[Model] Support Insightface model inferenceing on RKNPU (#1113)

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* Update issues.md

* Update fastdeploy_init.sh

* 更新交叉编译

* 更新insightface系列模型的rknpu2支持

* 更新insightface系列模型的rknpu2支持

* 更新说明文档

* 更新insightface

* 尝试解决pybind问题

Co-authored-by: Jason <928090362@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
This commit is contained in:
Zheng-Bicheng
2023-01-14 20:40:33 +08:00
committed by GitHub
parent f88c662449
commit 1dabfdf3f1
21 changed files with 712 additions and 147 deletions

View File

@@ -14,7 +14,7 @@ ONNX模型不能直接调用RK芯片中的NPU进行运算需要把ONNX模型
* NPU均使用单核进行测试 * NPU均使用单核进行测试
| 任务场景 | 模型 | 模型版本(表示已经测试的版本) | ARM CPU/RKNN速度(ms) | | 任务场景 | 模型 | 模型版本(表示已经测试的版本) | ARM CPU/RKNN速度(ms) |
|----------------|------------------------------------------------------------------------------------------|--------------------------|--------------------| |----------------------|------------------------------------------------------------------------------------------|--------------------------|--------------------|
| Detection | [Picodet](../../../../examples/vision/detection/paddledetection/rknpu2/README.md) | Picodet-s | 162/112 | | Detection | [Picodet](../../../../examples/vision/detection/paddledetection/rknpu2/README.md) | Picodet-s | 162/112 |
| Detection | [RKYOLOV5](../../../../examples/vision/detection/rkyolo/README.md) | YOLOV5-S-Relu(int8) | -/57 | | Detection | [RKYOLOV5](../../../../examples/vision/detection/rkyolo/README.md) | YOLOV5-S-Relu(int8) | -/57 |
| Detection | [RKYOLOX](../../../../examples/vision/detection/rkyolo/README.md) | - | -/- | | Detection | [RKYOLOX](../../../../examples/vision/detection/rkyolo/README.md) | - | -/- |
@@ -23,4 +23,12 @@ ONNX模型不能直接调用RK芯片中的NPU进行运算需要把ONNX模型
| Segmentation | [PP-HumanSegV2Lite](../../../../examples/vision/segmentation/paddleseg/rknpu2/README.md) | portrait(int8) | 133/43 | | Segmentation | [PP-HumanSegV2Lite](../../../../examples/vision/segmentation/paddleseg/rknpu2/README.md) | portrait(int8) | 133/43 |
| Segmentation | [PP-HumanSegV2Lite](../../../../examples/vision/segmentation/paddleseg/rknpu2/README.md) | human(int8) | 133/43 | | Segmentation | [PP-HumanSegV2Lite](../../../../examples/vision/segmentation/paddleseg/rknpu2/README.md) | human(int8) | 133/43 |
| Face Detection | [SCRFD](../../../../examples/vision/facedet/scrfd/rknpu2/README.md) | SCRFD-2.5G-kps-640(int8) | 108/42 | | Face Detection | [SCRFD](../../../../examples/vision/facedet/scrfd/rknpu2/README.md) | SCRFD-2.5G-kps-640(int8) | 108/42 |
| Face FaceRecognition | [InsightFace](../../../../examples/vision/faceid/insightface/rknpu2/README_CN.md) | ms1mv3_arcface_r18(int8) | 81/12 |
| Classification | [ResNet](../../../../examples/vision/classification/paddleclas/rknpu2/README.md) | ResNet50_vd | -/33 | | Classification | [ResNet](../../../../examples/vision/classification/paddleclas/rknpu2/README.md) | ResNet50_vd | -/33 |
## 预编译库下载
为了方便大家进行开发这里提供1.0.2版本的FastDeploy给大家使用
- [FastDeploy RK356X c++ SDK](https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-aarch64-rk356X-1.0.2.tgz)
- [FastDeploy RK3588 c++ SDK](https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-aarch64-rk3588-1.0.2.tgz)

View File

@@ -101,7 +101,7 @@ VPL模型加载和初始化其中model_file为导出的ONNX模型格式。
#### Predict函数 #### Predict函数
> ```c++ > ```c++
> ArcFace::Predict(cv::Mat* im, FaceRecognitionResult* result) > ArcFace::Predict(const cv::Mat& im, FaceRecognitionResult* result)
> ``` > ```
> >
> 模型预测接口,输入图像直接输出检测结果。 > 模型预测接口,输入图像直接输出检测结果。
@@ -121,8 +121,6 @@ VPL模型加载和初始化其中model_file为导出的ONNX模型格式。
通过InsightFaceRecognitionPreprocessor::SetAlpha(std::vector<float>& alpha)来进行修改 通过InsightFaceRecognitionPreprocessor::SetAlpha(std::vector<float>& alpha)来进行修改
> > * **beta**(vector&lt;float&gt;): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f], > > * **beta**(vector&lt;float&gt;): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f],
通过InsightFaceRecognitionPreprocessor::SetBeta(std::vector<float>& beta)来进行修改 通过InsightFaceRecognitionPreprocessor::SetBeta(std::vector<float>& beta)来进行修改
> > * **permute**(bool): 预处理是否将BGR转换成RGB默认true,
通过InsightFaceRecognitionPreprocessor::SetPermute(bool permute)来进行修改
#### InsightFaceRecognitionPostprocessor成员变量(后处理参数) #### InsightFaceRecognitionPostprocessor成员变量(后处理参数)
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化默认false, > > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化默认false,

View File

@@ -100,7 +100,6 @@ ArcFace模型加载和初始化其中model_file为导出的ONNX模型格式
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112] > > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112]
> > * **alpha**(list[float]): 预处理归一化的alpha值计算公式为`x'=x*alpha+beta`alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5] > > * **alpha**(list[float]): 预处理归一化的alpha值计算公式为`x'=x*alpha+beta`alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(list[float]): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f] > > * **beta**(list[float]): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f]
> > * **swap_rb**(bool): 预处理是否将BGR转换成RGB默认True
#### AdaFacePostprocessor的成员变量 #### AdaFacePostprocessor的成员变量
以下变量为AdaFacePostprocessor的成员变量 以下变量为AdaFacePostprocessor的成员变量

