mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* init simple serving * simple serving is working * ppyoloe demo * Update README_CN.md * update readme * complete vision result to json
257 lines
7.3 KiB
Python
257 lines
7.3 KiB
Python
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
from __future__ import absolute_import
|
|
import json
|
|
from .. import c_lib_wrap as C
|
|
|
|
|
|
def mask_to_json(result):
|
|
r_json = {
|
|
"data": result.data,
|
|
"shape": result.shape,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def detection_to_json(result):
|
|
masks = []
|
|
for mask in result.masks:
|
|
masks.append(mask_to_json(mask))
|
|
r_json = {
|
|
"boxes": result.boxes,
|
|
"scores": result.scores,
|
|
"label_ids": result.label_ids,
|
|
"masks": masks,
|
|
"contain_masks": result.contain_masks
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def classify_to_json(result):
|
|
r_json = {
|
|
"label_ids": result.label_ids,
|
|
"scores": result.scores,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def keypoint_to_json(result):
|
|
r_json = {
|
|
"keypoints": result.keypoints,
|
|
"scores": result.scores,
|
|
"num_joints": result.num_joints,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def ocr_to_json(result):
|
|
r_json = {
|
|
"boxes": result.boxes,
|
|
"text": result.text,
|
|
"rec_scores": result.rec_scores,
|
|
"cls_scores": result.cls_scores,
|
|
"cls_labels": result.cls_labels,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def mot_to_json(result):
|
|
r_json = {
|
|
"boxes": result.boxes,
|
|
"ids": result.ids,
|
|
"scores": result.scores,
|
|
"class_ids": result.class_ids,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def face_detection_to_json(result):
|
|
r_json = {
|
|
"boxes": result.boxes,
|
|
"landmarks": result.landmarks,
|
|
"scores": result.scores,
|
|
"landmarks_per_face": result.landmarks_per_face,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def face_alignment_to_json(result):
|
|
r_json = {"landmarks": result.landmarks, }
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def face_recognition_to_json(result):
|
|
r_json = {"embedding": result.embedding, }
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def segmentation_to_json(result):
|
|
r_json = {
|
|
"label_map": result.label_map,
|
|
"score_map": result.score_map,
|
|
"shape": result.shape,
|
|
"contain_score_map": result.contain_score_map,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def matting_to_json(result):
|
|
r_json = {
|
|
"alpha": result.alpha,
|
|
"foreground": result.foreground,
|
|
"shape": result.shape,
|
|
"contain_foreground": result.contain_foreground,
|
|
}
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def head_pose_to_json(result):
|
|
r_json = {"euler_angles": result.euler_angles, }
|
|
return json.dumps(r_json)
|
|
|
|
|
|
def fd_result_to_json(result):
|
|
if isinstance(result, list):
|
|
r_list = []
|
|
for r in result:
|
|
r_list.append(fd_result_to_json(r))
|
|
return r_list
|
|
elif isinstance(result, C.vision.DetectionResult):
|
|
return detection_to_json(result)
|
|
elif isinstance(result, C.vision.Mask):
|
|
return mask_to_json(result)
|
|
elif isinstance(result, C.vision.ClassifyResult):
|
|
return classify_to_json(result)
|
|
elif isinstance(result, C.vision.KeyPointDetectionResult):
|
|
return keypoint_to_json(result)
|
|
elif isinstance(result, C.vision.OCRResult):
|
|
return ocr_to_json(result)
|
|
elif isinstance(result, C.vision.MOTResult):
|
|
return mot_to_json(result)
|
|
elif isinstance(result, C.vision.FaceDetectionResult):
|
|
return face_detection_to_json(result)
|
|
