Add sqrt, exp, round, log functions

This commit is contained in:
zhoushunjie
2022-11-23 07:23:05 +00:00
parent 5ce0fd29f8
commit 1b32381201
4 changed files with 254 additions and 0 deletions

View File

@@ -0,0 +1,64 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/math.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/math_functor.h"
namespace fastdeploy {
namespace function {
#define DEFINE_ACTIVATION_KERNEL(name, functor_class) \
template <typename T> void name##Kernel(const FDTensor& x, FDTensor* out) { \
functor_class<T> functor; \
ActivationImpl<T, functor_class<T>>(x, out, functor); \
}
template <typename T, typename Functor>
void ActivationImpl(const FDTensor& X, FDTensor* Out, const Functor& functor) {
FDASSERT(Out != nullptr, "Output Out should not be nullptr");
auto x = EigenVector<T>::Flatten(X);
Out->Allocate(X.Shape(), X.Dtype());
auto out = EigenVector<T>::Flatten(*Out);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
functor(dev, x, out);
}
DEFINE_ACTIVATION_KERNEL(Sqrt, SqrtFunctor)
DEFINE_ACTIVATION_KERNEL(Log, LogFunctor)
DEFINE_ACTIVATION_KERNEL(Round, RoundFunctor)
DEFINE_ACTIVATION_KERNEL(Exp, ExpFunctor)
void Sqrt(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "SqrtKernel",
([&] { SqrtKernel<data_t>(x, out); }));
}
void Log(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "LogKernel",
([&] { LogKernel<data_t>(x, out); }));
}
void Round(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "RoundKernel",
([&] { RoundKernel<data_t>(x, out); }));
}
void Exp(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "ExpKernel",
([&] { ExpKernel<data_t>(x, out); }));
}
} // namespace function
} // namespace fastdeploy

View File

@@ -0,0 +1,47 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
namespace fastdeploy {
namespace function {
/** Calculates the sqrt of the given input Tensor, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Sqrt(const FDTensor& x, FDTensor* out);
/** Calculates the natural log of the given input Tensor, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Log(const FDTensor& x, FDTensor* out);
/** Rounds the values in the input to the nearest integer value, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Round(const FDTensor& x, FDTensor* out);
/** Computes exp of x element-wise with a natural number e as the base, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Exp(const FDTensor& x, FDTensor* out);
} // namespace function
} // namespace fastdeploy

View File

@@ -0,0 +1,56 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
namespace function {
// log(x) = natural logarithm of x
template <typename T> struct LogFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.log();
}
};
// exp functor
// exp(x) = e^x
template <typename T> struct ExpFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.exp();
}
};
// round(x) = [x]
template <typename T> struct RoundFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.round();
}
};
// sqrt(x) = x^(1/2)
template <typename T> struct SqrtFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.sqrt();
}
};
} // namespace function
} // namespace fastdeploy

View File

@@ -0,0 +1,87 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/core/fd_tensor.h"
#include "fastdeploy/function/math.h"
#include "glog/logging.h"
#include "gtest_utils.h"
#include "gtest/gtest.h"
#include <array>
#include <vector>
namespace fastdeploy {
namespace function {
std::vector<float> CreateTestData() {
// Shape: [2, 3, 4]
std::vector<float> x_data = {
0.8428625, 0.6461913, 0.13740455, 0.11430702, 0.659926, 0.535816,
0.7429162, 0.8456049, 0.21228176, 0.29970083, 0.8621713, 0.40894133,
0.12684688, 0.1566195, 0.42884097, 0.8476526, 0.2458633, 0.669046,
0.87888306, 0.6762589, 0.666453, 0.32523027, 0.4139388, 0.8341406};
return x_data;
}
TEST(fastdeploy, exp_sqrt_round_log) {
CheckShape check_shape;
CheckData check_data;
FDTensor x, y;
auto test_data = CreateTestData();
x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data());
// Test Sqrt function
Sqrt(x, &y);
std::vector<float> sqrt_result = {
0.918075, 0.80386, 0.370681, 0.338093, 0.812358, 0.731995,
0.861926, 0.919568, 0.46074, 0.547449, 0.928532, 0.639485,
0.356156, 0.395752, 0.654859, 0.920681, 0.495846, 0.817952,
0.937488, 0.82235, 0.816366, 0.57029, 0.643381, 0.913313};
check_shape(y.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(y.Data()), sqrt_result.data(),
sqrt_result.size());
// Test Exp function
Exp(x, &y);
std::vector<float> exp_result = {
2.323007, 1.908259, 1.147292, 1.121096, 1.934649, 1.708842,
2.102057, 2.329386, 1.236496, 1.349455, 2.368297, 1.505223,
1.135243, 1.169551, 1.535477, 2.334161, 1.278725, 1.952374,
2.408208, 1.966507, 1.947318, 1.384349, 1.512764, 2.302834};
check_shape(y.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(y.Data()), exp_result.data(),
exp_result.size());
// Test Round function
Round(x, &y);
std::vector<float> round_result = {1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0,
0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0,
0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0};
check_shape(y.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(y.Data()), round_result.data(),
round_result.size());
// Test Log function
Log(x, &y);
std::vector<float> log_result = {
-0.170951, -0.43666, -1.984826, -2.168867, -0.415628, -0.623964,
-0.297172, -0.167703, -1.549841, -1.204971, -0.148301, -0.894184,
-2.064775, -1.853936, -0.846669, -0.165284, -1.40298, -0.401902,
-0.129103, -0.391179, -0.405786, -1.123222, -0.882037, -0.181353};
check_shape(y.shape, {2, 3, 4});
check_data(reinterpret_cast<const float*>(y.Data()), log_result.data(),
log_result.size());
}
} // namespace function
} // namespace fastdeploy