mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-06 00:57:33 +08:00

* 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * 更新交叉编译 * Update issues.md * Update fastdeploy_init.sh * 更新交叉编译 * 更新insightface系列模型的rknpu2支持 * 更新insightface系列模型的rknpu2支持 * 更新说明文档 * 更新insightface * 尝试解决pybind问题 Co-authored-by: Jason <928090362@qq.com> Co-authored-by: Jason <jiangjiajun@baidu.com>
83 lines
2.1 KiB
Python
83 lines
2.1 KiB
Python
import fastdeploy as fd
|
|
import cv2
|
|
import numpy as np
|
|
|
|
|
|
def cosine_similarity(a, b):
|
|
a = np.array(a)
|
|
b = np.array(b)
|
|
mul_a = np.linalg.norm(a, ord=2)
|
|
mul_b = np.linalg.norm(b, ord=2)
|
|
mul_ab = np.dot(a, b)
|
|
return mul_ab / (mul_a * mul_b)
|
|
|
|
|
|
def parse_arguments():
|
|
import argparse
|
|
import ast
|
|
parser = argparse.ArgumentParser()
|
|
parser.add_argument(
|
|
"--model", required=True, help="Path of insightface onnx model.")
|
|
parser.add_argument(
|
|
"--face", required=True, help="Path of test face image file.")
|
|
parser.add_argument(
|
|
"--face_positive",
|
|
required=True,
|
|
help="Path of test face_positive image file.")
|
|
parser.add_argument(
|
|
"--face_negative",
|
|
required=True,
|
|
help="Path of test face_negative image file.")
|
|
parser.add_argument(
|
|
"--device",
|
|
type=str,
|
|
default='cpu',
|
|
help="Type of inference device, support 'cpu' or 'gpu'.")
|
|
parser.add_argument(
|
|
"--use_trt",
|
|
type=ast.literal_eval,
|
|
default=False,
|
|
help="Wether to use tensorrt.")
|
|
return parser.parse_args()
|
|
|
|
|
|
def build_option(args):
|
|
option = fd.RuntimeOption()
|
|
|
|
if args.device.lower() == "gpu":
|
|
option.use_gpu()
|
|
|
|
if args.use_trt:
|
|
option.use_trt_backend()
|
|
option.set_trt_input_shape("data", [1, 3, 112, 112])
|
|
return option
|
|
|
|
|
|
args = parse_arguments()
|
|
|
|
runtime_option = build_option(args)
|
|
model = fd.vision.faceid.PartialFC(args.model, runtime_option=runtime_option)
|
|
|
|
# 加载图片
|
|
face0 = cv2.imread(args.face)
|
|
face1 = cv2.imread(args.face_positive)
|
|
face2 = cv2.imread(args.face_negative)
|
|
|
|
result0 = model.predict(face0)
|
|
result1 = model.predict(face1)
|
|
result2 = model.predict(face2)
|
|
|
|
embedding0 = result0.embedding
|
|
embedding1 = result1.embedding
|
|
embedding2 = result2.embedding
|
|
|
|
cosine01 = cosine_similarity(embedding0, embedding1)
|
|
cosine02 = cosine_similarity(embedding0, embedding2)
|
|
|
|
print(result0, end="")
|
|
print(result1, end="")
|
|
print(result2, end="")
|
|
print("Cosine 01: ", cosine01)
|
|
print("Cosine 02: ", cosine02)
|
|
print(model.runtime_option)
|