mirror of
https://github.com/hpc203/yolov5-v6.1-opencv-onnxrun.git
synced 2025-09-27 03:15:57 +08:00
Add files via upload
This commit is contained in:
80
onnxruntime/class.names
Normal file
80
onnxruntime/class.names
Normal file
@@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorcycle
|
||||
airplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
dining table
|
||||
toilet
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
BIN
onnxruntime/images/bus.jpg
Normal file
BIN
onnxruntime/images/bus.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 476 KiB |
BIN
onnxruntime/images/zidane.jpg
Normal file
BIN
onnxruntime/images/zidane.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 165 KiB |
309
onnxruntime/main.cpp
Normal file
309
onnxruntime/main.cpp
Normal file
@@ -0,0 +1,309 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
//#include <cuda_provider_factory.h>
|
||||
#include <onnxruntime_cxx_api.h>
|
||||
|
||||
using namespace std;
|
||||
using namespace cv;
|
||||
using namespace Ort;
|
||||
|
||||
struct Net_config
|
||||
{
|
||||
float confThreshold; // Confidence threshold
|
||||
float nmsThreshold; // Non-maximum suppression threshold
|
||||
float objThreshold; //Object Confidence threshold
|
||||
string modelpath;
|
||||
};
|
||||
|
||||
typedef struct BoxInfo
|
||||
{
|
||||
float x1;
|
||||
float y1;
|
||||
float x2;
|
||||
float y2;
|
||||
float score;
|
||||
int label;
|
||||
} BoxInfo;
|
||||
|
||||
int endsWith(string s, string sub) {
|
||||
return s.rfind(sub) == (s.length() - sub.length()) ? 1 : 0;
|
||||
}
|
||||
|
||||
const float anchors_640[3][6] = { {10.0, 13.0, 16.0, 30.0, 33.0, 23.0},
|
||||
{30.0, 61.0, 62.0, 45.0, 59.0, 119.0},
|
||||
{116.0, 90.0, 156.0, 198.0, 373.0, 326.0} };
|
||||
|
||||
const float anchors_1280[4][6] = { {19, 27, 44, 40, 38, 94},{96, 68, 86, 152, 180, 137},{140, 301, 303, 264, 238, 542},
|
||||
{436, 615, 739, 380, 925, 792} };
|
||||
|
||||
class YOLO
|
||||
{
|
||||
public:
|
||||
YOLO(Net_config config);
|
||||
void detect(Mat& frame);
|
||||
private:
|
||||
float* anchors;
|
||||
int num_stride;
|
||||
int inpWidth;
|
||||
int inpHeight;
|
||||
int nout;
|
||||
int num_proposal;
|
||||
vector<string> class_names;
|
||||
int num_class;
|
||||
int seg_num_class;
|
||||
|
||||
float confThreshold;
|
||||
float nmsThreshold;
|
||||
float objThreshold;
|
||||
const bool keep_ratio = true;
|
||||
vector<float> input_image_;
|
||||
void normalize_(Mat img);
|
||||
void nms(vector<BoxInfo>& input_boxes);
|
||||
Mat resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left);
|
||||
|
||||
Env env = Env(ORT_LOGGING_LEVEL_ERROR, "yolov5-6.1");
|
||||
Ort::Session *ort_session = nullptr;
|
||||
SessionOptions sessionOptions = SessionOptions();
|
||||
vector<char*> input_names;
|
||||
vector<char*> output_names;
|
||||
vector<vector<int64_t>> input_node_dims; // >=1 outputs
|
||||
vector<vector<int64_t>> output_node_dims; // >=1 outputs
|
||||
};
|
||||
|
||||
YOLO::YOLO(Net_config config)
|
||||
{
|
||||
this->confThreshold = config.confThreshold;
|
||||
this->nmsThreshold = config.nmsThreshold;
|
||||
this->objThreshold = config.objThreshold;
|
||||
|
||||
string classesFile = "class.names";
|
||||
string model_path = config.modelpath;
|
||||
std::wstring widestr = std::wstring(model_path.begin(), model_path.end());
|
||||
//OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0);
|
||||
sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC);
|
||||
ort_session = new Session(env, widestr.c_str(), sessionOptions);
|
||||
size_t numInputNodes = ort_session->GetInputCount();
|
||||
size_t numOutputNodes = ort_session->GetOutputCount();
|
||||
AllocatorWithDefaultOptions allocator;
|
||||
for (int i = 0; i < numInputNodes; i++)
|
||||
{
|
||||
input_names.push_back(ort_session->GetInputName(i, allocator));
|
||||
Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i);
|
||||
auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto input_dims = input_tensor_info.GetShape();
|
||||
input_node_dims.push_back(input_dims);
|
||||
}
|
||||
for (int i = 0; i < numOutputNodes; i++)
