mirror of
https://github.com/PaddlePaddle/FastDeploy.git
synced 2025-10-16 21:51:31 +08:00
PaddleSeg supports triton serving
This commit is contained in:
@@ -0,0 +1,3 @@
|
||||
# PaddleSeg Pipeline
|
||||
|
||||
The pipeline directory does not have model files, but a version number directory needs to be maintained.
|
@@ -0,0 +1,67 @@
|
||||
platform: "ensemble"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "INPUT"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [-1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "SEG_RESULT"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
ensemble_scheduling {
|
||||
step [
|
||||
{
|
||||
model_name: "preprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "preprocess_input"
|
||||
value: "INPUT"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output_1"
|
||||
value: "RUNTIME_INPUT_1"
|
||||
}
|
||||
output_map {
|
||||
key: "preprocess_output_2"
|
||||
value: "POSTPROCESS_INPUT_2"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "runtime"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "x"
|
||||
value: "RUNTIME_INPUT_1"
|
||||
}
|
||||
output_map {
|
||||
key: "argmax_0.tmp_0"
|
||||
value: "RUNTIME_OUTPUT"
|
||||
}
|
||||
},
|
||||
{
|
||||
model_name: "postprocess"
|
||||
model_version: 1
|
||||
input_map {
|
||||
key: "post_input_1"
|
||||
value: "RUNTIME_OUTPUT"
|
||||
}
|
||||
input_map {
|
||||
key: "post_input_2"
|
||||
value: "POSTPROCESS_INPUT_2"
|
||||
}
|
||||
output_map {
|
||||
key: "post_output"
|
||||
value: "SEG_RESULT"
|
||||
}
|
||||
}
|
||||
]
|
||||
}
|
||||
|
115
examples/vision/segmentation/paddleseg/serving/models/postprocess/1/model.py
Executable file
115
examples/vision/segmentation/paddleseg/serving/models/postprocess/1/model.py
Executable file
@@ -0,0 +1,115 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import time
|
||||
import os
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("postprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
self.output_dtype.append(dtype)
|
||||
print("postprocess output names:", self.output_names)
|
||||
|
||||
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
|
||||
self.postprocess_ = fd.vision.segmentation.PaddleSegPostprocessor(
|
||||
yaml_path)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
infer_outputs = pb_utils.get_input_tensor_by_name(
|
||||
request, self.input_names[0])
|
||||
im_info = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[1])
|
||||
infer_outputs = infer_outputs.as_numpy()
|
||||
im_info = im_info.as_numpy()
|
||||
for i in range(im_info.shape[0]):
|
||||
im_info[i] = json.loads(im_info[i].decode('utf-8').replace(
|
||||
"'", '"'))
|
||||
|
||||
results = self.postprocess_.run([infer_outputs], im_info[0])
|
||||
r_str = fd.vision.utils.fd_result_to_json(results)
|
||||
|
||||
r_np = np.array(r_str, dtype=np.object_)
|
||||
out_tensor = pb_utils.Tensor(self.output_names[0], r_np)
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[out_tensor, ])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
@@ -0,0 +1,30 @@
|
||||
name: "postprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "post_input_1"
|
||||
data_type: TYPE_INT32
|
||||
dims: [-1, -1, -1]
|
||||
},
|
||||
{
|
||||
name: "post_input_2"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "post_output"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
count: 1
|
||||
kind: KIND_CPU
|
||||
}
|
||||
]
|
@@ -0,0 +1,12 @@
|
||||
Deploy:
|
||||
input_shape:
|
||||
- -1
|
||||
- 3
|
||||
- -1
|
||||
- -1
|
||||
model: model.pdmodel
|
||||
output_dtype: int32
|
||||
output_op: argmax
|
||||
params: model.pdiparams
|
||||
transforms:
|
||||
- type: Normalize
|
@@ -0,0 +1,117 @@
|
||||
# Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
import fastdeploy as fd
|
||||
|
||||
# triton_python_backend_utils is available in every Triton Python model. You
|
||||
# need to use this module to create inference requests and responses. It also
|
||||
# contains some utility functions for extracting information from model_config
|
||||
# and converting Triton input/output types to numpy types.
|
||||
import triton_python_backend_utils as pb_utils
|
||||
|
||||
|
||||
class TritonPythonModel:
|
||||
"""Your Python model must use the same class name. Every Python model
|
||||
that is created must have "TritonPythonModel" as the class name.
