Add sqrt, exp, round, log functions

This commit is contained in:
zhoushunjie
2022-11-23 07:23:05 +00:00
parent 5ce0fd29f8
commit 1b32381201
4 changed files with 254 additions and 0 deletions

View File

@@ -0,0 +1,64 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "fastdeploy/function/math.h"
#include "fastdeploy/function/eigen.h"
#include "fastdeploy/function/math_functor.h"
namespace fastdeploy {
namespace function {
#define DEFINE_ACTIVATION_KERNEL(name, functor_class) \
template <typename T> void name##Kernel(const FDTensor& x, FDTensor* out) { \
functor_class<T> functor; \
ActivationImpl<T, functor_class<T>>(x, out, functor); \
}
template <typename T, typename Functor>
void ActivationImpl(const FDTensor& X, FDTensor* Out, const Functor& functor) {
FDASSERT(Out != nullptr, "Output Out should not be nullptr");
auto x = EigenVector<T>::Flatten(X);
Out->Allocate(X.Shape(), X.Dtype());
auto out = EigenVector<T>::Flatten(*Out);
const auto& dev = *EigenDeviceWrapper::GetInstance()->GetDevice();
functor(dev, x, out);
}
DEFINE_ACTIVATION_KERNEL(Sqrt, SqrtFunctor)
DEFINE_ACTIVATION_KERNEL(Log, LogFunctor)
DEFINE_ACTIVATION_KERNEL(Round, RoundFunctor)
DEFINE_ACTIVATION_KERNEL(Exp, ExpFunctor)
void Sqrt(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "SqrtKernel",
([&] { SqrtKernel<data_t>(x, out); }));
}
void Log(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "LogKernel",
([&] { LogKernel<data_t>(x, out); }));
}
void Round(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "RoundKernel",
([&] { RoundKernel<data_t>(x, out); }));
}
void Exp(const FDTensor& x, FDTensor* out) {
FD_VISIT_FLOAT_TYPES(x.dtype, "ExpKernel",
([&] { ExpKernel<data_t>(x, out); }));
}
} // namespace function
} // namespace fastdeploy

View File

@@ -0,0 +1,47 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/core/fd_tensor.h"
namespace fastdeploy {
namespace function {
/** Calculates the sqrt of the given input Tensor, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Sqrt(const FDTensor& x, FDTensor* out);
/** Calculates the natural log of the given input Tensor, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Log(const FDTensor& x, FDTensor* out);
/** Rounds the values in the input to the nearest integer value, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Round(const FDTensor& x, FDTensor* out);
/** Computes exp of x element-wise with a natural number e as the base, element-wise. Only for float type FDTensor
@param x The input tensor.
@param out The output tensor which stores the result.
*/
FASTDEPLOY_DECL void Exp(const FDTensor& x, FDTensor* out);
} // namespace function
} // namespace fastdeploy

View File

@@ -0,0 +1,56 @@
// Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#pragma once
#include "fastdeploy/function/eigen.h"
namespace fastdeploy {
namespace function {
// log(x) = natural logarithm of x
template <typename T> struct LogFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.log();
}
};
// exp functor
// exp(x) = e^x
template <typename T> struct ExpFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.exp();
}
};
// round(x) = [x]
template <typename T> struct RoundFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.round();
}
};
// sqrt(x) = x^(1/2)
template <typename T> struct SqrtFunctor {
template <typename Device, typename X, typename Out>
void operator()(Device d, X x, Out out) const {
out.device(d) = x.sqrt();
}
};
} // namespace function
} // namespace fastdeploy