|
||||
{
|
||||
output_names.push_back(ort_session->GetOutputName(i, allocator));
|
||||
Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i);
|
||||
auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo();
|
||||
auto output_dims = output_tensor_info.GetShape();
|
||||
output_node_dims.push_back(output_dims);
|
||||
}
|
||||
this->inpHeight = input_node_dims[0][2];
|
||||
this->inpWidth = input_node_dims[0][3];
|
||||
this->nout = output_node_dims[0][2];
|
||||
this->num_proposal = output_node_dims[0][1];
|
||||
|
||||
ifstream ifs(classesFile.c_str());
|
||||
string line;
|
||||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||
this->num_class = class_names.size();
|
||||
|
||||
if (endsWith(config.modelpath, "6.onnx"))
|
||||
{
|
||||
anchors = (float*)anchors_1280;
|
||||
this->num_stride = 4;
|
||||
}
|
||||
else
|
||||
{
|
||||
anchors = (float*)anchors_640;
|
||||
this->num_stride = 3;
|
||||
}
|
||||
}
|
||||
|
||||
Mat YOLO::resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left)
|
||||
{
|
||||
int srch = srcimg.rows, srcw = srcimg.cols;
|
||||
*newh = this->inpHeight;
|
||||
*neww = this->inpWidth;
|
||||
Mat dstimg;
|
||||
if (this->keep_ratio && srch != srcw) {
|
||||
float hw_scale = (float)srch / srcw;
|
||||
if (hw_scale > 1) {
|
||||
*newh = this->inpHeight;
|
||||
*neww = int(this->inpWidth / hw_scale);
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
*left = int((this->inpWidth - *neww) * 0.5);
|
||||
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 114);
|
||||
}
|
||||
else {
|
||||
*newh = (int)this->inpHeight * hw_scale;
|
||||
*neww = this->inpWidth;
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
*top = (int)(this->inpHeight - *newh) * 0.5;
|
||||
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 114);
|
||||
}
|
||||
}
|
||||
else {
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
}
|
||||
return dstimg;
|
||||
}
|
||||
|
||||
void YOLO::normalize_(Mat img)
|
||||
{
|
||||
// img.convertTo(img, CV_32F);
|
||||
int row = img.rows;
|
||||
int col = img.cols;
|
||||
this->input_image_.resize(row * col * img.channels());
|
||||
for (int c = 0; c < 3; c++)
|
||||
{
|
||||
for (int i = 0; i < row; i++)
|
||||
{
|
||||
for (int j = 0; j < col; j++)
|
||||
{
|
||||
float pix = img.ptr<uchar>(i)[j * 3 + 2 - c];
|
||||
this->input_image_[c * row * col + i * col + j] = pix / 255.0;
|
||||
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void YOLO::nms(vector<BoxInfo>& input_boxes)
|
||||
{
|
||||
sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; });
|
||||
vector<float> vArea(input_boxes.size());
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1)
|
||||
* (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1);
|
||||
}
|
||||
|
||||
vector<bool> isSuppressed(input_boxes.size(), false);
|
||||
for (int i = 0; i < int(input_boxes.size()); ++i)
|
||||
{
|
||||
if (isSuppressed[i]) { continue; }
|
||||
for (int j = i + 1; j < int(input_boxes.size()); ++j)
|
||||
{
|
||||
if (isSuppressed[j]) { continue; }
|
||||
float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1);
|
||||
float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1);
|
||||
float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2);
|
||||
float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2);
|
||||
|
||||
float w = (max)(float(0), xx2 - xx1 + 1);
|
||||
float h = (max)(float(0), yy2 - yy1 + 1);
|
||||
float inter = w * h;
|
||||
float ovr = inter / (vArea[i] + vArea[j] - inter);
|
||||
|
||||
if (ovr >= this->nmsThreshold)
|
||||
{
|
||||
isSuppressed[j] = true;
|
||||
}
|
||||
}
|
||||
}
|
||||
// return post_nms;
|
||||
int idx_t = 0;
|
||||
input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end());
|
||||
}
|
||||
|
||||
void YOLO::detect(Mat& frame)
|
||||
{
|
||||
int newh = 0, neww = 0, padh = 0, padw = 0;
|
||||
Mat dstimg = this->resize_image(frame, &newh, &neww, &padh, &padw);
|
||||
this->normalize_(dstimg);
|
||||
array<int64_t, 4> input_shape_{ 1, 3, this->inpHeight, this->inpWidth };
|
||||
|
||||
auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU);
