mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-15 05:01:00 +08:00
Add detection and segmentation examples for Ascend deployment
This commit is contained in:
@@ -34,6 +34,8 @@ tar xvf ppyoloe_crn_l_300e_coco.tgz
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 2
|
||||
# 昆仑芯XPU推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 3
|
||||
# 华为昇腾推理
|
||||
./infer_ppyoloe_demo ./ppyoloe_crn_l_300e_coco 000000014439.jpg 4
|
||||
```
|
||||
|
||||
以上命令只适用于Linux或MacOS, Windows下SDK的使用方式请参考:
|
||||
|
@@ -102,6 +102,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::PPYOLO(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -120,6 +147,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -131,6 +131,33 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::PPYOLOE(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -151,6 +178,8 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 4) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -104,6 +104,33 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::SSD(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -122,6 +149,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -102,6 +102,34 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "infer_cfg.yml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::YOLOv3(model_file, params_file,
|
||||
config_file, option);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -120,6 +148,8 @@ int main(int argc, char* argv[]) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -25,6 +25,8 @@ python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439
|
||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device gpu --use_trt True
|
||||
# 昆仑芯XPU推理
|
||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device kunlunxin
|
||||
# 华为昇腾推理
|
||||
python infer_ppyoloe.py --model_dir ppyoloe_crn_l_300e_coco --image 000000014439.jpg --device ascend
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
@@ -32,6 +32,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
|
@@ -33,6 +33,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
|
@@ -26,6 +26,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
return option
|
||||
|
@@ -32,6 +32,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
|
@@ -31,6 +31,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 2
|
||||
# 昆仑芯XPU推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 3
|
||||
# 华为昇腾推理
|
||||
./infer_paddle_demo yolov5s_infer 000000014439.jpg 4
|
||||
```
|
||||
|
||||
上述的模型为 Paddle 模型的推理,如果想要做 ONNX 模型的推理,可以按照如下步骤:
|
||||
|
@@ -130,6 +130,35 @@ void KunlunXinInfer(const std::string& model_dir, const std::string& image_file)
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::YOLOv5(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout << "Usage: infer_demo path/to/model path/to/image run_option, "
|
||||
@@ -149,6 +178,8 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
}
|
||||
} else if (std::atoi(argv[3]) == 4) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -25,6 +25,8 @@ python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device gpu --use_trt True
|
||||
# 昆仑芯XPU推理
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device kunlunxin
|
||||
# 华为昇腾推理
|
||||
python infer.py --model yolov5s_infer --image 000000014439.jpg --device ascend
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
@@ -31,6 +31,9 @@ def build_option(args):
|
||||
if args.device.lower() == "gpu":
|
||||
option.use_gpu()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("images", [1, 3, 640, 640])
|
||||
|
@@ -29,6 +29,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
./infer_paddle_demo yolov6s_infer 000000014439.jpg 1
|
||||
# 昆仑芯XPU推理
|
||||
./infer_paddle_demo yolov6s_infer 000000014439.jpg 2
|
||||
# 华为昇腾推理
|
||||
./infer_paddle_demo yolov6s_infer 000000014439.jpg 3
|
||||
```
|
||||
|
||||
如果想要验证ONNX模型的推理,可以参考如下命令:
|
||||
|
@@ -45,30 +45,30 @@ void CpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseKunlunXin();
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto model = fastdeploy::vision::detection::YOLOv6(model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
// void KunlunXinInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
// fastdeploy::RuntimeOption option;
|
||||
// option.UseKunlunXin();
|
||||
// auto model_file = model_dir + sep + "model.pdmodel";
|
||||
// auto params_file = model_dir + sep + "model.pdiparams";
|
||||
// auto model = fastdeploy::vision::detection::YOLOv6(model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
// if (!model.Initialized()) {
|
||||
// std::cerr << "Failed to initialize." << std::endl;
|
||||
// return;
|
||||
// }
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
// auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
// fastdeploy::vision::DetectionResult res;
|
||||
// if (!model.Predict(&im, &res)) {
|
||||
// std::cerr << "Failed to predict." << std::endl;
|
||||
// return;
|
||||
// }
|
||||
// std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
// auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
// cv::imwrite("vis_result.jpg", vis_im);
|
||||
// std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
// }
|
||||
|
||||
void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
fastdeploy::RuntimeOption option;
|
||||
@@ -96,6 +96,32 @@ void GpuInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
fastdeploy::RuntimeOption option;
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::detection::YOLOv6(
|
||||
model_file, params_file, option, fastdeploy::ModelFormat::PADDLE);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
