diff --git a/fastdeploy/function/math.cc b/fastdeploy/function/math.cc new file mode 100644 index 000000000..292b1ae15 --- /dev/null +++ b/fastdeploy/function/math.cc @@ -0,0 +1,64 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/function/math.h" +#include "fastdeploy/function/eigen.h" +#include "fastdeploy/function/math_functor.h" + +namespace fastdeploy { +namespace function { + +#define DEFINE_ACTIVATION_KERNEL(name, functor_class) \ + template void name##Kernel(const FDTensor& x, FDTensor* out) { \ + functor_class functor; \ + ActivationImpl>(x, out, functor); \ + } + +template +void ActivationImpl(const FDTensor& X, FDTensor* Out, const Functor& functor) { + FDASSERT(Out != nullptr, "Output Out should not be nullptr"); + auto x = EigenVector::Flatten(X); + Out->Allocate(X.Shape(), X.Dtype()); + auto out = EigenVector::Flatten(*Out); + const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice(); + functor(dev, x, out); +} + +DEFINE_ACTIVATION_KERNEL(Sqrt, SqrtFunctor) +DEFINE_ACTIVATION_KERNEL(Log, LogFunctor) +DEFINE_ACTIVATION_KERNEL(Round, RoundFunctor) +DEFINE_ACTIVATION_KERNEL(Exp, ExpFunctor) + +void Sqrt(const FDTensor& x, FDTensor* out) { + FD_VISIT_FLOAT_TYPES(x.dtype, "SqrtKernel", + ([&] { SqrtKernel(x, out); })); +} + +void Log(const FDTensor& x, FDTensor* out) { + FD_VISIT_FLOAT_TYPES(x.dtype, "LogKernel", + ([&] { LogKernel(x, out); })); +} + +void Round(const FDTensor& x, FDTensor* out) { + FD_VISIT_FLOAT_TYPES(x.dtype, "RoundKernel", + ([&] { RoundKernel(x, out); })); +} + +void Exp(const FDTensor& x, FDTensor* out) { + FD_VISIT_FLOAT_TYPES(x.dtype, "ExpKernel", + ([&] { ExpKernel(x, out); })); +} + +} // namespace function +} // namespace fastdeploy \ No newline at end of file diff --git a/fastdeploy/function/math.h b/fastdeploy/function/math.h new file mode 100644 index 000000000..3dd93c818 --- /dev/null +++ b/fastdeploy/function/math.h @@ -0,0 +1,47 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "fastdeploy/core/fd_tensor.h" + +namespace fastdeploy { +namespace function { + +/** Calculates the sqrt of the given input Tensor, element-wise. Only for float type FDTensor + @param x The input tensor. + @param out The output tensor which stores the result. +*/ +FASTDEPLOY_DECL void Sqrt(const FDTensor& x, FDTensor* out); + +/** Calculates the natural log of the given input Tensor, element-wise. Only for float type FDTensor + @param x The input tensor. + @param out The output tensor which stores the result. +*/ +FASTDEPLOY_DECL void Log(const FDTensor& x, FDTensor* out); + +/** Rounds the values in the input to the nearest integer value, element-wise. Only for float type FDTensor + @param x The input tensor. + @param out The output tensor which stores the result. +*/ +FASTDEPLOY_DECL void Round(const FDTensor& x, FDTensor* out); + +/** Computes exp of x element-wise with a natural number e as the base, element-wise. Only for float type FDTensor + @param x The input tensor. + @param out The output tensor which stores the result. +*/ +FASTDEPLOY_DECL void Exp(const FDTensor& x, FDTensor* out); + +} // namespace function +} // namespace fastdeploy diff --git a/fastdeploy/function/math_functor.h b/fastdeploy/function/math_functor.h new file mode 100644 index 000000000..440ce94a9 --- /dev/null +++ b/fastdeploy/function/math_functor.h @@ -0,0 +1,56 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#pragma once + +#include "fastdeploy/function/eigen.h" + +namespace fastdeploy { +namespace function { + +// log(x) = natural logarithm of x +template struct LogFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.log(); + } +}; + +// exp functor +// exp(x) = e^x +template struct ExpFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.exp(); + } +}; + +// round(x) = [x] +template struct RoundFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.round(); + } +}; + +// sqrt(x) = x^(1/2) +template struct SqrtFunctor { + template + void operator()(Device d, X x, Out out) const { + out.device(d) = x.sqrt(); + } +}; + +} // namespace function +} // namespace fastdeploy diff --git a/tests/function/test_math.cc b/tests/function/test_math.cc new file mode 100644 index 000000000..ec09fa7ef --- /dev/null +++ b/tests/function/test_math.cc @@ -0,0 +1,87 @@ +// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved. +// +// Licensed under the Apache License, Version 2.0 (the "License"); +// you may not use this file except in compliance with the License. +// You may obtain a copy of the License at +// +// http://www.apache.org/licenses/LICENSE-2.0 +// +// Unless required by applicable law or agreed to in writing, software +// distributed under the License is distributed on an "AS IS" BASIS, +// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. +// See the License for the specific language governing permissions and +// limitations under the License. + +#include "fastdeploy/core/fd_tensor.h" +#include "fastdeploy/function/math.h" +#include "glog/logging.h" +#include "gtest_utils.h" +#include "gtest/gtest.h" +#include +#include + +namespace fastdeploy { +namespace function { + +std::vector CreateTestData() { + // Shape: [2, 3, 4] + std::vector x_data = { + 0.8428625, 0.6461913, 0.13740455, 0.11430702, 0.659926, 0.535816, + 0.7429162, 0.8456049, 0.21228176, 0.29970083, 0.8621713, 0.40894133, + 0.12684688, 0.1566195, 0.42884097, 0.8476526, 0.2458633, 0.669046, + 0.87888306, 0.6762589, 0.666453, 0.32523027, 0.4139388, 0.8341406}; + return x_data; +} + +TEST(fastdeploy, exp_sqrt_round_log) { + CheckShape check_shape; + CheckData check_data; + FDTensor x, y; + auto test_data = CreateTestData(); + x.SetExternalData({2, 3, 4}, FDDataType::FP32, test_data.data()); + + // Test Sqrt function + Sqrt(x, &y); + std::vector sqrt_result = { + 0.918075, 0.80386, 0.370681, 0.338093, 0.812358, 0.731995, + 0.861926, 0.919568, 0.46074, 0.547449, 0.928532, 0.639485, + 0.356156, 0.395752, 0.654859, 0.920681, 0.495846, 0.817952, + 0.937488, 0.82235, 0.816366, 0.57029, 0.643381, 0.913313}; + check_shape(y.shape, {2, 3, 4}); + check_data(reinterpret_cast(y.Data()), sqrt_result.data(), + sqrt_result.size()); + + // Test Exp function + Exp(x, &y); + std::vector exp_result = { + 2.323007, 1.908259, 1.147292, 1.121096, 1.934649, 1.708842, + 2.102057, 2.329386, 1.236496, 1.349455, 2.368297, 1.505223, + 1.135243, 1.169551, 1.535477, 2.334161, 1.278725, 1.952374, + 2.408208, 1.966507, 1.947318, 1.384349, 1.512764, 2.302834}; + check_shape(y.shape, {2, 3, 4}); + check_data(reinterpret_cast(y.Data()), exp_result.data(), + exp_result.size()); + + // Test Round function + Round(x, &y); + std::vector round_result = {1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 1.0, 1.0, + 0.0, 0.0, 1.0, 0.0, 0.0, 0.0, 0.0, 1.0, + 0.0, 1.0, 1.0, 1.0, 1.0, 0.0, 0.0, 1.0}; + check_shape(y.shape, {2, 3, 4}); + check_data(reinterpret_cast(y.Data()), round_result.data(), + round_result.size()); + + // Test Log function + Log(x, &y); + std::vector log_result = { + -0.170951, -0.43666, -1.984826, -2.168867, -0.415628, -0.623964, + -0.297172, -0.167703, -1.549841, -1.204971, -0.148301, -0.894184, + -2.064775, -1.853936, -0.846669, -0.165284, -1.40298, -0.401902, + -0.129103, -0.391179, -0.405786, -1.123222, -0.882037, -0.181353}; + check_shape(y.shape, {2, 3, 4}); + check_data(reinterpret_cast(y.Data()), log_result.data(), + log_result.size()); +} + +} // namespace function +} // namespace fastdeploy \ No newline at end of file