|
||||
Value input_tensor_ = Value::CreateTensor<float>(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size());
|
||||
|
||||
// <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
vector<Value> ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // <20><>ʼ<EFBFBD><CABC><EFBFBD><EFBFBD>
|
||||
/////generate proposals
|
||||
vector<BoxInfo> generate_boxes;
|
||||
float ratioh = (float)frame.rows / newh, ratiow = (float)frame.cols / neww;
|
||||
int n = 0, q = 0, i = 0, j = 0, row_ind = 0, k = 0; ///xmin,ymin,xamx,ymax,box_score, class_score
|
||||
const float* pdata = ort_outputs[0].GetTensorMutableData<float>();
|
||||
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
|
||||
{
|
||||
const float stride = pow(2, n + 3);
|
||||
int num_grid_x = (int)ceil((this->inpWidth / stride));
|
||||
int num_grid_y = (int)ceil((this->inpHeight / stride));
|
||||
for (q = 0; q < 3; q++) ///anchor
|
||||
{
|
||||
const float anchor_w = this->anchors[n * 6 + q * 2];
|
||||
const float anchor_h = this->anchors[n * 6 + q * 2 + 1];
|
||||
for (i = 0; i < num_grid_y; i++)
|
||||
{
|
||||
for (j = 0; j < num_grid_x; j++)
|
||||
{
|
||||
float box_score = pdata[4];
|
||||
if (box_score > this->objThreshold)
|
||||
{
|
||||
int max_ind = 0;
|
||||
float max_class_socre = 0;
|
||||
for (k = 0; k < num_class; k++)
|
||||
{
|
||||
if (pdata[k + 5] > max_class_socre)
|
||||
{
|
||||
max_class_socre = pdata[k + 5];
|
||||
max_ind = k;
|
||||
}
|
||||
}
|
||||
max_class_socre *= box_score;
|
||||
if (max_class_socre > this->confThreshold)
|
||||
{
|
||||
float cx = (pdata[0] * 2.f - 0.5f + j) * stride; ///cx
|
||||
float cy = (pdata[1] * 2.f - 0.5f + i) * stride; ///cy
|
||||
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
|
||||
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
|
||||
|
||||
float xmin = (cx - padw - 0.5 * w)*ratiow;
|
||||
float ymin = (cy - padh - 0.5 * h)*ratioh;
|
||||
float xmax = (cx - padw + 0.5 * w)*ratiow;
|
||||
float ymax = (cy - padh + 0.5 * h)*ratioh;
|
||||
|
||||
generate_boxes.push_back(BoxInfo{ xmin, ymin, xmax, ymax, max_class_socre, max_ind });
|
||||
}
|
||||
}
|
||||
row_ind++;
|
||||
pdata += nout;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
// lower confidences
|
||||
nms(generate_boxes);
|
||||
for (size_t i = 0; i < generate_boxes.size(); ++i)
|
||||
{
|
||||
int xmin = int(generate_boxes[i].x1);
|
||||
int ymin = int(generate_boxes[i].y1);
|
||||
rectangle(frame, Point(xmin, ymin), Point(int(generate_boxes[i].x2), int(generate_boxes[i].y2)), Scalar(0, 0, 255), 2);
|
||||
string label = format("%.2f", generate_boxes[i].score);
|
||||
label = this->class_names[generate_boxes[i].label] + ":" + label;
|
||||
putText(frame, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
Net_config yolo_nets = { 0.3, 0.5, 0.3,"weights/yolov5s.onnx" };
|
||||
YOLO yolo_model(yolo_nets);
|
||||
string imgpath = "images/bus.jpg";
|
||||
Mat srcimg = imread(imgpath);
|
||||
yolo_model.detect(srcimg);
|
||||
|
||||
static const string kWinName = "Deep learning object detection in ONNXRuntime";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, srcimg);
|
||||
waitKey(0);
|
||||
destroyAllWindows();
|
||||
}
|
155
onnxruntime/main.py
Normal file
155
onnxruntime/main.py
Normal file
@@ -0,0 +1,155 @@
|
||||
import cv2
|
||||
import argparse
|
||||
import numpy as np
|
||||
import onnxruntime as ort
|
||||
|
||||
class yolov5():
|
||||
def __init__(self, modelpath, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
|
||||
with open('class.names', 'rt') as f:
|
||||
self.classes = f.read().rstrip('\n').split('\n')
|
||||
self.num_classes = len(self.classes)
|
||||
if modelpath.endswith('6.onnx'):
|
||||
self.inpHeight, self.inpWidth = 1280, 1280
|
||||
anchors = [[19, 27, 44, 40, 38, 94], [96, 68, 86, 152, 180, 137], [140, 301, 303, 264, 238, 542], [436, 615, 739, 380, 925, 792]]
|
||||
self.stride = np.array([8., 16., 32., 64.])
|
||||
else:
|
||||
self.inpHeight, self.inpWidth = 640, 640
|
||||
anchors = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
|
||||
self.stride = np.array([8., 16., 32.])