std::cout << res.Str() << std::endl;
|
||||
|
||||
auto vis_im = fastdeploy::vision::VisDetection(im, res);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
@@ -113,7 +139,9 @@ int main(int argc, char* argv[]) {
|
||||
} else if (std::atoi(argv[3]) == 1) {
|
||||
GpuInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 2) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
}
|
||||
// KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -22,6 +22,8 @@ python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --d
|
||||
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device gpu
|
||||
# 昆仑芯XPU推理
|
||||
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device kunlunxin
|
||||
# 华为昇腾推理
|
||||
python infer_paddle_model.py --model yolov6s_infer --image 000000014439.jpg --device ascend
|
||||
```
|
||||
如果想要验证ONNX模型的推理,可以参考如下命令:
|
||||
```bash
|
||||
|
@@ -28,6 +28,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
return option
|
||||
|
||||
|
||||
|
@@ -28,6 +28,8 @@ wget https://gitee.com/paddlepaddle/PaddleDetection/raw/release/2.4/demo/0000000
|
||||
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 1
|
||||
# 昆仑芯XPU推理
|
||||
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 2
|
||||
# 华为昇腾推理
|
||||
./infer_paddle_model_demo yolov7_infer 000000014439.jpg 3
|
||||
```
|
||||
如果想要验证ONNX模型的推理,可以参考如下命令:
|
||||
```bash
|
||||
|
@@ -31,7 +31,7 @@ void InitAndInfer(const std::string& model_dir, const std::string& image_file,
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::DetectionResult res;
|
||||
if (!model.Predict(&im, &res)) {
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
@@ -68,7 +68,9 @@ int main(int argc, char* argv[]) {
|
||||
option.UseTrtBackend();
|
||||
} else if (flag == 2) {
|
||||
option.UseKunlunXin();
|
||||
}
|
||||
} else if (flag == 3) {
|
||||
option.UseAscend();
|
||||
}
|
||||
|
||||
std::string model_dir = argv[1];
|
||||
std::string test_image = argv[2];
|
||||
|
@@ -24,6 +24,8 @@ python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --dev
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
|
||||
# 昆仑芯XPU推理
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
|
||||
# 华为昇腾推理
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
|
||||
```
|
||||
如果想要验证ONNX模型的推理,可以参考如下命令:
|
||||
```bash
|
||||
|
@@ -24,6 +24,8 @@ python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --dev
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device gpu
|
||||
# KunlunXin XPU
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device kunlunxin
|
||||
# Huawei Ascend
|
||||
python infer_paddle_model.py --model yolov7_infer --image 000000014439.jpg --device ascend
|
||||
```
|
||||
If you want to test ONNX model:
|
||||
```bash
|
||||
|
@@ -28,6 +28,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
return option
|
||||
|
||||
|
||||
|
@@ -34,6 +34,8 @@ wget https://paddleseg.bj.bcebos.com/dygraph/demo/cityscapes_demo.png
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 2
|
||||
# 昆仑芯XPU推理
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 3
|
||||
# 华为昇腾推理
|
||||
./infer_demo Unet_cityscapes_without_argmax_infer cityscapes_demo.png 4
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
@@ -135,6 +135,34 @@ void TrtInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
void AscendInfer(const std::string& model_dir, const std::string& image_file) {
|
||||
auto model_file = model_dir + sep + "model.pdmodel";
|
||||
auto params_file = model_dir + sep + "model.pdiparams";
|
||||
auto config_file = model_dir + sep + "deploy.yaml";
|
||||
auto option = fastdeploy::RuntimeOption();
|
||||
option.UseAscend();
|
||||
auto model = fastdeploy::vision::segmentation::PaddleSegModel(
|
||||
model_file, params_file, config_file, option);
|
||||
|
||||
if (!model.Initialized()) {
|
||||
std::cerr << "Failed to initialize." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
auto im = cv::imread(image_file);
|
||||
|
||||
fastdeploy::vision::SegmentationResult res;
|
||||
if (!model.Predict(im, &res)) {
|
||||
std::cerr << "Failed to predict." << std::endl;
|
||||
return;
|
||||
}
|
||||
|
||||
std::cout << res.Str() << std::endl;
|
||||
auto vis_im = fastdeploy::vision::VisSegmentation(im, res, 0.5);
|
||||
cv::imwrite("vis_result.jpg", vis_im);
|
||||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl;
|
||||
}
|
||||
|
||||
int main(int argc, char* argv[]) {
|
||||
if (argc < 4) {
|
||||
std::cout
|
||||
@@ -155,6 +183,8 @@ int main(int argc, char* argv[]) {
|
||||
TrtInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 3) {
|
||||
KunlunXinInfer(argv[1], argv[2]);
|
||||
} else if (std::atoi(argv[3]) == 4) {
|
||||
AscendInfer(argv[1], argv[2]);
|
||||
}
|
||||
return 0;
|
||||
}
|
||||
|
@@ -27,6 +27,8 @@ python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device gpu --use_trt True
|
||||
# 昆仑芯XPU推理
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device kunlunxin
|
||||
# 华为昇腾推理
|
||||
python infer.py --model Unet_cityscapes_without_argmax_infer --image cityscapes_demo.png --device ascend
|
||||
```
|
||||
|
||||
运行完成可视化结果如下图所示
|
||||
|
@@ -33,6 +33,9 @@ def build_option(args):
|
||||
if args.device.lower() == "kunlunxin":
|
||||
option.use_kunlunxin()
|
||||
|
||||
if args.device.lower() == "ascend":
|
||||
option.use_ascend()
|
||||
|
||||
if args.use_trt:
|
||||
option.use_trt_backend()
|
||||
option.set_trt_input_shape("x", [1, 3, 256, 256], [1, 3, 1024, 1024],
|
||||
|
Reference in New Issue
Block a user