
def __init__(self, model_handler, predictor):
|
||||
self._model_handler = model_handler
|
||||
self._predictors = []
|
||||
self._predictor_locks = []
|
||||
self._register(predictor)
|
||||
|
||||
def _register(self, predictor):
|
||||
# Get the model handler
|
||||
if not issubclass(self._model_handler, BaseModelHandler):
|
||||
raise TypeError(
|
||||
"The model_handler must be subclass of BaseModelHandler, please check the type."
|
||||
)
|
||||
|
||||
# TODO: Create multiple predictors to run on different GPUs or different CPU threads
|
||||
self._predictors.append(predictor)
|
||||
self._predictor_locks.append(threading.Lock())
|
||||
|
||||
def _get_predict_id(self):
|
||||
t = time.time()
|
||||
t = int(round(t * 1000))
|
||||
predictor_id = t % len(self._predictors)
|
||||
logging.info("The predictor id: {} is selected by running the model.".
|
||||
format(predictor_id))
|
||||
return predictor_id
|
||||
|
||||
def predict(self, data, parameters):
|
||||
predictor_id = self._get_predict_id()
|
||||
with lock_predictor(self._predictor_locks[predictor_id]):
|
||||
model_output = self._model_handler.process(
|
||||
self._predictors[predictor_id], data, parameters)
|
||||
return model_output
|
16
python/fastdeploy/serving/router/__init__.py
Normal file
16
python/fastdeploy/serving/router/__init__.py
Normal file
@@ -0,0 +1,16 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
from __future__ import absolute_import
|
||||
from .base_router import BaseRouterManager
|
||||
from .http_router import HttpRouterManager
|
28
python/fastdeploy/serving/router/base_router.py
Normal file
28
python/fastdeploy/serving/router/base_router.py
Normal file
@@ -0,0 +1,28 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import abc
|
||||
|
||||
|
||||
class BaseRouterManager(abc.ABC):
|
||||
_app = None
|
||||
|
||||
def __init__(self, app):
|
||||
super().__init__()
|
||||
self._app = app
|
||||
|
||||
@abc.abstractmethod
|
||||
def register_models_router(self):
|
||||
return NotImplemented
|
80
python/fastdeploy/serving/router/http_router.py
Normal file
80
python/fastdeploy/serving/router/http_router.py
Normal file
@@ -0,0 +1,80 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
import hashlib
|
||||
import typing
|
||||
import logging
|
||||
from typing import Optional
|
||||
|
||||
from fastapi import APIRouter, Request, HTTPException
|
||||
from pydantic import BaseModel, Extra, create_model
|
||||
|
||||
from .base_router import BaseRouterManager
|
||||
|
||||
|
||||
class ResponseBase(BaseModel):
|
||||
text: Optional[str] = None
|
||||
|
||||
|
||||
class RequestBase(BaseModel, extra=Extra.forbid):
|
||||
parameters: Optional[dict] = {}
|
||||
|
||||
|
||||
class HttpRouterManager(BaseRouterManager):
|
||||
def register_models_router(self, task_name):
|
||||
|
||||
# Url path to register the model
|
||||
paths = [f"/{task_name}"]
|
||||
for path in paths:
|
||||
logging.info("FastDeploy Model request [path]={} is genereated.".
|
||||
format(path))
|
||||
|
||||
# Unique name to create the pydantic model
|
||||
unique_name = hashlib.md5(task_name.encode()).hexdigest()
|
||||
|
||||
# Create request model
|
||||
req_model = create_model(
|
||||
"RequestModel" + unique_name,
|
||||
data=(typing.Any, ...),
|
||||
__base__=RequestBase, )
|
||||
|
||||
# Create response model
|
||||
resp_model = create_model(
|
||||
"ResponseModel" + unique_name,
|
||||
result=(typing.Any, ...),
|
||||
__base__=ResponseBase, )
|
||||
|
||||
# Template predict endpoint function to dynamically serve different models
|
||||
def predict(request: Request, inference_request: req_model):
|
||||
try:
|
||||
result = self._app._model_manager.predict(
|
||||
inference_request.data, inference_request.parameters)
|
||||
except Exception as e:
|
||||
raise HTTPException(
|
||||
status_code=400,
|
||||
detail=f"Error occurred while running predict: {str(e)}")
|
||||
return {"result": result}
|
||||
|
||||
# Register the route and add to the app
|
||||
router = APIRouter()
|
||||
for path in paths:
|
||||
router.add_api_route(
|
||||
path,
|
||||
predict,
|
||||
methods=["post"],
|
||||
summary=f"{task_name.title()}",
|
||||
response_model=resp_model,
|
||||
response_model_exclude_unset=True,
|
||||
response_model_exclude_none=True, )
|
||||
self._app.include_router(router)
|
46
python/fastdeploy/serving/server.py
Normal file
46
python/fastdeploy/serving/server.py
Normal file
@@ -0,0 +1,46 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from fastapi import FastAPI
|
||||
from .router import HttpRouterManager
|
||||
from .model_manager import ModelManager
|
||||
|
||||
|
||||
class SimpleServer(FastAPI):
|
||||
def __init__(self, **kwargs):
|
||||
"""
|
||||
Initial function for the FastDeploy SimpleServer.