|
||||
self.nl = len(anchors)
|
||||
self.na = len(anchors[0]) // 2
|
||||
self.grid = [np.zeros(1)] * self.nl
|
||||
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
|
||||
so = ort.SessionOptions()
|
||||
so.log_severity_level = 3
|
||||
self.net = ort.InferenceSession(modelpath, so)
|
||||
self.confThreshold = confThreshold
|
||||
self.nmsThreshold = nmsThreshold
|
||||
self.objThreshold = objThreshold
|
||||
# self.inpHeight, self.inpWidth = (self.net.get_inputs()[0].shape[2], self.net.get_inputs()[0].shape[3])
|
||||
|
||||
def resize_image(self, srcimg, keep_ratio=True):
|
||||
top, left, newh, neww = 0, 0, self.inpWidth, self.inpHeight
|
||||
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
|
||||
hw_scale = srcimg.shape[0] / srcimg.shape[1]
|
||||
if hw_scale > 1:
|
||||
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
left = int((self.inpWidth - neww) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, 0, 0, left, self.inpWidth - neww - left, cv2.BORDER_CONSTANT,
|
||||
value=(114, 114, 114)) # add border
|
||||
else:
|
||||
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
top = int((self.inpHeight - newh) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, top, self.inpHeight - newh - top, 0, 0, cv2.BORDER_CONSTANT,
|
||||
value=(114, 114, 114))
|
||||
else:
|
||||
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
|
||||
return img, newh, neww, top, left
|
||||
|
||||
def _make_grid(self, nx=20, ny=20):
|
||||
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
|
||||
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
|
||||
|
||||
def preprocess(self, img):
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = img.astype(np.float32) / 255.0
|
||||
return img
|
||||
|
||||
def postprocess(self, frame, outs, padsize=None):
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
newh, neww, padh, padw = padsize
|
||||
ratioh, ratiow = frameHeight / newh, frameWidth / neww
|
||||
# Scan through all the bounding boxes output from the network and keep only the
|
||||
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
||||
|
||||
confidences = []
|
||||
boxes = []
|
||||
classIds = []
|
||||
for detection in outs:
|
||||
if detection[4] > self.objThreshold:
|
||||
scores = detection[5:]
|
||||
classId = np.argmax(scores)
|
||||
confidence = scores[classId] * detection[4]
|
||||
if confidence > self.confThreshold:
|
||||
center_x = int((detection[0] - padw) * ratiow)
|
||||
center_y = int((detection[1] - padh) * ratioh)
|
||||
width = int(detection[2] * ratiow)
|
||||
height = int(detection[3] * ratioh)
|
||||
left = int(center_x - width * 0.5)
|
||||
top = int(center_y - height * 0.5)
|
||||
|
||||
confidences.append(float(confidence))
|
||||
boxes.append([left, top, width, height])
|
||||
classIds.append(classId)
|
||||
# Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
# lower confidences.
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold).flatten()
|
||||
for i in indices:
|
||||
box = boxes[i]
|
||||
left = box[0]
|
||||
top = box[1]
|
||||
width = box[2]
|
||||
height = box[3]
|
||||
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
|
||||
return frame
|
||||
|
||||
def drawPred(self, frame, classId, conf, left, top, right, bottom):
|
||||
# Draw a bounding box.
|
||||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=4)
|
||||
|
||||
label = '%.2f' % conf
|
||||
label = '%s:%s' % (self.classes[classId], label)
|
||||
|
||||
# Display the label at the top of the bounding box
|
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
top = max(top, labelSize[1])
|
||||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
|
||||
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
|
||||
return frame
|
||||
|
||||
def detect(self, srcimg):
|
||||
img, newh, neww, padh, padw = self.resize_image(srcimg)
|
||||
img = self.preprocess(img)
|
||||
# Sets the input to the network
|
||||
blob = np.expand_dims(np.transpose(img, (2, 0, 1)), axis=0)
|
||||
|
||||
outs = self.net.run(None, {self.net.get_inputs()[0].name: blob})[0].squeeze(axis=0)
|
||||
|
||||
# inference output
|
||||
row_ind = 0
|
||||
for i in range(self.nl):
|
||||
h, w = int(img.shape[0] / self.stride[i]), int(img.shape[1] / self.stride[i])
|
||||
length = int(self.na * h * w)
|
||||
if self.grid[i].shape[2:4] != (h, w):
|
||||
self.grid[i] = self._make_grid(w, h)
|
||||
|
||||
outs[row_ind:row_ind + length, 0:2] = (outs[row_ind:row_ind + length, 0:2] * 2. - 0.5 + np.tile(
|
||||
self.grid[i], (self.na, 1))) * int(self.stride[i])
|
||||
outs[row_ind:row_ind + length, 2:4] = (outs[row_ind:row_ind + length, 2:4] * 2) ** 2 * np.repeat(
|
||||
self.anchor_grid[i], h * w, axis=0)
|
||||
row_ind += length
|
||||
srcimg = self.postprocess(srcimg, outs, padsize=(newh, neww, padh, padw))
|
||||
return srcimg
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--imgpath', type=str, default='images/bus.jpg', help="image path")
|
||||
parser.add_argument('--modelpath', type=str, default='weights/yolov5s.onnx')
|
||||
parser.add_argument('--confThreshold', default=0.3, type=float, help='class confidence')
|
||||
parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
|
||||
parser.add_argument('--objThreshold', default=0.3, type=float, help='object confidence')
|
||||
args = parser.parse_args()
|
||||
|
||||
yolonet = yolov5(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold,
|
||||
objThreshold=args.objThreshold)
|
||||
srcimg = cv2.imread(args.imgpath)
|
||||
srcimg = yolonet.detect(srcimg)
|
||||
|
||||
winName = 'Deep learning object detection in ONNXRuntime'
|
||||
cv2.namedWindow(winName, 0)
|
||||
cv2.imshow(winName, srcimg)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
80
opencv/class.names
Normal file
80
opencv/class.names
Normal file
@@ -0,0 +1,80 @@
|
||||
person
|
||||
bicycle
|
||||
car
|
||||
motorcycle
|
||||
airplane
|
||||
bus
|
||||
train
|
||||
truck
|
||||
boat
|
||||
traffic light
|
||||
fire hydrant
|
||||
stop sign
|
||||
parking meter
|
||||
bench
|
||||
bird
|
||||
cat
|
||||
dog
|
||||
horse
|
||||
sheep
|
||||
cow
|
||||
elephant
|
||||
bear
|
||||
zebra
|
||||
giraffe
|
||||
backpack
|
||||
umbrella
|
||||
handbag
|
||||
tie
|
||||
suitcase
|
||||
frisbee
|
||||
skis
|
||||
snowboard
|
||||
sports ball
|
||||
kite
|
||||
baseball bat
|
||||
baseball glove
|
||||
skateboard
|
||||
surfboard
|
||||
tennis racket
|
||||
bottle
|
||||
wine glass
|
||||
cup
|
||||
fork
|
||||
knife
|
||||
spoon
|
||||
bowl
|
||||
banana
|
||||
apple
|
||||
sandwich
|
||||
orange
|
||||
broccoli
|
||||
carrot
|
||||
hot dog
|
||||
pizza
|
||||
donut
|
||||
cake
|
||||
chair
|
||||
couch
|
||||
potted plant
|
||||
bed
|
||||
dining table
|
||||
toilet
|
||||
tv
|
||||
laptop
|
||||
mouse
|
||||
remote
|
||||
keyboard
|
||||
cell phone
|
||||
microwave
|
||||
oven
|
||||
toaster
|
||||
sink
|
||||
refrigerator
|
||||
book
|
||||
clock
|
||||
vase
|
||||
scissors
|
||||
teddy bear
|
||||
hair drier
|
||||
toothbrush
|
BIN
opencv/images/bus.jpg
Normal file
BIN
opencv/images/bus.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 476 KiB |
BIN
opencv/images/zidane.jpg
Normal file
BIN
opencv/images/zidane.jpg
Normal file
Binary file not shown.