View File

@@ -3,7 +3,6 @@ import cv2
import numpy as np import numpy as np
# 余弦相似度
def cosine_similarity(a, b): def cosine_similarity(a, b):
a = np.array(a) a = np.array(a)
b = np.array(b) b = np.array(b)
@@ -56,24 +55,17 @@ def build_option(args):
args = parse_arguments() args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args) runtime_option = build_option(args)
model = fd.vision.faceid.ArcFace(args.model, runtime_option=runtime_option) model = fd.vision.faceid.ArcFace(args.model, runtime_option=runtime_option)
# 加载图片
face0 = cv2.imread(args.face) # 0,1 同一个人 face0 = cv2.imread(args.face) # 0,1 同一个人
face1 = cv2.imread(args.face_positive) face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative) # 0,2 不同的人 face2 = cv2.imread(args.face_negative) # 0,2 不同的人
# 设置 l2 normalize
model.postprocessor.l2_normalize = True
# 预测图片检测结果
result0 = model.predict(face0) result0 = model.predict(face0)
result1 = model.predict(face1) result1 = model.predict(face1)
result2 = model.predict(face2) result2 = model.predict(face2)
# 计算余弦相似度
embedding0 = result0.embedding embedding0 = result0.embedding
embedding1 = result1.embedding embedding1 = result1.embedding
embedding2 = result2.embedding embedding2 = result2.embedding
@@ -81,7 +73,6 @@ embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1) cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2) cosine02 = cosine_similarity(embedding0, embedding2)
# 打印结果
print(result0, end="") print(result0, end="")
print(result1, end="") print(result1, end="")
print(result2, end="") print(result2, end="")

View File

@@ -3,7 +3,6 @@ import cv2
import numpy as np import numpy as np
# 余弦相似度
def cosine_similarity(a, b): def cosine_similarity(a, b):
a = np.array(a) a = np.array(a)
b = np.array(b) b = np.array(b)
@@ -56,24 +55,17 @@ def build_option(args):
args = parse_arguments() args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args) runtime_option = build_option(args)
model = fd.vision.faceid.CosFace(args.model, runtime_option=runtime_option) model = fd.vision.faceid.CosFace(args.model, runtime_option=runtime_option)
# 加载图片 face0 = cv2.imread(args.face)
face0 = cv2.imread(args.face) # 0,1 同一个人
face1 = cv2.imread(args.face_positive) face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative) # 0,2 不同的人 face2 = cv2.imread(args.face_negative)
# 设置 l2 normalize
model.postprocessor.l2_normalize = True
# 预测图片检测结果
result0 = model.predict(face0) result0 = model.predict(face0)
result1 = model.predict(face1) result1 = model.predict(face1)
result2 = model.predict(face2) result2 = model.predict(face2)
# 计算余弦相似度
embedding0 = result0.embedding embedding0 = result0.embedding
embedding1 = result1.embedding embedding1 = result1.embedding
embedding2 = result2.embedding embedding2 = result2.embedding
@@ -81,7 +73,6 @@ embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1) cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2) cosine02 = cosine_similarity(embedding0, embedding2)
# 打印结果
print(result0, end="") print(result0, end="")
print(result1, end="") print(result1, end="")
print(result2, end="") print(result2, end="")

View File

@@ -3,7 +3,6 @@ import cv2
import numpy as np import numpy as np
# 余弦相似度
def cosine_similarity(a, b): def cosine_similarity(a, b):
a = np.array(a) a = np.array(a)
b = np.array(b) b = np.array(b)
@@ -56,24 +55,18 @@ def build_option(args):
args = parse_arguments() args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args) runtime_option = build_option(args)
model = fd.vision.faceid.PartialFC(args.model, runtime_option=runtime_option) model = fd.vision.faceid.PartialFC(args.model, runtime_option=runtime_option)
# 加载图片 # 加载图片
face0 = cv2.imread(args.face) # 0,1 同一个人 face0 = cv2.imread(args.face)
face1 = cv2.imread(args.face_positive) face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative) # 0,2 不同的人 face2 = cv2.imread(args.face_negative)
# 设置 l2 normalize
model.postprocessor.l2_normalize = True
# 预测图片检测结果
result0 = model.predict(face0) result0 = model.predict(face0)
result1 = model.predict(face1) result1 = model.predict(face1)
result2 = model.predict(face2) result2 = model.predict(face2)
# 计算余弦相似度
embedding0 = result0.embedding embedding0 = result0.embedding
embedding1 = result1.embedding embedding1 = result1.embedding
embedding2 = result2.embedding embedding2 = result2.embedding
@@ -81,7 +74,6 @@ embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1) cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2) cosine02 = cosine_similarity(embedding0, embedding2)
# 打印结果
print(result0, end="") print(result0, end="")
print(result1, end="") print(result1, end="")
print(result2, end="") print(result2, end="")

View File

@@ -3,7 +3,6 @@ import cv2
import numpy as np import numpy as np
# 余弦相似度
def cosine_similarity(a, b): def cosine_similarity(a, b):
a = np.array(a) a = np.array(a)
b = np.array(b) b = np.array(b)
@@ -56,24 +55,17 @@ def build_option(args):
args = parse_arguments() args = parse_arguments()
# 配置runtime加载模型
runtime_option = build_option(args) runtime_option = build_option(args)
model = fd.vision.faceid.VPL(args.model, runtime_option=runtime_option) model = fd.vision.faceid.VPL(args.model, runtime_option=runtime_option)
# 加载图片
face0 = cv2.imread(args.face) # 0,1 同一个人 face0 = cv2.imread(args.face) # 0,1 同一个人
face1 = cv2.imread(args.face_positive) face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative) # 0,2 不同的人 face2 = cv2.imread(args.face_negative) # 0,2 不同的人
# 设置 l2 normalize
model.postprocessor.l2_normalize = True
# 预测图片检测结果
result0 = model.predict(face0) result0 = model.predict(face0)
result1 = model.predict(face1) result1 = model.predict(face1)
result2 = model.predict(face2) result2 = model.predict(face2)
# 计算余弦相似度
embedding0 = result0.embedding embedding0 = result0.embedding
embedding1 = result1.embedding embedding1 = result1.embedding
embedding2 = result2.embedding embedding2 = result2.embedding
@@ -81,7 +73,6 @@ embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1) cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2) cosine02 = cosine_similarity(embedding0, embedding2)
# 打印结果
print(result0, end="") print(result0, end="")
print(result1, end="") print(result1, end="")
print(result2, end="") print(result2, end="")

