mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-16 13:41:30 +08:00
Add sqrt, exp, round, log functions
This commit is contained in:
64
fastdeploy/function/math.cc
Normal file
64
fastdeploy/function/math.cc
Normal file
@@ -0,0 +1,64 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#include "fastdeploy/function/math.h"
|
||||
#include "fastdeploy/function/eigen.h"
|
||||
#include "fastdeploy/function/math_functor.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace function {
|
||||
|
||||
#define DEFINE_ACTIVATION_KERNEL(name, functor_class) \
|
||||
template <typename T> void name##Kernel(const FDTensor& x, FDTensor* out) { \
|
||||
functor_class<T> functor; \
|
||||
ActivationImpl<T, functor_class<T>>(x, out, functor); \
|
||||
}
|
||||
|
||||
template <typename T, typename Functor>
|
||||
void ActivationImpl(const FDTensor& X, FDTensor* Out, const Functor& functor) {
|
||||
FDASSERT(Out != nullptr, "Output Out should not be nullptr");
|
||||
auto x = EigenVector<T>::Flatten(X);
|
||||
Out->Allocate(X.Shape(), X.Dtype());
|
||||
auto out = EigenVector<T>::Flatten(*Out);
|
||||
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
|
||||
functor(dev, x, out);
|
||||
}
|
||||
|
||||
DEFINE_ACTIVATION_KERNEL(Sqrt, SqrtFunctor)
|
||||
DEFINE_ACTIVATION_KERNEL(Log, LogFunctor)
|
||||
DEFINE_ACTIVATION_KERNEL(Round, RoundFunctor)
|
||||
DEFINE_ACTIVATION_KERNEL(Exp, ExpFunctor)
|
||||
|
||||
void Sqrt(const FDTensor& x, FDTensor* out) {
|
||||
FD_VISIT_FLOAT_TYPES(x.dtype, "SqrtKernel",
|
||||
([&] { SqrtKernel<data_t>(x, out); }));
|
||||
}
|
||||
|
||||
void Log(const FDTensor& x, FDTensor* out) {
|
||||
FD_VISIT_FLOAT_TYPES(x.dtype, "LogKernel",
|
||||
([&] { LogKernel<data_t>(x, out); }));
|
||||
}
|
||||
|
||||
void Round(const FDTensor& x, FDTensor* out) {
|
||||
FD_VISIT_FLOAT_TYPES(x.dtype, "RoundKernel",
|
||||
([&] { RoundKernel<data_t>(x, out); }));
|
||||
}
|
||||
|
||||
void Exp(const FDTensor& x, FDTensor* out) {
|
||||
FD_VISIT_FLOAT_TYPES(x.dtype, "ExpKernel",
|
||||
([&] { ExpKernel<data_t>(x, out); }));
|
||||
}
|
||||
|
||||
} // namespace function
|
||||
} // namespace fastdeploy
|
47
fastdeploy/function/math.h
Normal file
47
fastdeploy/function/math.h
Normal file
@@ -0,0 +1,47 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/core/fd_tensor.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace function {
|
||||
|
||||
/** Calculates the sqrt of the given input Tensor, element-wise. Only for float type FDTensor
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
*/
|
||||
FASTDEPLOY_DECL void Sqrt(const FDTensor& x, FDTensor* out);
|
||||
|
||||
/** Calculates the natural log of the given input Tensor, element-wise. Only for float type FDTensor
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
*/
|
||||
FASTDEPLOY_DECL void Log(const FDTensor& x, FDTensor* out);
|
||||
|
||||
/** Rounds the values in the input to the nearest integer value, element-wise. Only for float type FDTensor
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
*/
|
||||
FASTDEPLOY_DECL void Round(const FDTensor& x, FDTensor* out);
|
||||
|
||||
/** Computes exp of x element-wise with a natural number e as the base, element-wise. Only for float type FDTensor
|
||||
@param x The input tensor.
|
||||
@param out The output tensor which stores the result.
|
||||
*/
|
||||
FASTDEPLOY_DECL void Exp(const FDTensor& x, FDTensor* out);
|
||||
|
||||
} // namespace function
|
||||
} // namespace fastdeploy
|
56
fastdeploy/function/math_functor.h
Normal file
56
fastdeploy/function/math_functor.h
Normal file
@@ -0,0 +1,56 @@
|
||||
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
//
|
||||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||||
// you may not use this file except in compliance with the License.
|
||||
// You may obtain a copy of the License at
|
||||
//
|
||||
// http://www.apache.org/licenses/LICENSE-2.0
|
||||
//
|
||||
// Unless required by applicable law or agreed to in writing, software
|
||||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
// See the License for the specific language governing permissions and
|
||||
// limitations under the License.
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "fastdeploy/function/eigen.h"
|
||||
|
||||
namespace fastdeploy {
|
||||
namespace function {
|
||||
|
||||
// log(x) = natural logarithm of x
|
||||
template <typename T> struct LogFunctor {
|
||||
template <typename Device, typename X, typename Out>
|
||||
void operator()(Device d, X x, Out out) const {
|
||||
out.device(d) = x.log();
|
||||
}
|
||||
};
|
||||
|
||||
// exp functor
|
||||
// exp(x) = e^x
|
||||
template <typename T> struct ExpFunctor {
|
||||
template <typename Device, typename X, typename Out>
|
||||
void operator()(Device d, X x, Out out) const {
|
||||
out.device(d) = x.exp();
|
||||
}
|
||||
};
|
||||
|
||||
// round(x) = [x]
|
||||
template <typename T> struct RoundFunctor {
|
||||
template <typename Device, typename X, typename Out>
|
||||
void operator()(Device d, X x, Out out) const {
|
||||
out.device(d) = x.round();
|
||||
}
|
||||
};
|
||||
|
||||
// sqrt(x) = x^(1/2)
|
||||
template <typename T> struct SqrtFunctor {
|
||||
template <typename Device, typename X, typename Out>
|
||||
void operator()(Device d, X x, Out out) const {
|
||||
out.device(d) = x.sqrt();
|
||||
}
|
||||
};
|
||||
|
||||
} // namespace function
|
||||
} // namespace fastdeploy
|
Reference in New Issue
Block a user