|
||||
"""
|
||||
|
||||
def initialize(self, args):
|
||||
"""`initialize` is called only once when the model is being loaded.
|
||||
Implementing `initialize` function is optional. This function allows
|
||||
the model to intialize any state associated with this model.
|
||||
Parameters
|
||||
----------
|
||||
args : dict
|
||||
Both keys and values are strings. The dictionary keys and values are:
|
||||
* model_config: A JSON string containing the model configuration
|
||||
* model_instance_kind: A string containing model instance kind
|
||||
* model_instance_device_id: A string containing model instance device ID
|
||||
* model_repository: Model repository path
|
||||
* model_version: Model version
|
||||
* model_name: Model name
|
||||
"""
|
||||
# You must parse model_config. JSON string is not parsed here
|
||||
self.model_config = json.loads(args['model_config'])
|
||||
print("model_config:", self.model_config)
|
||||
|
||||
self.input_names = []
|
||||
for input_config in self.model_config["input"]:
|
||||
self.input_names.append(input_config["name"])
|
||||
print("preprocess input names:", self.input_names)
|
||||
|
||||
self.output_names = []
|
||||
self.output_dtype = []
|
||||
for output_config in self.model_config["output"]:
|
||||
self.output_names.append(output_config["name"])
|
||||
# dtype = pb_utils.triton_string_to_numpy(output_config["data_type"])
|
||||
# self.output_dtype.append(dtype)
|
||||
self.output_dtype.append(output_config["data_type"])
|
||||
print("preprocess output names:", self.output_names)
|
||||
|
||||
# init PaddleSegPreprocess class
|
||||
yaml_path = os.path.abspath(os.path.dirname(__file__)) + "/deploy.yaml"
|
||||
self.preprocess_ = fd.vision.segmentation.PaddleSegPreprocessor(
|
||||
yaml_path)
|
||||
#if args['model_instance_kind'] == 'GPU':
|
||||
# device_id = int(args['model_instance_device_id'])
|
||||
# self.preprocess_.use_gpu(device_id)
|
||||
|
||||
def execute(self, requests):
|
||||
"""`execute` must be implemented in every Python model. `execute`
|
||||
function receives a list of pb_utils.InferenceRequest as the only
|
||||
argument. This function is called when an inference is requested
|
||||
for this model. Depending on the batching configuration (e.g. Dynamic
|
||||
Batching) used, `requests` may contain multiple requests. Every
|
||||
Python model, must create one pb_utils.InferenceResponse for every
|
||||
pb_utils.InferenceRequest in `requests`. If there is an error, you can
|
||||
set the error argument when creating a pb_utils.InferenceResponse.
|
||||
Parameters
|
||||
----------
|
||||
requests : list
|
||||
A list of pb_utils.InferenceRequest
|
||||
Returns
|
||||
-------
|
||||
list
|
||||
A list of pb_utils.InferenceResponse. The length of this list must
|
||||
be the same as `requests`
|
||||
"""
|
||||
responses = []
|
||||
for request in requests:
|
||||
data = pb_utils.get_input_tensor_by_name(request,
|
||||
self.input_names[0])
|
||||
data = data.as_numpy()
|
||||
outputs, im_info = self.preprocess_.run(data)
|
||||
|
||||
# PaddleSeg preprocess has two outputs
|
||||
dlpack_tensor = outputs[0].to_dlpack()
|
||||
output_tensor_0 = pb_utils.Tensor.from_dlpack(self.output_names[0],
|
||||
dlpack_tensor)
|
||||
output_tensor_1 = pb_utils.Tensor(
|
||||
self.output_names[1], np.array(
|
||||
[im_info], dtype=np.object_))
|
||||
inference_response = pb_utils.InferenceResponse(
|
||||
output_tensors=[output_tensor_0, output_tensor_1])
|
||||
responses.append(inference_response)
|
||||
return responses
|
||||
|
||||
def finalize(self):
|
||||
"""`finalize` is called only once when the model is being unloaded.