After Width: | Height: | Size: 165 KiB |
220
opencv/main.cpp
Normal file
220
opencv/main.cpp
Normal file
@@ -0,0 +1,220 @@
|
||||
#include <fstream>
|
||||
#include <sstream>
|
||||
#include <iostream>
|
||||
#include <opencv2/dnn.hpp>
|
||||
#include <opencv2/imgproc.hpp>
|
||||
#include <opencv2/highgui.hpp>
|
||||
|
||||
using namespace cv;
|
||||
using namespace dnn;
|
||||
using namespace std;
|
||||
|
||||
struct Net_config
|
||||
{
|
||||
float confThreshold; // Confidence threshold
|
||||
float nmsThreshold; // Non-maximum suppression threshold
|
||||
float objThreshold; //Object Confidence threshold
|
||||
string modelpath;
|
||||
};
|
||||
|
||||
int endsWith(string s, string sub) {
|
||||
return s.rfind(sub) == (s.length() - sub.length()) ? 1 : 0;
|
||||
}
|
||||
|
||||
const float anchors_640[3][6] = { {10.0, 13.0, 16.0, 30.0, 33.0, 23.0},
|
||||
{30.0, 61.0, 62.0, 45.0, 59.0, 119.0},
|
||||
{116.0, 90.0, 156.0, 198.0, 373.0, 326.0} };
|
||||
|
||||
const float anchors_1280[4][6] = { {19, 27, 44, 40, 38, 94},{96, 68, 86, 152, 180, 137},{140, 301, 303, 264, 238, 542},
|
||||
{436, 615, 739, 380, 925, 792} };
|
||||
|
||||
class YOLO
|
||||
{
|
||||
public:
|
||||
YOLO(Net_config config);
|
||||
void detect(Mat& frame);
|
||||
private:
|
||||
float* anchors;
|
||||
int num_stride;
|
||||
int inpWidth;
|
||||
int inpHeight;
|
||||
vector<string> class_names;
|
||||
int num_class;
|
||||
|
||||
float confThreshold;
|
||||
float nmsThreshold;
|
||||
float objThreshold;
|
||||
const bool keep_ratio = true;
|
||||
Net net;
|
||||
void drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid);
|
||||
Mat resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left);
|
||||
};
|
||||
|
||||
YOLO::YOLO(Net_config config)
|
||||
{
|
||||
this->confThreshold = config.confThreshold;
|
||||
this->nmsThreshold = config.nmsThreshold;
|
||||
this->objThreshold = config.objThreshold;
|
||||
|
||||
this->net = readNet(config.modelpath);
|
||||
ifstream ifs("class.names");
|
||||
string line;
|
||||
while (getline(ifs, line)) this->class_names.push_back(line);
|
||||
this->num_class = class_names.size();
|
||||
|
||||
if (endsWith(config.modelpath, "6.onnx"))
|
||||
{
|
||||
anchors = (float*)anchors_1280;
|
||||
this->num_stride = 4;
|
||||
this->inpHeight = 1280;
|
||||
this->inpWidth = 1280;
|
||||
}
|
||||
else
|
||||
{
|
||||
anchors = (float*)anchors_640;
|
||||
this->num_stride = 3;
|
||||
this->inpHeight = 640;
|
||||
this->inpWidth = 640;
|
||||
}
|
||||
}
|
||||
|
||||
Mat YOLO::resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left)
|
||||
{
|
||||
int srch = srcimg.rows, srcw = srcimg.cols;
|
||||
*newh = this->inpHeight;
|
||||
*neww = this->inpWidth;
|
||||
Mat dstimg;
|
||||
if (this->keep_ratio && srch != srcw) {
|
||||
float hw_scale = (float)srch / srcw;
|
||||
if (hw_scale > 1) {
|
||||
*newh = this->inpHeight;
|
||||
*neww = int(this->inpWidth / hw_scale);
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
*left = int((this->inpWidth - *neww) * 0.5);
|
||||
copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 114);
|
||||
}
|
||||
else {
|
||||
*newh = (int)this->inpHeight * hw_scale;
|
||||
*neww = this->inpWidth;
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
*top = (int)(this->inpHeight - *newh) * 0.5;
|
||||
copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 114);
|
||||
}
|
||||
}
|
||||
else {
|
||||
resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA);
|
||||
}
|
||||
return dstimg;
|
||||
}
|
||||
|
||||
void YOLO::drawPred(float conf, int left, int top, int right, int bottom, Mat& frame, int classid) // Draw the predicted bounding box