View File

@@ -0,0 +1,54 @@
[English](README.md) | 简体中文
# InsightFace RKNPU准备部署模型
本教程提供InsightFace模型在RKNPU2环境下的部署模型的详细介绍已经ONNX模型的下载请查看[模型介绍文档](../README.md)。
## 支持模型列表
目前FastDeploy支持如下模型的部署
- ArcFace
- CosFace
- PartialFC
- VPL
## 下载预训练ONNX模型
为了方便开发者的测试下面提供了InsightFace导出的各系列模型开发者可直接下载使用。下表中模型的精度来源于源官方库其中精度指标来源于InsightFace中对各模型的介绍详情各参考InsightFace中的说明
| 模型 | 大小 | 精度 (AgeDB_30) |
|:-------------------------------------------------------------------------------------------|:------|:--------------|
| [CosFace-r18](https://bj.bcebos.com/paddlehub/fastdeploy/glint360k_cosface_r18.onnx) | 92MB | 97.7 |
| [CosFace-r34](https://bj.bcebos.com/paddlehub/fastdeploy/glint360k_cosface_r34.onnx) | 131MB | 98.3 |
| [CosFace-r50](https://bj.bcebos.com/paddlehub/fastdeploy/glint360k_cosface_r50.onnx) | 167MB | 98.3 |
| [CosFace-r100](https://bj.bcebos.com/paddlehub/fastdeploy/glint360k_cosface_r100.onnx) | 249MB | 98.4 |
| [ArcFace-r18](https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r18.onnx) | 92MB | 97.7 |
| [ArcFace-r34](https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r34.onnx) | 131MB | 98.1 |
| [ArcFace-r50](https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r50.onnx) | 167MB | - |
| [ArcFace-r100](https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx) | 249MB | 98.4 |
| [ArcFace-r100_lr0.1](https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_r100_lr01.onnx) | 249MB | 98.4 |
| [PartialFC-r34](https://bj.bcebos.com/paddlehub/fastdeploy/partial_fc_glint360k_r50.onnx) | 167MB | - |
| [PartialFC-r50](https://bj.bcebos.com/paddlehub/fastdeploy/partial_fc_glint360k_r100.onnx) | 249MB | - |
## 转换为RKNPU模型
```bash
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r18.onnx
python -m paddle2onnx.optimize --input_model ./ms1mv3_arcface_r18/ms1mv3_arcface_r18.onnx \
--output_model ./ms1mv3_arcface_r18/ms1mv3_arcface_r18.onnx \
--input_shape_dict "{'data':[1,3,112,112]}"
python /Path/To/FastDeploy/tools/rknpu2/export.py \
--config_path tools/rknpu2/config/arcface_unquantized.yaml \
--target_platform rk3588
```
## 详细部署文档
- [Python部署](python)
- [C++部署](cpp)
## 版本说明
- 本版本文档和代码基于[InsightFace CommitID:babb9a5](https://github.com/deepinsight/insightface/commit/babb9a5) 编写

View File

@@ -0,0 +1,11 @@
PROJECT(infer_demo C CXX)
CMAKE_MINIMUM_REQUIRED (VERSION 3.10)
option(FASTDEPLOY_INSTALL_DIR "Path of downloaded fastdeploy sdk.")
include(${FASTDEPLOY_INSTALL_DIR}/FastDeploy.cmake)
include_directories(${FASTDEPLOY_INCS})
add_executable(infer_arcface_demo ${PROJECT_SOURCE_DIR}/infer_arcface.cc)
target_link_libraries(infer_arcface_demo ${FASTDEPLOY_LIBS})