|
||||
"""
|
||||
super().__init__(**kwargs)
|
||||
self._router_manager = HttpRouterManager(self)
|
||||
self._model_manager = None
|
||||
self._service_name = "FastDeploy SimpleServer"
|
||||
self._service_type = None
|
||||
|
||||
def register(self, task_name, model_handler, predictor):
|
||||
"""
|
||||
The register function for the SimpleServer, the main register argrument as follows:
|
||||
|
||||
Args:
|
||||
task_name(str): API URL path.
|
||||
model_handler: To process request data, run predictor,
|
||||
and can also add your custom post processing on top of the predictor result
|
||||
predictor: To run model predict
|
||||
"""
|
||||
self._server_type = "models"
|
||||
model_manager = ModelManager(model_handler, predictor)
|
||||
self._model_manager = model_manager
|
||||
# Register model server router
|
||||
self._router_manager.register_models_router(task_name)
|
40
python/fastdeploy/serving/utils.py
Normal file
40
python/fastdeploy/serving/utils.py
Normal file
@@ -0,0 +1,40 @@
|
||||
# coding:utf-8
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License"
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import contextlib
|
||||
import base64
|
||||
import numpy as np
|
||||
import cv2
|
||||
|
||||
|
||||
@contextlib.contextmanager
|
||||
def lock_predictor(lock):
|
||||
lock.acquire()
|
||||
try:
|
||||
yield
|
||||
finally:
|
||||
lock.release()
|
||||
|
||||
|
||||
def cv2_to_base64(image):
|
||||
data = cv2.imencode('.jpg', image)[1]
|
||||
return base64.b64encode(data.tobytes()).decode('utf8')
|
||||
|
||||
|
||||
def base64_to_cv2(b64str):
|
||||
data = base64.b64decode(b64str.encode('utf8'))
|
||||
data = np.fromstring(data, np.uint8)
|
||||
data = cv2.imdecode(data, cv2.IMREAD_COLOR)
|
||||
return data
|
@@ -46,6 +46,81 @@ def classify_to_json(result):
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def keypoint_to_json(result):
|
||||
r_json = {
|
||||
"keypoints": result.keypoints,
|
||||
"scores": result.scores,
|
||||
"num_joints": result.num_joints,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def ocr_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"text": result.text,
|
||||
"rec_scores": result.rec_scores,
|
||||
"cls_scores": result.cls_scores,
|
||||
"cls_labels": result.cls_labels,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def mot_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"ids": result.ids,
|
||||
"scores": result.scores,
|
||||
"class_ids": result.class_ids,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_detection_to_json(result):
|
||||
r_json = {
|
||||
"boxes": result.boxes,
|
||||
"landmarks": result.landmarks,
|
||||
"scores": result.scores,
|
||||
"landmarks_per_face": result.landmarks_per_face,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_alignment_to_json(result):
|
||||
r_json = {"landmarks": result.landmarks, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def face_recognition_to_json(result):
|
||||
r_json = {"embedding": result.embedding, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def segmentation_to_json(result):
|
||||
r_json = {
|
||||
"label_map": result.label_map,
|
||||
"score_map": result.score_map,
|
||||
"shape": result.shape,
|
||||
"contain_score_map": result.contain_score_map,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def matting_to_json(result):
|
||||
r_json = {
|
||||
"alpha": result.alpha,
|
||||
"foreground": result.foreground,
|
||||
"shape": result.shape,
|
||||
"contain_foreground": result.contain_foreground,
|
||||
}
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def head_pose_to_json(result):
|
||||
r_json = {"euler_angles": result.euler_angles, }
|
||||
return json.dumps(r_json)
|
||||
|
||||
|
||||
def fd_result_to_json(result):
|
||||
if isinstance(result, list):
|
||||
r_list = []
|
||||
@@ -58,7 +133,124 @@ def fd_result_to_json(result):
|
||||
return mask_to_json(result)
|
||||
elif isinstance(result, C.vision.ClassifyResult):
|
||||
return classify_to_json(result)
|
||||
elif isinstance(result, C.vision.KeyPointDetectionResult):
|
||||
return keypoint_to_json(result)
|
||||
elif isinstance(result, C.vision.OCRResult):
|
||||
return ocr_to_json(result)