elif isinstance(result, C.vision.FaceAlignmentResult):
|
|
return face_alignment_to_json(result)
|
|
elif isinstance(result, C.vision.FaceRecognitionResult):
|
|
return face_recognition_to_json(result)
|
|
elif isinstance(result, C.vision.SegmentationResult):
|
|
return segmentation_to_json(result)
|
|
elif isinstance(result, C.vision.MattingResult):
|
|
return matting_to_json(result)
|
|
elif isinstance(result, C.vision.HeadPoseResult):
|
|
return head_pose_to_json(result)
|
|
else:
|
|
assert False, "{} Conversion to JSON format is not supported".format(
|
|
type(result))
|
|
return {}
|
|
|
|
|
|
def json_to_mask(result):
|
|
mask = C.vision.Mask()
|
|
mask.data = result['data']
|
|
mask.shape = result['shape']
|
|
return mask
|
|
|
|
|
|
def json_to_detection(result):
|
|
masks = []
|
|
for mask in result['masks']:
|
|
masks.append(json_to_mask(json.loads(mask)))
|
|
det_result = C.vision.DetectionResult()
|
|
det_result.boxes = result['boxes']
|
|
det_result.scores = result['scores']
|
|
det_result.label_ids = result['label_ids']
|
|
det_result.masks = masks
|
|
det_result.contain_masks = result['contain_masks']
|
|
return det_result
|
|
|
|
|
|
def json_to_classify(result):
|
|
cls_result = C.vision.ClassifyResult()
|
|
cls_result.label_ids = result['label_ids']
|
|
cls_result.scores = result['scores']
|
|
return cls_result
|
|
|
|
|
|
def json_to_keypoint(result):
|
|
kp_result = C.vision.KeyPointDetectionResult()
|
|
kp_result.keypoints = result['keypoints']
|
|
kp_result.scores = result['scores']
|
|
kp_result.num_joints = result['num_joints']
|
|
return kp_result
|
|
|
|
|
|
def json_to_ocr(result):
|
|
ocr_result = C.vision.OCRResult()
|
|
ocr_result.boxes = result['boxes']
|
|
ocr_result.text = result['text']
|
|
ocr_result.rec_scores = result['rec_scores']
|
|
ocr_result.cls_scores = result['cls_scores']
|
|
ocr_result.cls_labels = result['cls_labels']
|
|
return ocr_result
|
|
|
|
|
|
def json_to_mot(result):
|
|
mot_result = C.vision.MOTResult()
|
|
mot_result.boxes = result['boxes']
|
|
mot_result.ids = result['ids']
|
|
mot_result.scores = result['scores']
|
|
mot_result.class_ids = result['class_ids']
|
|
return mot_result
|
|
|
|
|
|
def json_to_face_detection(result):
|
|
face_result = C.vision.FaceDetectionResult()
|
|
face_result.boxes = result['boxes']
|
|
face_result.landmarks = result['landmarks']
|
|
face_result.scores = result['scores']
|
|
face_result.landmarks_per_face = result['landmarks_per_face']
|
|
return face_result
|
|
|
|
|
|
def json_to_face_alignment(result):
|
|
face_result = C.vision.FaceAlignmentResult()
|
|
face_result.landmarks = result['landmarks']
|
|
return face_result
|
|
|
|
|
|
def json_to_face_recognition(result):
|
|
face_result = C.vision.FaceRecognitionResult()
|
|
face_result.embedding = result['embedding']
|
|
return face_result
|
|
|
|
|
|
def json_to_segmentation(result):
|
|
seg_result = C.vision.SegmentationResult()
|
|
seg_result.label_map = result['label_map']
|
|
seg_result.score_map = result['score_map']
|
|
seg_result.shape = result['shape']
|
|
seg_result.contain_score_map = result['contain_score_map']
|
|
return seg_result
|
|
|
|
|
|
def json_to_matting(result):
|
|
matting_result = C.vision.MattingResult()
|
|
matting_result.alpha = result['alpha']
|
|
matting_result.foreground = result['foreground']
|
|
matting_result.shape = result['shape']
|
|
matting_result.contain_foreground = result['contain_foreground']
|
|
return matting_result
|
|
|
|
|
|
def json_to_head_pose(result):
|
|
hp_result = C.vision.HeadPoseResult()
|
|
hp_result.euler_angles = result['euler_angles']
|
|
return hp_result
|