View File

@@ -0,0 +1,136 @@
[English](README.md) | 简体中文
# InsightFace C++部署示例
FastDeploy支持在RKNPU上部署包括ArcFace\CosFace\VPL\Partial_FC在内的InsightFace系列模型。
本目录下提供`infer_arcface.cc`快速完成InsighFace模型包括ArcFace在CPU/RKNPU加速部署的示例。
在部署前,需确认以下两个步骤:
1. 软硬件环境满足要求
2. 根据开发环境下载预编译部署库或者从头编译FastDeploy仓库
以上步骤请参考[RK2代NPU部署库编译](../../../../../../docs/cn/build_and_install/rknpu2.md)实现
在本目录执行如下命令即可完成编译测试
```bash
mkdir build
cd build
# FastDeploy version need >=1.0.3
wget https://bj.bcebos.com/fastdeploy/release/cpp/fastdeploy-linux-x64-x.x.x.tgz
tar xvf fastdeploy-linux-x64-x.x.x.tgz
cmake .. -DFASTDEPLOY_INSTALL_DIR=${PWD}/fastdeploy-linux-x64-x.x.x
make -j
# 下载官方转换好的ArcFace模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r18.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# CPU推理
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 0
# RKNPU推理
./infer_arcface_demo ms1mv3_arcface_r100.onnx face_0.jpg face_1.jpg face_2.jpg 1
```
运行完成可视化结果如下图所示
<div width="700">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
</div>
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
- [如何在Windows中使用FastDeploy C++ SDK](../../../../../docs/cn/faq/use_sdk_on_windows.md)
## InsightFace C++接口
### ArcFace类
```c++
fastdeploy::vision::faceid::ArcFace(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
ArcFace模型加载和初始化其中model_file为导出的ONNX模型格式。
### CosFace类
```c++
fastdeploy::vision::faceid::CosFace(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
CosFace模型加载和初始化其中model_file为导出的ONNX模型格式。
### PartialFC类
```c++
fastdeploy::vision::faceid::PartialFC(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
PartialFC模型加载和初始化其中model_file为导出的ONNX模型格式。
### VPL类
```c++
fastdeploy::vision::faceid::VPL(
const string& model_file,
const string& params_file = "",
const RuntimeOption& runtime_option = RuntimeOption(),
const ModelFormat& model_format = ModelFormat::ONNX)
```
VPL模型加载和初始化其中model_file为导出的ONNX模型格式。
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX时此参数传入空字符串即可
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX格式
#### Predict函数
> ```c++
> ArcFace::Predict(const cv::Mat& im, FaceRecognitionResult* result)
> ```
>
> 模型预测接口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **im**: 输入图像注意需为HWCBGR格式
> > * **result**: 检测结果,包括检测框,各个框的置信度, FaceRecognitionResult说明参考[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 修改预处理以及后处理的参数
预处理和后处理的参数的需要通过修改InsightFaceRecognitionPostprocessorInsightFaceRecognitionPreprocessor的成员变量来进行修改。
#### InsightFaceRecognitionPreprocessor成员变量(预处理参数)
> > * **size**(vector&lt;int&gt;): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112],
通过InsightFaceRecognitionPreprocessor::SetSize(std::vector<int>& size)来进行修改
> > * **alpha**(vector&lt;float&gt;): 预处理归一化的alpha值计算公式为`x'=x*alpha+beta`alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5],
通过InsightFaceRecognitionPreprocessor::SetAlpha(std::vector<float>& alpha)来进行修改
> > * **beta**(vector&lt;float&gt;): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f],
通过InsightFaceRecognitionPreprocessor::SetBeta(std::vector<float>& beta)来进行修改
#### InsightFaceRecognitionPostprocessor成员变量(后处理参数)
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化默认false,
InsightFaceRecognitionPostprocessor::SetL2Normalize(bool& l2_normalize)来进行修改
- [模型介绍](../../../)
- [Python部署](../python)
- [视觉模型预测结果](../../../../../../docs/api/vision_results/README.md)
- [如何切换模型推理后端引擎](../../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,123 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/vision.h"
void CpuInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
auto model = fastdeploy::vision::faceid::ArcFace(model_file, "");
cv::Mat face0 = cv::imread(image_file[0]);
fastdeploy::vision::FaceRecognitionResult res0;
if (!model.Predict(face0, &res0)) {
std::cerr << "Prediction Failed." << std::endl;
}
cv::Mat face1 = cv::imread(image_file[1]);
fastdeploy::vision::FaceRecognitionResult res1;
if (!model.Predict(face1, &res1)) {
std::cerr << "Prediction Failed." << std::endl;
}
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res2;
if (!model.Predict(face2, &res2)) {
std::cerr << "Prediction Failed." << std::endl;
return;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
void RKNPUInfer(const std::string& model_file,
const std::vector<std::string>& image_file) {
std::string params_file;
auto option = fastdeploy::RuntimeOption();
option.UseRKNPU2();
auto format = fastdeploy::ModelFormat::RKNN;
auto model = fastdeploy::vision::faceid::ArcFace(model_file, params_file,
option, format);
model.GetPreprocessor().DisableNormalize();
model.GetPreprocessor().DisablePermute();
cv::Mat face0 = cv::imread(image_file[0]);
fastdeploy::vision::FaceRecognitionResult res0;
if (!model.Predict(face0, &res0)) {
std::cerr << "Prediction Failed." << std::endl;
return;
}
cv::Mat face1 = cv::imread(image_file[1]);
fastdeploy::vision::FaceRecognitionResult res1;
if (!model.Predict(face1, &res1)) {
std::cerr << "Prediction Failed." << std::endl;
return;
}
cv::Mat face2 = cv::imread(image_file[2]);
fastdeploy::vision::FaceRecognitionResult res2;
if (!model.Predict(face2, &res2)) {
std::cerr << "Prediction Failed." << std::endl;
return;
}
std::cout << "Prediction Done!" << std::endl;
std::cout << "--- [Face 0]:" << res0.Str();
std::cout << "--- [Face 1]:" << res1.Str();
std::cout << "--- [Face 2]:" << res2.Str();
float cosine01 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res1.embedding,
model.GetPostprocessor().GetL2Normalize());
float cosine02 = fastdeploy::vision::utils::CosineSimilarity(
res0.embedding, res2.embedding,
model.GetPostprocessor().GetL2Normalize());