|
||||
{
|
||||
//Draw a rectangle displaying the bounding box
|
||||
rectangle(frame, Point(left, top), Point(right, bottom), Scalar(0, 0, 255), 2);
|
||||
|
||||
//Get the label for the class name and its confidence
|
||||
string label = format("%.2f", conf);
|
||||
label = this->class_names[classid] + ":" + label;
|
||||
|
||||
//Display the label at the top of the bounding box
|
||||
int baseLine;
|
||||
Size labelSize = getTextSize(label, FONT_HERSHEY_SIMPLEX, 0.5, 1, &baseLine);
|
||||
top = max(top, labelSize.height);
|
||||
//rectangle(frame, Point(left, top - int(1.5 * labelSize.height)), Point(left + int(1.5 * labelSize.width), top + baseLine), Scalar(0, 255, 0), FILLED);
|
||||
putText(frame, label, Point(left, top), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1);
|
||||
}
|
||||
|
||||
void YOLO::detect(Mat& frame)
|
||||
{
|
||||
int newh = 0, neww = 0, padh = 0, padw = 0;
|
||||
Mat dstimg = this->resize_image(frame, &newh, &neww, &padh, &padw);
|
||||
Mat blob = blobFromImage(dstimg, 1 / 255.0, Size(this->inpWidth, this->inpHeight), Scalar(0, 0, 0), true, false);
|
||||
this->net.setInput(blob);
|
||||
vector<Mat> outs;
|
||||
this->net.forward(outs, this->net.getUnconnectedOutLayersNames());
|
||||
|
||||
int num_proposal = outs[0].size[1];
|
||||
int nout = outs[0].size[2];
|
||||
if (outs[0].dims > 2)
|
||||
{
|
||||
outs[0] = outs[0].reshape(0, num_proposal);
|
||||
}
|
||||
/////generate proposals
|
||||
vector<float> confidences;
|
||||
vector<Rect> boxes;
|
||||
vector<int> classIds;
|
||||
float ratioh = (float)frame.rows / newh, ratiow = (float)frame.cols / neww;
|
||||
int n = 0, q = 0, i = 0, j = 0, row_ind = 0; ///xmin,ymin,xamx,ymax,box_score,class_score
|
||||
float* pdata = (float*)outs[0].data;
|
||||
for (n = 0; n < this->num_stride; n++) ///<2F><><EFBFBD><EFBFBD>ͼ<EFBFBD>߶<EFBFBD>
|
||||
{
|
||||
const float stride = pow(2, n + 3);
|
||||
int num_grid_x = (int)ceil((this->inpWidth / stride));
|
||||
int num_grid_y = (int)ceil((this->inpHeight / stride));
|
||||
for (q = 0; q < 3; q++) ///anchor
|
||||
{
|
||||
const float anchor_w = this->anchors[n * 6 + q * 2];
|
||||
const float anchor_h = this->anchors[n * 6 + q * 2 + 1];
|
||||
for (i = 0; i < num_grid_y; i++)
|
||||
{
|
||||
for (j = 0; j < num_grid_x; j++)
|
||||
{
|
||||
float box_score = pdata[4];
|
||||
if (box_score > this->objThreshold)
|
||||
{
|
||||
Mat scores = outs[0].row(row_ind).colRange(5, nout);
|
||||
Point classIdPoint;
|
||||
double max_class_socre;
|
||||
// Get the value and location of the maximum score
|
||||
minMaxLoc(scores, 0, &max_class_socre, 0, &classIdPoint);
|
||||
max_class_socre *= box_score;
|
||||
if (max_class_socre > this->confThreshold)
|
||||
{
|
||||
const int class_idx = classIdPoint.x;
|
||||
float cx = (pdata[0] * 2.f - 0.5f + j) * stride; ///cx
|
||||
float cy = (pdata[1] * 2.f - 0.5f + i) * stride; ///cy
|
||||
float w = powf(pdata[2] * 2.f, 2.f) * anchor_w; ///w
|
||||
float h = powf(pdata[3] * 2.f, 2.f) * anchor_h; ///h
|
||||
|
||||
int left = int((cx - padw - 0.5 * w)*ratiow);
|
||||
int top = int((cy - padh - 0.5 * h)*ratioh);
|
||||
|
||||
confidences.push_back((float)max_class_socre);
|
||||
boxes.push_back(Rect(left, top, (int)(w*ratiow), (int)(h*ratioh)));
|
||||
classIds.push_back(class_idx);
|
||||
}
|
||||
}
|
||||
row_ind++;
|
||||
pdata += nout;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
// lower confidences
|
||||
vector<int> indices;
|
||||
dnn::NMSBoxes(boxes, confidences, this->confThreshold, this->nmsThreshold, indices);
|
||||
