Add detection and segmentation examples for Ascend deployment

This commit is contained in:
yunyaoXYY
2022-12-27 07:40:46 +00:00
parent 76a876406e
commit 090c3a68b4
27 changed files with 280 additions and 26 deletions

View File

@@ -34,6 +34,8 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
# 昆仑芯XPU推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 3
# 华为昇腾推理
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 4
```
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:

View File

@@ -102,6 +102,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::detection::PPYOLO(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
@@ -120,6 +147,8 @@ int main(int argc, char* argv[]) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -131,6 +131,33 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::detection::PPYOLOE(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
@@ -151,6 +178,8 @@ int main(int argc, char* argv[]) {
TrtInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 4) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -104,6 +104,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
@@ -122,6 +149,8 @@ int main(int argc, char* argv[]) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -102,6 +102,34 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "infer_cfg.yml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::detection::YOLOv3(model_file, params_file,
config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
@@ -120,6 +148,8 @@ int main(int argc, char* argv[]) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -25,6 +25,8 @@ python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
# 昆仑芯XPU推理
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
# 华为昇腾推理
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend
```
运行完成可视化结果如下图所示

View File

@@ -32,6 +32,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.device.lower() == "gpu":
option.use_gpu()

View File

@@ -33,6 +33,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.device.lower() == "gpu":
option.use_gpu()

View File

@@ -26,6 +26,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.device.lower() == "gpu":
option.use_gpu()
return option

View File

@@ -32,6 +32,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.device.lower() == "gpu":
option.use_gpu()

View File

@@ -31,6 +31,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
./infer_paddle_demo yolov5s_infer 000000014439.jpg 2
# 昆仑芯XPU推理
./infer_paddle_demo yolov5s_infer 000000014439.jpg 3
# 华为昇腾推理
./infer_paddle_demo yolov5s_infer 000000014439.jpg 4
```
上述的模型为 Paddle 模型的推理,如果想要做 ONNX 模型的推理,可以按照如下步骤:

View File

@@ -130,6 +130,35 @@ void KunlunXinInfer(const std::string& model_dir, const std::string& image_file)
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
fastdeploy::RuntimeOption option;
option.UseAscend();
auto model = fastdeploy::vision::detection::YOLOv5(
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
@@ -149,6 +178,8 @@ int main(int argc, char* argv[]) {
TrtInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
KunlunXinInfer(argv[1], argv[2]);
}
} else if (std::atoi(argv[3]) == 4) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -25,6 +25,8 @@ python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu --use_trt True
# 昆仑芯XPU推理
python infer.py --model yolov5s_infer --image 000000014439.jpg --device kunlunxin
# 华为昇腾推理
python infer.py --model yolov5s_infer --image 000000014439.jpg --device ascend
```
运行完成可视化结果如下图所示

View File

@@ -31,6 +31,9 @@ def build_option(args):
if args.device.lower() == "gpu":
option.use_gpu()
if args.device.lower() == "ascend":
option.use_ascend()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("images", [1, 3, 640, 640])