std::cout << "Detect Done! Cosine 01: " << cosine01
<< ", Cosine 02:" << cosine02 << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 6) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
"e.g ./infer_arcface_demo ms1mv3_arcface_r100.onnx "
"face_0.jpg face_1.jpg face_2.jpg 0"
<< std::endl;
std::cout << "The data type of run_option is int, "
"0: run with cpu; 1: run with rknpu2."
<< std::endl;
return -1;
}
std::vector<std::string> image_files = {argv[2], argv[3], argv[4]};
if (std::atoi(argv[5]) == 0) {
CpuInfer(argv[1], image_files);
} else if (std::atoi(argv[5]) == 1) {
RKNPUInfer(argv[1], image_files);
}
return 0;
}

View File

@@ -0,0 +1,108 @@
[English](README.md) | 简体中文
# InsightFace Python部署示例
FastDeploy支持在RKNPU上部署包括ArcFace\CosFace\VPL\Partial_FC在内的InsightFace系列模型。
本目录下提供`infer_arcface.py`快速完成InsighFace模型包括ArcFace在CPU/RKNPU加速部署的示例。
在部署前,需确认以下步骤:
- 1. 软硬件环境满足要求,参考[FastDeploy环境要求](../../../../../../docs/cn/build_and_install/rknpu2.md)
```bash
#下载部署示例代码
git clone https://github.com/PaddlePaddle/FastDeploy.git
cd examples/vision/faceid/insightface/python/
#下载ArcFace模型文件和测试图片
wget https://bj.bcebos.com/paddlehub/fastdeploy/ms1mv3_arcface_r100.onnx
wget https://bj.bcebos.com/paddlehub/fastdeploy/rknpu2/face_demo.zip
unzip face_demo.zip
# CPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device cpu
# GPU推理
python infer_arcface.py --model ms1mv3_arcface_r100.onnx \
--face face_0.jpg \
--face_positive face_1.jpg \
--face_negative face_2.jpg \
--device gpu
```
运行完成可视化结果如下图所示
<div width="700">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321537-860bf857-0101-4e92-a74c-48e8658d838c.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184322004-a551e6e4-6f47-454e-95d6-f8ba2f47b516.JPG">
<img width="220" float="left" src="https://user-images.githubusercontent.com/67993288/184321622-d9a494c3-72f3-47f1-97c5-8a2372de491f.JPG">
</div>
```bash
Prediction Done!
--- [Face 0]:FaceRecognitionResult: [Dim(512), Min(-2.309220), Max(2.372197), Mean(0.016987)]
--- [Face 1]:FaceRecognitionResult: [Dim(512), Min(-2.288258), Max(1.995104), Mean(-0.003400)]
--- [Face 2]:FaceRecognitionResult: [Dim(512), Min(-3.243411), Max(3.875866), Mean(-0.030682)]
Detect Done! Cosine 01: 0.814385, Cosine 02:-0.059388
```
## InsightFace Python接口
```python
fastdeploy.vision.faceid.ArcFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.CosFace(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.PartialFC(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
fastdeploy.vision.faceid.VPL(model_file, params_file=None, runtime_option=None, model_format=ModelFormat.ONNX)
```
ArcFace模型加载和初始化其中model_file为导出的ONNX模型格式
**参数**
> * **model_file**(str): 模型文件路径
> * **params_file**(str): 参数文件路径当模型格式为ONNX格式时此参数无需设定
> * **runtime_option**(RuntimeOption): 后端推理配置默认为None即采用默认配置
> * **model_format**(ModelFormat): 模型格式默认为ONNX
### predict函数
> ```python
> ArcFace.predict(image_data)
> ```
>
> 模型预测结口,输入图像直接输出检测结果。
>
> **参数**
>
> > * **image_data**(np.ndarray): 输入数据注意需为HWCBGR格式
> **返回**
>
> > 返回`fastdeploy.vision.FaceRecognitionResult`结构体,结构体说明参考文档[视觉模型预测结果](../../../../../docs/api/vision_results/)
### 类成员属性
#### 预处理参数
用户可按照自己的实际需求,修改下列预处理参数,从而影响最终的推理和部署效果
#### AdaFacePreprocessor的成员变量
以下变量为AdaFacePreprocessor的成员变量
> > * **size**(list[int]): 通过此参数修改预处理过程中resize的大小包含两个整型元素表示[width, height], 默认值为[112, 112]
> > * **alpha**(list[float]): 预处理归一化的alpha值计算公式为`x'=x*alpha+beta`alpha默认为[1. / 127.5, 1.f / 127.5, 1. / 127.5]
> > * **beta**(list[float]): 预处理归一化的beta值计算公式为`x'=x*alpha+beta`beta默认为[-1.f, -1.f, -1.f]
#### AdaFacePostprocessor的成员变量
以下变量为AdaFacePostprocessor的成员变量
> > * **l2_normalize**(bool): 输出人脸向量之前是否执行l2归一化默认False
## 其它文档
- [InsightFace 模型介绍](..)
- [InsightFace C++部署](../cpp)
- [模型预测结果说明](../../../../../docs/api/vision_results/)
- [如何切换模型推理后端引擎](../../../../../docs/cn/faq/how_to_change_backend.md)

View File

@@ -0,0 +1,76 @@
import fastdeploy as fd
import cv2
import numpy as np
def cosine_similarity(a, b):
a = np.array(a)
b = np.array(b)
mul_a = np.linalg.norm(a, ord=2)
mul_b = np.linalg.norm(b, ord=2)
mul_ab = np.dot(a, b)
return mul_ab / (mul_a * mul_b)
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of insgihtface onnx model.")
parser.add_argument(
"--face", required=True, help="Path of test face image file.")
parser.add_argument(
"--face_positive",
required=True,
help="Path of test face_positive image file.")
parser.add_argument(
"--face_negative",
required=True,
help="Path of test face_negative image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "npu":
option.use_rknpu2()
return option
args = parse_arguments()
runtime_option = fd.RuntimeOption()
model = fd.vision.faceid.ArcFace(args.model, runtime_option=runtime_option)
if args.device.lower() == "npu":
runtime_option.use_rknpu2()
model.preprocessor.disable_normalize()
model.preprocessor.disable_permute()
face0 = cv2.imread(args.face)
face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative)
result0 = model.predict(face0)
result1 = model.predict(face1)
result2 = model.predict(face2)
embedding0 = result0.embedding
embedding1 = result1.embedding
embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2)
print(result0, end="")
print(result1, end="")
print(result2, end="")
print("Cosine 01: ", cosine01)
print("Cosine 02: ", cosine02)
print(model.runtime_option)

12
fastdeploy/vision/faceid/contrib/insightface/base.cc Executable file → Normal file
View File

@@ -22,7 +22,6 @@ InsightFaceRecognitionBase::InsightFaceRecognitionBase(
const std::string& model_file, const std::string& params_file, const std::string& model_file, const std::string& params_file,