for (size_t i = 0; i < indices.size(); ++i)
|
||||
{
|
||||
int idx = indices[i];
|
||||
Rect box = boxes[idx];
|
||||
this->drawPred(confidences[idx], box.x, box.y,
|
||||
box.x + box.width, box.y + box.height, frame, classIds[idx]);
|
||||
}
|
||||
}
|
||||
|
||||
int main()
|
||||
{
|
||||
Net_config yolo_nets = { 0.3, 0.5, 0.3, "weights/yolov5s.onnx" };
|
||||
YOLO yolo_model(yolo_nets);
|
||||
string imgpath = "images/bus.jpg";
|
||||
Mat srcimg = imread(imgpath);
|
||||
yolo_model.detect(srcimg);
|
||||
|
||||
static const string kWinName = "Deep learning object detection in OpenCV";
|
||||
namedWindow(kWinName, WINDOW_NORMAL);
|
||||
imshow(kWinName, srcimg);
|
||||
waitKey(0);
|
||||
destroyAllWindows();
|
||||
}
|
157
opencv/main.py
Normal file
157
opencv/main.py
Normal file
@@ -0,0 +1,157 @@
|
||||
import cv2
|
||||
import argparse
|
||||
import numpy as np
|
||||
|
||||
class yolov5():
|
||||
def __init__(self, modelpath, confThreshold=0.5, nmsThreshold=0.5, objThreshold=0.5):
|
||||
with open('class.names', 'rt') as f:
|
||||
self.classes = f.read().rstrip('\n').split('\n')
|
||||
self.num_classes = len(self.classes)
|
||||
if modelpath.endswith('6.onnx'):
|
||||
self.inpHeight, self.inpWidth = 1280, 1280
|
||||
anchors = [[19, 27, 44, 40, 38, 94], [96, 68, 86, 152, 180, 137], [140, 301, 303, 264, 238, 542],
|
||||
[436, 615, 739, 380, 925, 792]]
|
||||
self.stride = np.array([8., 16., 32., 64.])
|
||||
else:
|
||||
self.inpHeight, self.inpWidth = 640, 640
|
||||
anchors = [[10, 13, 16, 30, 33, 23], [30, 61, 62, 45, 59, 119], [116, 90, 156, 198, 373, 326]]
|
||||
self.stride = np.array([8., 16., 32.])
|
||||
self.nl = len(anchors)
|
||||
self.na = len(anchors[0]) // 2
|
||||
self.grid = [np.zeros(1)] * self.nl
|
||||
self.anchor_grid = np.asarray(anchors, dtype=np.float32).reshape(self.nl, -1, 2)
|
||||
self.net = cv2.dnn.readNet(modelpath)
|
||||
self.confThreshold = confThreshold
|
||||
self.nmsThreshold = nmsThreshold
|
||||
self.objThreshold = objThreshold
|
||||
self._inputNames = ''
|
||||
|
||||
def resize_image(self, srcimg, keep_ratio=True, dynamic=False):
|
||||
top, left, newh, neww = 0, 0, self.inpWidth, self.inpHeight
|
||||
if keep_ratio and srcimg.shape[0] != srcimg.shape[1]:
|
||||
hw_scale = srcimg.shape[0] / srcimg.shape[1]
|
||||
if hw_scale > 1:
|
||||
newh, neww = self.inpHeight, int(self.inpWidth / hw_scale)
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
if not dynamic:
|
||||
left = int((self.inpWidth - neww) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, 0, 0, left, self.inpWidth - neww - left, cv2.BORDER_CONSTANT,
|
||||
value=(114, 114, 114)) # add border
|
||||
else:
|
||||
newh, neww = int(self.inpHeight * hw_scale), self.inpWidth
|
||||
img = cv2.resize(srcimg, (neww, newh), interpolation=cv2.INTER_AREA)
|
||||
if not dynamic:
|
||||
top = int((self.inpHeight - newh) * 0.5)
|
||||
img = cv2.copyMakeBorder(img, top, self.inpHeight - newh - top, 0, 0, cv2.BORDER_CONSTANT,
|
||||
value=(114, 114, 114))
|
||||
else:
|
||||
img = cv2.resize(srcimg, (self.inpWidth, self.inpHeight), interpolation=cv2.INTER_AREA)
|
||||
return img, newh, neww, top, left
|
||||
|
||||
def _make_grid(self, nx=20, ny=20):
|
||||
xv, yv = np.meshgrid(np.arange(ny), np.arange(nx))
|
||||
return np.stack((xv, yv), 2).reshape((-1, 2)).astype(np.float32)
|
||||
|
||||
def preprocess(self, img):
|
||||
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
||||
img = img.astype(np.float32) / 255.0
|
||||
return img
|
||||
|
||||
def postprocess(self, frame, outs, padsize=None):
|
||||
frameHeight = frame.shape[0]
|
||||
frameWidth = frame.shape[1]