View File

@@ -29,6 +29,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
./infer_paddle_demo yolov6s_infer 000000014439.jpg 1
# 昆仑芯XPU推理
./infer_paddle_demo yolov6s_infer 000000014439.jpg 2
# 华为昇腾推理
./infer_paddle_demo yolov6s_infer 000000014439.jpg 3
```
如果想要验证ONNX模型的推理可以参考如下命令

View File

@@ -45,30 +45,30 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
fastdeploy::RuntimeOption option;
option.UseKunlunXin();
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto model = fastdeploy::vision::detection::YOLOv6(model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
// void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
// fastdeploy::RuntimeOption option;
// option.UseKunlunXin();
// auto model_file = model_dir + sep + "model.pdmodel";
// auto params_file = model_dir + sep + "model.pdiparams";
// auto model = fastdeploy::vision::detection::YOLOv6(model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
// if (!model.Initialized()) {
// std::cerr << "Failed to initialize." << std::endl;
// return;
// }
auto im = cv::imread(image_file);
// auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
// fastdeploy::vision::DetectionResult res;
// if (!model.Predict(&im, &res)) {
// std::cerr << "Failed to predict." << std::endl;
// return;
// }
// std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
// auto vis_im = fastdeploy::vision::VisDetection(im, res);
// cv::imwrite("vis_result.jpg", vis_im);
// std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
// }
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
fastdeploy::RuntimeOption option;
@@ -96,6 +96,32 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
fastdeploy::RuntimeOption option;
option.UseAscend();
auto model = fastdeploy::vision::detection::YOLOv6(
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisDetection(im, res);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
@@ -113,7 +139,9 @@ int main(int argc, char* argv[]) {
} else if (std::atoi(argv[3]) == 1) {
GpuInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 2) {
KunlunXinInfer(argv[1], argv[2]);
}
// KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -22,6 +22,8 @@ python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --d
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device gpu
# 昆仑芯XPU推理
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device kunlunxin
# 华为昇腾推理
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device ascend
```
如果想要验证ONNX模型的推理可以参考如下命令
```bash

View File

@@ -28,6 +28,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
return option

View File

@@ -28,6 +28,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 1
# 昆仑芯XPU推理
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 2
# 华为昇腾推理
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 3
```
如果想要验证ONNX模型的推理可以参考如下命令
```bash

View File

@@ -31,7 +31,7 @@ void InitAndInfer(const std::string& model_dir, const std::string& image_file,
auto im = cv::imread(image_file);
fastdeploy::vision::DetectionResult res;
if (!model.Predict(&im, &res)) {
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
@@ -68,7 +68,9 @@ int main(int argc, char* argv[]) {
option.UseTrtBackend();
} else if (flag == 2) {
option.UseKunlunXin();
}
} else if (flag == 3) {
option.UseAscend();
}
std::string model_dir = argv[1];
std::string test_image = argv[2];

View File

@@ -24,6 +24,8 @@ python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --dev
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
# 昆仑芯XPU推理
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
# 华为昇腾推理
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
```
如果想要验证ONNX模型的推理可以参考如下命令
```bash

View File

@@ -24,6 +24,8 @@ python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --dev
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
# KunlunXin XPU
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
# Huawei Ascend
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
```
If you want to test ONNX model:
```bash

View File

@@ -28,6 +28,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
return option

View File

@@ -34,6 +34,8 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
# 昆仑芯XPU推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3
# 华为昇腾推理
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 4
```
运行完成可视化结果如下图所示

View File

@@ -135,6 +135,34 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
auto model_file = model_dir + sep + "model.pdmodel";
auto params_file = model_dir + sep + "model.pdiparams";
auto config_file = model_dir + sep + "deploy.yaml";
auto option = fastdeploy::RuntimeOption();
option.UseAscend();
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
model_file, params_file, config_file, option);
if (!model.Initialized()) {
std::cerr << "Failed to initialize." << std::endl;
return;
}
auto im = cv::imread(image_file);
fastdeploy::vision::SegmentationResult res;
if (!model.Predict(im, &res)) {
std::cerr << "Failed to predict." << std::endl;
return;
}
std::cout << res.Str() << std::endl;
auto vis_im = fastdeploy::vision::VisSegmentation(im, res, 0.5);
cv::imwrite("vis_result.jpg", vis_im);
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
}
int main(int argc, char* argv[]) {
if (argc < 4) {
std::cout
@@ -155,6 +183,8 @@ int main(int argc, char* argv[]) {
TrtInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 3) {
KunlunXinInfer(argv[1], argv[2]);
} else if (std::atoi(argv[3]) == 4) {
AscendInfer(argv[1], argv[2]);
}
return 0;
}

View File

@@ -27,6 +27,8 @@ python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
# 昆仑芯XPU推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
# 华为昇腾推理
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device ascend
```
运行完成可视化结果如下图所示

View File

@@ -33,6 +33,9 @@ def build_option(args):
if args.device.lower() == "kunlunxin":
option.use_kunlunxin()
if args.device.lower() == "ascend":
option.use_ascend()
if args.use_trt:
option.use_trt_backend()
option.set_trt_input_shape("x", [1, 3, 256, 256], [1, 3, 1024, 1024],