const fastdeploy::RuntimeOption& custom_option, const fastdeploy::RuntimeOption& custom_option,
const fastdeploy::ModelFormat& model_format) { const fastdeploy::ModelFormat& model_format) {
if (model_format == ModelFormat::ONNX) { if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT}; valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::ORT, Backend::TRT};
@@ -31,6 +30,7 @@ InsightFaceRecognitionBase::InsightFaceRecognitionBase(
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
valid_kunlunxin_backends = {Backend::LITE}; valid_kunlunxin_backends = {Backend::LITE};
} }
valid_rknpu_backends = {Backend::RKNPU2};
runtime_option = custom_option; runtime_option = custom_option;
runtime_option.model_format = model_format; runtime_option.model_format = model_format;
runtime_option.model_file = model_file; runtime_option.model_file = model_file;
@@ -55,8 +55,9 @@ bool InsightFaceRecognitionBase::Predict(const cv::Mat& im,
return true; return true;
} }
bool InsightFaceRecognitionBase::BatchPredict(const std::vector<cv::Mat>& images, bool InsightFaceRecognitionBase::BatchPredict(
std::vector<FaceRecognitionResult>* results){ const std::vector<cv::Mat>& images,
std::vector<FaceRecognitionResult>* results) {
std::vector<FDMat> fd_images = WrapMat(images); std::vector<FDMat> fd_images = WrapMat(images);
FDASSERT(images.size() == 1, "Only support batch = 1 now."); FDASSERT(images.size() == 1, "Only support batch = 1 now.");
if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) { if (!preprocessor_.Run(&fd_images, &reused_input_tensors_)) {
@@ -70,8 +71,9 @@ bool InsightFaceRecognitionBase::BatchPredict(const std::vector<cv::Mat>& images
return false; return false;
} }
if (!postprocessor_.Run(reused_output_tensors_, results)){ if (!postprocessor_.Run(reused_output_tensors_, results)) {
FDERROR << "Failed to postprocess the inference results by runtime." << std::endl; FDERROR << "Failed to postprocess the inference results by runtime."
<< std::endl;
return false; return false;
} }
return true; return true;

View File

@@ -19,7 +19,8 @@ void BindInsightFace(pybind11::module& m) {
pybind11::class_<vision::faceid::InsightFaceRecognitionPreprocessor>( pybind11::class_<vision::faceid::InsightFaceRecognitionPreprocessor>(
m, "InsightFaceRecognitionPreprocessor") m, "InsightFaceRecognitionPreprocessor")
.def(pybind11::init()) .def(pybind11::init())
.def("run", [](vision::faceid::InsightFaceRecognitionPreprocessor& self, .def("run",
[](vision::faceid::InsightFaceRecognitionPreprocessor& self,
std::vector<pybind11::array>& im_list) { std::vector<pybind11::array>& im_list) {
std::vector<vision::FDMat> images; std::vector<vision::FDMat> images;
for (size_t i = 0; i < im_list.size(); ++i) { for (size_t i = 0; i < im_list.size(); ++i) {
@@ -27,54 +28,78 @@ void BindInsightFace(pybind11::module& m) {
} }
std::vector<FDTensor> outputs; std::vector<FDTensor> outputs;
if (!self.Run(&images, &outputs)) { if (!self.Run(&images, &outputs)) {
throw std::runtime_error("Failed to preprocess the input data in InsightFaceRecognitionPreprocessor."); throw std::runtime_error(
"Failed to preprocess the input data in "
"InsightFaceRecognitionPreprocessor.");
} }
for (size_t i = 0; i < outputs.size(); ++i) { for (size_t i = 0; i < outputs.size(); ++i) {
outputs[i].StopSharing(); outputs[i].StopSharing();
} }
return outputs; return outputs;
}) })
.def_property("permute", &vision::faceid::InsightFaceRecognitionPreprocessor::GetPermute, .def(
&vision::faceid::InsightFaceRecognitionPreprocessor::SetPermute) "disable_normalize",
.def_property("alpha", &vision::faceid::InsightFaceRecognitionPreprocessor::GetAlpha, &vision::faceid::InsightFaceRecognitionPreprocessor::DisableNormalize)
.def("disable_permute",
&vision::faceid::InsightFaceRecognitionPreprocessor::DisablePermute)
.def_property(
"alpha",
&vision::faceid::InsightFaceRecognitionPreprocessor::GetAlpha,
&vision::faceid::InsightFaceRecognitionPreprocessor::SetAlpha) &vision::faceid::InsightFaceRecognitionPreprocessor::SetAlpha)
.def_property("beta", &vision::faceid::InsightFaceRecognitionPreprocessor::GetBeta, .def_property(
"beta", &vision::faceid::InsightFaceRecognitionPreprocessor::GetBeta,
&vision::faceid::InsightFaceRecognitionPreprocessor::SetBeta) &vision::faceid::InsightFaceRecognitionPreprocessor::SetBeta)
.def_property("size", &vision::faceid::InsightFaceRecognitionPreprocessor::GetSize, .def_property(
"size", &vision::faceid::InsightFaceRecognitionPreprocessor::GetSize,
&vision::faceid::InsightFaceRecognitionPreprocessor::SetSize); &vision::faceid::InsightFaceRecognitionPreprocessor::SetSize);
pybind11::class_<vision::faceid::InsightFaceRecognitionPostprocessor>( pybind11::class_<vision::faceid::InsightFaceRecognitionPostprocessor>(
m, "InsightFaceRecognitionPostprocessor") m, "InsightFaceRecognitionPostprocessor")
.def(pybind11::init()) .def(pybind11::init())
.def("run", [](vision::faceid::InsightFaceRecognitionPostprocessor& self, std::vector<FDTensor>& inputs) { .def("run",
[](vision::faceid::InsightFaceRecognitionPostprocessor& self,
std::vector<FDTensor>& inputs) {
std::vector<vision::FaceRecognitionResult> results; std::vector<vision::FaceRecognitionResult> results;
if (!self.Run(inputs, &results)) { if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in InsightFaceRecognitionPostprocessor."); throw std::runtime_error(
"Failed to postprocess the runtime result in "
"InsightFaceRecognitionPostprocessor.");
} }
return results; return results;
}) })
