Files
FastDeploy/examples/vision/faceid/insightface/python/infer_partial_fc.py
Zheng-Bicheng 1dabfdf3f1 [Model] Support Insightface model inferenceing on RKNPU (#1113)
* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* 更新交叉编译

* Update issues.md

* Update fastdeploy_init.sh

* 更新交叉编译

* 更新insightface系列模型的rknpu2支持

* 更新insightface系列模型的rknpu2支持

* 更新说明文档

* 更新insightface

* 尝试解决pybind问题

Co-authored-by: Jason <928090362@qq.com>
Co-authored-by: Jason <jiangjiajun@baidu.com>
2023-01-14 20:40:33 +08:00

83 lines
2.1 KiB
Python

import fastdeploy as fd
import cv2
import numpy as np
def cosine_similarity(a, b):
a = np.array(a)
b = np.array(b)
mul_a = np.linalg.norm(a, ord=2)
mul_b = np.linalg.norm(b, ord=2)
mul_ab = np.dot(a, b)
return mul_ab / (mul_a * mul_b)
def parse_arguments():
import argparse
import ast
parser = argparse.ArgumentParser()
parser.add_argument(
"--model", required=True, help="Path of insightface onnx model.")
parser.add_argument(
"--face", required=True, help="Path of test face image file.")
parser.add_argument(
"--face_positive",
required=True,
help="Path of test face_positive image file.")
parser.add_argument(
"--face_negative",
required=True,
help="Path of test face_negative image file.")
parser.add_argument(
"--device",
type=str,
default='cpu',
help="Type of inference device, support 'cpu' or 'gpu'.")
parser.add_argument(
"--use_trt",
type=ast.literal_eval,
default=False,
help="Wether to use tensorrt.")
return parser.parse_args()
def build_option(args):
option = fd.RuntimeOption()
if args.device.lower() == "gpu":
option.use_gpu()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("data", [1, 3, 112, 112])
return option
args = parse_arguments()
runtime_option = build_option(args)
model = fd.vision.faceid.PartialFC(args.model, runtime_option=runtime_option)
# 加载图片
face0 = cv2.imread(args.face)
face1 = cv2.imread(args.face_positive)
face2 = cv2.imread(args.face_negative)
result0 = model.predict(face0)
result1 = model.predict(face1)
result2 = model.predict(face2)
embedding0 = result0.embedding
embedding1 = result1.embedding
embedding2 = result2.embedding
cosine01 = cosine_similarity(embedding0, embedding1)
cosine02 = cosine_similarity(embedding0, embedding2)
print(result0, end="")
print(result1, end="")
print(result2, end="")
print("Cosine 01: ", cosine01)
print("Cosine 02: ", cosine02)
print(model.runtime_option)