|
||||
newh, neww, padh, padw = padsize
|
||||
ratioh, ratiow = frameHeight / newh, frameWidth / neww
|
||||
# Scan through all the bounding boxes output from the network and keep only the
|
||||
# ones with high confidence scores. Assign the box's class label as the class with the highest score.
|
||||
|
||||
confidences = []
|
||||
boxes = []
|
||||
classIds = []
|
||||
for detection in outs:
|
||||
if detection[4] > self.objThreshold:
|
||||
scores = detection[5:]
|
||||
classId = np.argmax(scores)
|
||||
confidence = scores[classId] * detection[4]
|
||||
if confidence > self.confThreshold:
|
||||
center_x = int((detection[0] - padw) * ratiow)
|
||||
center_y = int((detection[1] - padh) * ratioh)
|
||||
width = int(detection[2] * ratiow)
|
||||
height = int(detection[3] * ratioh)
|
||||
left = int(center_x - width * 0.5)
|
||||
top = int(center_y - height * 0.5)
|
||||
|
||||
confidences.append(float(confidence))
|
||||
boxes.append([left, top, width, height])
|
||||
classIds.append(classId)
|
||||
# Perform non maximum suppression to eliminate redundant overlapping boxes with
|
||||
# lower confidences.
|
||||
indices = cv2.dnn.NMSBoxes(boxes, confidences, self.confThreshold, self.nmsThreshold).flatten()
|
||||
for i in indices:
|
||||
box = boxes[i]
|
||||
left = box[0]
|
||||
top = box[1]
|
||||
width = box[2]
|
||||
height = box[3]
|
||||
frame = self.drawPred(frame, classIds[i], confidences[i], left, top, left + width, top + height)
|
||||
return frame
|
||||
|
||||
def drawPred(self, frame, classId, conf, left, top, right, bottom):
|
||||
# Draw a bounding box.
|
||||
cv2.rectangle(frame, (left, top), (right, bottom), (0, 0, 255), thickness=4)
|
||||
|
||||
label = '%.2f' % conf
|
||||
label = '%s:%s' % (self.classes[classId], label)
|
||||
|
||||
# Display the label at the top of the bounding box
|
||||
labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1)
|
||||
top = max(top, labelSize[1])
|
||||
# cv.rectangle(frame, (left, top - round(1.5 * labelSize[1])), (left + round(1.5 * labelSize[0]), top + baseLine), (255,255,255), cv.FILLED)
|
||||
cv2.putText(frame, label, (left, top - 10), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), thickness=2)
|
||||
return frame
|
||||
|
||||
def detect(self, srcimg):
|
||||
img, newh, neww, padh, padw = self.resize_image(srcimg)
|
||||
blob = cv2.dnn.blobFromImage(img, scalefactor=1 / 255.0, swapRB=True)
|
||||
# blob = cv2.dnn.blobFromImage(self.preprocess(img))
|
||||
# Sets the input to the network
|
||||
self.net.setInput(blob, self._inputNames)
|
||||
|
||||
# Runs the forward pass to get output of the output layers
|
||||
outs = self.net.forward(self.net.getUnconnectedOutLayersNames())[0].squeeze(axis=0)
|
||||
|
||||
# inference output
|
||||
row_ind = 0
|
||||
for i in range(self.nl):
|
||||
h, w = int(self.inpHeight / self.stride[i]), int(self.inpWidth / self.stride[i])
|
||||
length = int(self.na * h * w)
|
||||
if self.grid[i].shape[2:4] != (h, w):
|
||||
self.grid[i] = self._make_grid(w, h)
|
||||
|
||||
outs[row_ind:row_ind + length, 0:2] = (outs[row_ind:row_ind + length, 0:2] * 2. - 0.5 + np.tile(
|
||||
self.grid[i], (self.na, 1))) * int(self.stride[i])
|
||||
outs[row_ind:row_ind + length, 2:4] = (outs[row_ind:row_ind + length, 2:4] * 2) ** 2 * np.repeat(
|
||||
self.anchor_grid[i], h * w, axis=0)
|
||||
row_ind += length
|
||||
srcimg = self.postprocess(srcimg, outs, padsize=(newh, neww, padh, padw))
|
||||
return srcimg
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument('--imgpath', type=str, default='images/bus.jpg', help="image path")
|
||||
parser.add_argument('--modelpath', type=str, default='weights/yolov5s.onnx')
|
||||
parser.add_argument('--confThreshold', default=0.3, type=float, help='class confidence')
|
||||
parser.add_argument('--nmsThreshold', default=0.5, type=float, help='nms iou thresh')
|
||||
parser.add_argument('--objThreshold', default=0.3, type=float, help='object confidence')
|
||||
args = parser.parse_args()
|
||||
|
||||
yolonet = yolov5(args.modelpath, confThreshold=args.confThreshold, nmsThreshold=args.nmsThreshold,
|
||||
objThreshold=args.objThreshold)
|
||||
srcimg = cv2.imread(args.imgpath)
|
||||
srcimg = yolonet.detect(srcimg)
|
||||
|
||||
winName = 'Deep learning object detection in OpenCV'
|
||||
cv2.namedWindow(winName, 0)
|
||||
cv2.imshow(winName, srcimg)
|
||||
cv2.waitKey(0)
|
||||
cv2.destroyAllWindows()
|
Reference in New Issue
Block a user