.def("run", [](vision::faceid::InsightFaceRecognitionPostprocessor& self, std::vector<pybind11::array>& input_array) { .def("run",
[](vision::faceid::InsightFaceRecognitionPostprocessor& self,
std::vector<pybind11::array>& input_array) {
std::vector<vision::FaceRecognitionResult> results; std::vector<vision::FaceRecognitionResult> results;
std::vector<FDTensor> inputs; std::vector<FDTensor> inputs;
PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true); PyArrayToTensorList(input_array, &inputs, /*share_buffer=*/true);
if (!self.Run(inputs, &results)) { if (!self.Run(inputs, &results)) {
throw std::runtime_error("Failed to postprocess the runtime result in InsightFaceRecognitionPostprocessor."); throw std::runtime_error(
"Failed to postprocess the runtime result in "
"InsightFaceRecognitionPostprocessor.");
} }
return results; return results;
}) })
.def_property("l2_normalize", &vision::faceid::InsightFaceRecognitionPostprocessor::GetL2Normalize, .def_property(
"l2_normalize",
&vision::faceid::InsightFaceRecognitionPostprocessor::GetL2Normalize,
&vision::faceid::InsightFaceRecognitionPostprocessor::SetL2Normalize); &vision::faceid::InsightFaceRecognitionPostprocessor::SetL2Normalize);
pybind11::class_<vision::faceid::InsightFaceRecognitionBase, FastDeployModel>( pybind11::class_<vision::faceid::InsightFaceRecognitionBase, FastDeployModel>(
m, "InsightFaceRecognitionBase") m, "InsightFaceRecognitionBase")
.def(pybind11::init<std::string, std::string, RuntimeOption, ModelFormat>()) .def(pybind11::init<std::string, std::string, RuntimeOption,
.def("predict", [](vision::faceid::InsightFaceRecognitionBase& self, pybind11::array& data) { ModelFormat>())
.def("predict",
[](vision::faceid::InsightFaceRecognitionBase& self,
pybind11::array& data) {
cv::Mat im = PyArrayToCvMat(data); cv::Mat im = PyArrayToCvMat(data);
vision::FaceRecognitionResult result; vision::FaceRecognitionResult result;
self.Predict(im, &result); self.Predict(im, &result);
return result; return result;
}) })
.def("batch_predict", [](vision::faceid::InsightFaceRecognitionBase& self, std::vector<pybind11::array>& data) { .def("batch_predict",
[](vision::faceid::InsightFaceRecognitionBase& self,
std::vector<pybind11::array>& data) {
std::vector<cv::Mat> images; std::vector<cv::Mat> images;
for (size_t i = 0; i < data.size(); ++i) { for (size_t i = 0; i < data.size(); ++i) {
images.push_back(PyArrayToCvMat(data[i])); images.push_back(PyArrayToCvMat(data[i]));
@@ -83,19 +108,31 @@ void BindInsightFace(pybind11::module& m) {
self.BatchPredict(images, &results); self.BatchPredict(images, &results);
return results; return results;
}) })
.def_property_readonly("preprocessor", &vision::faceid::InsightFaceRecognitionBase::GetPreprocessor) .def_property_readonly(
.def_property_readonly("postprocessor", &vision::faceid::InsightFaceRecognitionBase::GetPostprocessor); "preprocessor",
&vision::faceid::InsightFaceRecognitionBase::GetPreprocessor)
.def_property_readonly(
"postprocessor",
&vision::faceid::InsightFaceRecognitionBase::GetPostprocessor);
pybind11::class_<vision::faceid::ArcFace, vision::faceid::InsightFaceRecognitionBase>(m, "ArcFace") pybind11::class_<vision::faceid::ArcFace,
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>()); vision::faceid::InsightFaceRecognitionBase>(m, "ArcFace")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>());
pybind11::class_<vision::faceid::CosFace, vision::faceid::InsightFaceRecognitionBase>(m, "CosFace") pybind11::class_<vision::faceid::CosFace,
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>()); vision::faceid::InsightFaceRecognitionBase>(m, "CosFace")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>());
pybind11::class_<vision::faceid::PartialFC, vision::faceid::InsightFaceRecognitionBase>(m, "PartialFC") pybind11::class_<vision::faceid::PartialFC,
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>()); vision::faceid::InsightFaceRecognitionBase>(m, "PartialFC")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>());
pybind11::class_<vision::faceid::VPL, vision::faceid::InsightFaceRecognitionBase>(m, "VPL") pybind11::class_<vision::faceid::VPL,
.def(pybind11::init<std::string, std::string, RuntimeOption,ModelFormat>()); vision::faceid::InsightFaceRecognitionBase>(m, "VPL")
.def(pybind11::init<std::string, std::string, RuntimeOption,
ModelFormat>());
} }
} // namespace fastdeploy } // namespace fastdeploy

View File

@@ -35,6 +35,8 @@ class FASTDEPLOY_DECL ArcFace : public InsightFaceRecognitionBase {
if (model_format == ModelFormat::ONNX) { if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT}; valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else if (model_format == ModelFormat::RKNN) {
valid_rknpu_backends = {Backend::RKNPU2};
} else { } else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
@@ -63,6 +65,8 @@ class FASTDEPLOY_DECL CosFace : public InsightFaceRecognitionBase {
if (model_format == ModelFormat::ONNX) { if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT}; valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else if (model_format == ModelFormat::RKNN) {
valid_rknpu_backends = {Backend::RKNPU2};
} else { } else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
@@ -90,6 +94,8 @@ class FASTDEPLOY_DECL PartialFC : public InsightFaceRecognitionBase {
if (model_format == ModelFormat::ONNX) { if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT}; valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else if (model_format == ModelFormat::RKNN) {
valid_rknpu_backends = {Backend::RKNPU2};
} else { } else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};
