PaddleSeg supports triton serving

This commit is contained in:
felixhjh
2023-01-18 12:20:05 +00:00
parent b016b762cf
commit 03cdc4cde3
9 changed files with 443 additions and 0 deletions

View File

@@ -0,0 +1,3 @@
# PaddleSeg Pipeline
The pipeline directory does not have model files, but a version number directory needs to be maintained.

View File

@@ -0,0 +1,67 @@
platform: "ensemble"
input [
{
name: "INPUT"
data_type: TYPE_UINT8
dims: [-1, -1, -1, 3 ]
}
]
output [
{
name: "SEG_RESULT"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
ensemble_scheduling {
step [
{
model_name: "preprocess"
model_version: 1
input_map {
key: "preprocess_input"
value: "INPUT"
}
output_map {
key: "preprocess_output_1"
value: "RUNTIME_INPUT_1"
}
output_map {
key: "preprocess_output_2"
value: "POSTPROCESS_INPUT_2"
}
},
{
model_name: "runtime"
model_version: 1
input_map {
key: "x"
value: "RUNTIME_INPUT_1"
}
output_map {
key: "argmax_0.tmp_0"
value: "RUNTIME_OUTPUT"
}
},
{
model_name: "postprocess"
model_version: 1
input_map {
key: "post_input_1"
value: "RUNTIME_OUTPUT"
}
input_map {
key: "post_input_2"
value: "POSTPROCESS_INPUT_2"
}
output_map {
key: "post_output"
value: "SEG_RESULT"
}
}
]
}

View File

@@ -0,0 +1,115 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import time
import os
import fastdeploy as fd
# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to intialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# You must parse model_config. JSON string is not parsed here
self.model_config = json.loads(args['model_config'])
print("model_config:", self.model_config)
self.input_names = []
for input_config in self.model_config["input"]:
self.input_names.append(input_config["name"])
print("postprocess input names:", self.input_names)
self.output_names = []
self.output_dtype = []
for output_config in self.model_config["output"]:
self.output_names.append(output_config["name"])
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
self.output_dtype.append(dtype)
print("postprocess output names:", self.output_names)
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
self.postprocess_ = fd.vision.segmentation.PaddleSegPostprocessor(
yaml_path)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
for request in requests:
infer_outputs = pb_utils.get_input_tensor_by_name(
request, self.input_names[0])
im_info = pb_utils.get_input_tensor_by_name(request,
self.input_names[1])
infer_outputs = infer_outputs.as_numpy()
im_info = im_info.as_numpy()
for i in range(im_info.shape[0]):
im_info[i] = json.loads(im_info[i].decode('utf-8').replace(
"'", '"'))
results = self.postprocess_.run([infer_outputs], im_info[0])
r_str = fd.vision.utils.fd_result_to_json(results)
r_np = np.array(r_str, dtype=np.object_)
out_tensor = pb_utils.Tensor(self.output_names[0], r_np)
inference_response = pb_utils.InferenceResponse(
output_tensors=[out_tensor, ])
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')

View File

@@ -0,0 +1,30 @@
name: "postprocess"
backend: "python"
input [
{
name: "post_input_1"
data_type: TYPE_INT32
dims: [-1, -1, -1]
},
{
name: "post_input_2"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
output [
{
name: "post_output"
data_type: TYPE_STRING
dims: [ -1 ]
}
]
instance_group [
{
count: 1
kind: KIND_CPU
}
]

View File

@@ -0,0 +1,12 @@
Deploy:
input_shape:
- -1
- 3
- -1
- -1
model: model.pdmodel
output_dtype: int32
output_op: argmax
params: model.pdiparams
transforms:
- type: Normalize

View File

@@ -0,0 +1,117 @@
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import json
import numpy as np
import os
import fastdeploy as fd
# triton_python_backend_utils is available in every Triton Python model. You
# need to use this module to create inference requests and responses. It also
# contains some utility functions for extracting information from model_config
# and converting Triton input/output types to numpy types.
import triton_python_backend_utils as pb_utils
class TritonPythonModel:
"""Your Python model must use the same class name. Every Python model
that is created must have "TritonPythonModel" as the class name.
"""
def initialize(self, args):
"""`initialize` is called only once when the model is being loaded.
Implementing `initialize` function is optional. This function allows
the model to intialize any state associated with this model.
Parameters
----------
args : dict
Both keys and values are strings. The dictionary keys and values are:
* model_config: A JSON string containing the model configuration
* model_instance_kind: A string containing model instance kind
* model_instance_device_id: A string containing model instance device ID
* model_repository: Model repository path
* model_version: Model version
* model_name: Model name
"""
# You must parse model_config. JSON string is not parsed here
self.model_config = json.loads(args['model_config'])
print("model_config:", self.model_config)
self.input_names = []
for input_config in self.model_config["input"]:
self.input_names.append(input_config["name"])
print("preprocess input names:", self.input_names)
self.output_names = []
self.output_dtype = []
for output_config in self.model_config["output"]:
self.output_names.append(output_config["name"])
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
# self.output_dtype.append(dtype)
self.output_dtype.append(output_config["data_type"])
print("preprocess output names:", self.output_names)
# init PaddleSegPreprocess class
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
self.preprocess_ = fd.vision.segmentation.PaddleSegPreprocessor(
yaml_path)
#if args['model_instance_kind'] == 'GPU':
# device_id = int(args['model_instance_device_id'])
# self.preprocess_.use_gpu(device_id)
def execute(self, requests):
"""`execute` must be implemented in every Python model. `execute`
function receives a list of pb_utils.InferenceRequest as the only
argument. This function is called when an inference is requested
for this model. Depending on the batching configuration (e.g. Dynamic
Batching) used, `requests` may contain multiple requests. Every
Python model, must create one pb_utils.InferenceResponse for every
pb_utils.InferenceRequest in `requests`. If there is an error, you can
set the error argument when creating a pb_utils.InferenceResponse.
Parameters
----------
requests : list
A list of pb_utils.InferenceRequest
Returns
-------
list
A list of pb_utils.InferenceResponse. The length of this list must
be the same as `requests`
"""
responses = []
for request in requests:
data = pb_utils.get_input_tensor_by_name(request,
self.input_names[0])
data = data.as_numpy()
outputs, im_info = self.preprocess_.run(data)
# PaddleSeg preprocess has two outputs
dlpack_tensor = outputs[0].to_dlpack()
output_tensor_0 = pb_utils.Tensor.from_dlpack(self.output_names[0],
dlpack_tensor)
output_tensor_1 = pb_utils.Tensor(
self.output_names[1], np.array(
[im_info], dtype=np.object_))
inference_response = pb_utils.InferenceResponse(
output_tensors=[output_tensor_0, output_tensor_1])
responses.append(inference_response)
return responses
def finalize(self):
"""`finalize` is called only once when the model is being unloaded.
Implementing `finalize` function is optional. This function allows
the model to perform any necessary clean ups before exit.
"""
print('Cleaning up...')

View File

@@ -0,0 +1,34 @@
name: "preprocess"
backend: "python"
input [
{
name: "preprocess_input"
data_type: TYPE_UINT8
dims: [-1, -1, -1, 3 ]
}
]
output [
{
name: "preprocess_output_1"
data_type: TYPE_FP32
dims: [-1, 3, -1, -1 ]
},
{
name: "preprocess_output_2"
data_type: TYPE_STRING
dims: [ -1]
}
]
instance_group [
{
# The number of instances is 1
count: 1
# Use CPU, GPU inference option is:KIND_GPU
kind: KIND_CPU
# The instance is deployed on the 0th GPU card
# gpus: [0]
}
]

View File

@@ -0,0 +1,5 @@
# Runtime Directory
This directory holds the model files.
Paddle models must be model.pdmodel and model.pdiparams files.
ONNX models must be model.onnx files.

View File

@@ -0,0 +1,60 @@
# optional, If name is specified it must match the name of the model repository directory containing the model.
name: "runtime"
backend: "fastdeploy"
# Input configuration of the model
input [
{
# input name
name: "x"
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
data_type: TYPE_FP32
# input shape
dims: [-1, 3, -1, -1 ]
}
]
# The output of the model is configured in the same format as the input
output [
{
name: "argmax_0.tmp_0"
data_type: TYPE_INT32
dims: [ -1, -1, -1 ]
}
]
# Number of instances of the model
instance_group [
{
# The number of instances is 1
count: 1
# Use GPU, CPU inference option is:KIND_CPU
kind: KIND_GPU
# The instance is deployed on the 0th GPU card
gpus: [0]
}
]
optimization {
execution_accelerators {
gpu_execution_accelerator : [ {
# use TRT engine
name: "paddle",
#name: "tensorrt",
# use fp16 on TRT engine
parameters { key: "precision" value: "trt_fp32" }
},
{
name: "min_shape"
parameters { key: "x" value: "1 3 256 256" }
},
{
name: "opt_shape"
parameters { key: "x" value: "1 3 1024 1024" }
},
{
name: "max_shape"
parameters { key: "x" value: "16 3 2048 2048" }
}
]
}}