|
||||
Implementing `finalize` function is optional. This function allows
|
||||
the model to perform any necessary clean ups before exit.
|
||||
"""
|
||||
print('Cleaning up...')
|
@@ -0,0 +1,34 @@
|
||||
name: "preprocess"
|
||||
backend: "python"
|
||||
|
||||
input [
|
||||
{
|
||||
name: "preprocess_input"
|
||||
data_type: TYPE_UINT8
|
||||
dims: [-1, -1, -1, 3 ]
|
||||
}
|
||||
]
|
||||
|
||||
output [
|
||||
{
|
||||
name: "preprocess_output_1"
|
||||
data_type: TYPE_FP32
|
||||
dims: [-1, 3, -1, -1 ]
|
||||
},
|
||||
{
|
||||
name: "preprocess_output_2"
|
||||
data_type: TYPE_STRING
|
||||
dims: [ -1]
|
||||
}
|
||||
]
|
||||
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use CPU, GPU inference option is:KIND_GPU
|
||||
kind: KIND_CPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
# gpus: [0]
|
||||
}
|
||||
]
|
@@ -0,0 +1,5 @@
|
||||
# Runtime Directory
|
||||
|
||||
This directory holds the model files.
|
||||
Paddle models must be model.pdmodel and model.pdiparams files.
|
||||
ONNX models must be model.onnx files.
|
@@ -0,0 +1,60 @@
|
||||
# optional, If name is specified it must match the name of the model repository directory containing the model.
|
||||
name: "runtime"
|
||||
backend: "fastdeploy"
|
||||
|
||||
# Input configuration of the model
|
||||
input [
|
||||
{
|
||||
# input name
|
||||
name: "x"
|
||||
# input type such as TYPE_FP32、TYPE_UINT8、TYPE_INT8、TYPE_INT16、TYPE_INT32、TYPE_INT64、TYPE_FP16、TYPE_STRING
|
||||
data_type: TYPE_FP32
|
||||
# input shape
|
||||
dims: [-1, 3, -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# The output of the model is configured in the same format as the input
|
||||
output [
|
||||
{
|
||||
name: "argmax_0.tmp_0"
|
||||
data_type: TYPE_INT32
|
||||
dims: [ -1, -1, -1 ]
|
||||
}
|
||||
]
|
||||
|
||||
# Number of instances of the model
|
||||
instance_group [
|
||||
{
|
||||
# The number of instances is 1
|
||||
count: 1
|
||||
# Use GPU, CPU inference option is:KIND_CPU
|
||||
kind: KIND_GPU
|
||||
# The instance is deployed on the 0th GPU card
|
||||
gpus: [0]
|
||||
}
|
||||
]
|
||||
|
||||
optimization {
|
||||
execution_accelerators {
|
||||
gpu_execution_accelerator : [ {
|
||||
# use TRT engine
|
||||
name: "paddle",
|
||||
#name: "tensorrt",
|
||||
# use fp16 on TRT engine
|
||||
parameters { key: "precision" value: "trt_fp32" }
|
||||
},
|
||||
{
|
||||
name: "min_shape"
|
||||
parameters { key: "x" value: "1 3 256 256" }
|
||||
},
|
||||
{
|
||||
name: "opt_shape"
|
||||
parameters { key: "x" value: "1 3 1024 1024" }
|
||||
},
|
||||
{
|
||||
name: "max_shape"
|
||||
parameters { key: "x" value: "16 3 2048 2048" }
|
||||
}
|
||||
]
|
||||
}}
|
Reference in New Issue
Block a user