@@ -117,6 +123,8 @@ class FASTDEPLOY_DECL VPL : public InsightFaceRecognitionBase {
if (model_format == ModelFormat::ONNX) { if (model_format == ModelFormat::ONNX) {
valid_cpu_backends = {Backend::ORT}; valid_cpu_backends = {Backend::ORT};
valid_gpu_backends = {Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::ORT, Backend::TRT};
} else if (model_format == ModelFormat::RKNN) {
valid_rknpu_backends = {Backend::RKNPU2};
} else { } else {
valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE}; valid_cpu_backends = {Backend::PDINFER, Backend::ORT, Backend::LITE};
valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT}; valid_gpu_backends = {Backend::PDINFER, Backend::ORT, Backend::TRT};

View File

@@ -23,11 +23,10 @@ InsightFaceRecognitionPreprocessor::InsightFaceRecognitionPreprocessor() {
size_ = {112, 112}; size_ = {112, 112};
alpha_ = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f}; alpha_ = {1.f / 127.5f, 1.f / 127.5f, 1.f / 127.5f};
beta_ = {-1.f, -1.f, -1.f}; // RGB beta_ = {-1.f, -1.f, -1.f}; // RGB
permute_ = true;
} }
bool InsightFaceRecognitionPreprocessor::Preprocess(FDMat * mat, FDTensor* output) { bool InsightFaceRecognitionPreprocessor::Preprocess(FDMat* mat,
FDTensor* output) {
// face recognition model's preprocess steps in insightface // face recognition model's preprocess steps in insightface
// reference: insightface/recognition/arcface_torch/inference.py // reference: insightface/recognition/arcface_torch/inference.py
// 1. Resize // 1. Resize
@@ -39,13 +38,16 @@ bool InsightFaceRecognitionPreprocessor::Preprocess(FDMat * mat, FDTensor* outpu
if (resize_h != mat->Height() || resize_w != mat->Width()) { if (resize_h != mat->Height() || resize_w != mat->Width()) {
Resize::Run(mat, resize_w, resize_h); Resize::Run(mat, resize_w, resize_h);
} }
if (permute_) {
if (!disable_permute_) {
BGR2RGB::Run(mat); BGR2RGB::Run(mat);
} }
if (!disable_normalize_) {
Convert::Run(mat, alpha_, beta_); Convert::Run(mat, alpha_, beta_);
HWC2CHW::Run(mat); HWC2CHW::Run(mat);
Cast::Run(mat, "float"); Cast::Run(mat, "float");
}
mat->ShareWithTensor(output); mat->ShareWithTensor(output);
output->ExpandDim(0); // reshape to n, h, w, c output->ExpandDim(0); // reshape to n, h, w, c
@@ -55,7 +57,8 @@ bool InsightFaceRecognitionPreprocessor::Preprocess(FDMat * mat, FDTensor* outpu
bool InsightFaceRecognitionPreprocessor::Run(std::vector<FDMat>* images, bool InsightFaceRecognitionPreprocessor::Run(std::vector<FDMat>* images,
std::vector<FDTensor>* outputs) { std::vector<FDTensor>* outputs) {
if (images->empty()) { if (images->empty()) {
FDERROR << "The size of input images should be greater than 0." << std::endl; FDERROR << "The size of input images should be greater than 0."
<< std::endl;
return false; return false;
} }
FDASSERT(images->size() == 1, "Only support batch = 1 now."); FDASSERT(images->size() == 1, "Only support batch = 1 now.");

View File

@@ -54,10 +54,11 @@ class FASTDEPLOY_DECL InsightFaceRecognitionPreprocessor {
/// Set beta. /// Set beta.
void SetBeta(std::vector<float>& beta) { beta_ = beta; } void SetBeta(std::vector<float>& beta) { beta_ = beta; }
bool GetPermute() { return permute_; } /// This function will disable normalize and hwc2chw in preprocessing step.
void DisableNormalize() { disable_normalize_ = true; }
/// Set permute. /// This function will disable hwc2chw in preprocessing step.
void SetPermute(bool permute) { permute_ = permute; } void DisablePermute() { disable_permute_ = true; }
protected: protected:
bool Preprocess(FDMat* mat, FDTensor* output); bool Preprocess(FDMat* mat, FDTensor* output);
@@ -70,9 +71,11 @@ class FASTDEPLOY_DECL InsightFaceRecognitionPreprocessor {
// Argument for image preprocessing step, beta values for normalization, // Argument for image preprocessing step, beta values for normalization,
// default beta = {-1.f, -1.f, -1.f} // default beta = {-1.f, -1.f, -1.f}
std::vector<float> beta_; std::vector<float> beta_;
// for recording the switch of normalize
bool disable_normalize_ = false;
// Argument for image preprocessing step, whether to swap the B and R channel, // Argument for image preprocessing step, whether to swap the B and R channel,
// such as BGR->RGB, default true. // such as BGR->RGB, default true.
bool permute_; bool disable_permute_ = false;
}; };
} // namespace faceid } // namespace faceid

View File

@@ -56,13 +56,17 @@ class InsightFaceRecognitionPreprocessor:
""" """
return self._preprocessor.beta return self._preprocessor.beta
@property def disable_normalize(self):
def permute(self):
""" """
Argument for image preprocessing step, whether to swap the B and R channel, This function will disable normalize in preprocessing step.
such as BGR->RGB, default true.
""" """
return self._preprocessor.permute self._preprocessor.disable_normalize()
def disable_permute(self):
"""
This function will disable hwc2chw in preprocessing step.
"""
self._preprocessor.disable_permute()
class InsightFaceRecognitionPostprocessor: class InsightFaceRecognitionPostprocessor:

View File

@@ -0,0 +1,15 @@
mean:
-
- 127.5
- 127.5
- 127.5
std:
-
- 127.5
- 127.5
- 127.5
model_path: ./ms1mv3_arcface_r18/ms1mv3_arcface_r18.onnx
outputs_nodes:
do_quantization: True
dataset: "./ms1mv3_arcface_r18/datasets.txt"
output_folder: "./ms1mv3_arcface_r18"

View File

@@ -0,0 +1,15 @@
mean:
-
- 127.5
- 127.5
- 127.5
std:
-
- 127.5
- 127.5
- 127.5
model_path: ./ms1mv3_arcface_r18/ms1mv3_arcface_r18.onnx
outputs_nodes:
do_quantization: False
dataset: "./ms1mv3_arcface_r18/datasets.txt"
output_folder: "./ms1mv3_arcface_r18"