|
||||
elif isinstance(result, C.vision.MOTResult):
|
||||
return mot_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceDetectionResult):
|
||||
return face_detection_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceAlignmentResult):
|
||||
return face_alignment_to_json(result)
|
||||
elif isinstance(result, C.vision.FaceRecognitionResult):
|
||||
return face_recognition_to_json(result)
|
||||
elif isinstance(result, C.vision.SegmentationResult):
|
||||
return segmentation_to_json(result)
|
||||
elif isinstance(result, C.vision.MattingResult):
|
||||
return matting_to_json(result)
|
||||
elif isinstance(result, C.vision.HeadPoseResult):
|
||||
return head_pose_to_json(result)
|
||||
else:
|
||||
assert False, "{} Conversion to JSON format is not supported".format(
|
||||
type(result))
|
||||
return {}
|
||||
|
||||
|
||||
def json_to_mask(result):
|
||||
mask = C.vision.Mask()
|
||||
mask.data = result['data']
|
||||
mask.shape = result['shape']
|
||||
return mask
|
||||
|
||||
|
||||
def json_to_detection(result):
|
||||
masks = []
|
||||
for mask in result['masks']:
|
||||
masks.append(json_to_mask(json.loads(mask)))
|
||||
det_result = C.vision.DetectionResult()
|
||||
det_result.boxes = result['boxes']
|
||||
det_result.scores = result['scores']
|
||||
det_result.label_ids = result['label_ids']
|
||||
det_result.masks = masks
|
||||
det_result.contain_masks = result['contain_masks']
|
||||
return det_result
|
||||
|
||||
|
||||
def json_to_classify(result):
|
||||
cls_result = C.vision.ClassifyResult()
|
||||
cls_result.label_ids = result['label_ids']
|
||||
cls_result.scores = result['scores']
|
||||
return cls_result
|
||||
|
||||
|
||||
def json_to_keypoint(result):
|
||||
kp_result = C.vision.KeyPointDetectionResult()
|
||||
kp_result.keypoints = result['keypoints']
|
||||
kp_result.scores = result['scores']
|
||||
kp_result.num_joints = result['num_joints']
|
||||
return kp_result
|
||||
|
||||
|
||||
def json_to_ocr(result):
|
||||
ocr_result = C.vision.OCRResult()
|
||||
ocr_result.boxes = result['boxes']
|
||||
ocr_result.text = result['text']
|
||||
ocr_result.rec_scores = result['rec_scores']
|
||||
ocr_result.cls_scores = result['cls_scores']
|
||||
ocr_result.cls_labels = result['cls_labels']
|
||||
return ocr_result
|
||||
|
||||
|
||||
def json_to_mot(result):
|
||||
mot_result = C.vision.MOTResult()
|
||||
mot_result.boxes = result['boxes']
|
||||
mot_result.ids = result['ids']
|
||||
mot_result.scores = result['scores']
|
||||
mot_result.class_ids = result['class_ids']
|
||||
return mot_result
|
||||
|
||||
|
||||
def json_to_face_detection(result):
|
||||
face_result = C.vision.FaceDetectionResult()
|
||||
face_result.boxes = result['boxes']
|
||||
face_result.landmarks = result['landmarks']
|
||||
face_result.scores = result['scores']
|
||||
face_result.landmarks_per_face = result['landmarks_per_face']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_face_alignment(result):
|
||||
face_result = C.vision.FaceAlignmentResult()
|
||||
face_result.landmarks = result['landmarks']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_face_recognition(result):
|
||||
face_result = C.vision.FaceRecognitionResult()
|
||||
face_result.embedding = result['embedding']
|
||||
return face_result
|
||||
|
||||
|
||||
def json_to_segmentation(result):
|
||||
seg_result = C.vision.SegmentationResult()
|
||||
seg_result.label_map = result['label_map']
|
||||
seg_result.score_map = result['score_map']
|
||||
seg_result.shape = result['shape']
|
||||
seg_result.contain_score_map = result['contain_score_map']
|
||||
return seg_result
|
||||
|
||||
|
||||
def json_to_matting(result):
|
||||
matting_result = C.vision.MattingResult()
|
||||
matting_result.alpha = result['alpha']
|
||||
matting_result.foreground = result['foreground']
|
||||
matting_result.shape = result['shape']
|
||||
matting_result.contain_foreground = result['contain_foreground']
|
||||
return matting_result
|
||||
|
||||
|
||||
def json_to_head_pose(result):
|
||||
hp_result = C.vision.HeadPoseResult()
|
||||
hp_result.euler_angles = result['euler_angles']
|
||||
return hp_result
|
||||
|
Reference in New Issue
Block a user