Files
runc/libcontainer/exeseal/cloned_binary_linux.go
Aleksa Sarai 559bd4ebdf libcontainer: rename dmz -> exeseal
The "dmz" name was originally used because the libcontainer/dmz package
housed the runc-dmz binary, but since we removed it in commit
871057d863 ("drop runc-dmz solution according to overlay solution")
the name is an anachronism and we should just give it a more
self-explanatory name.

So, call it libcontainer/exeseal because the purpose of the package is
to provide tools to seal /proc/self/exe against attackers.

Signed-off-by: Aleksa Sarai <cyphar@cyphar.com>
2025-02-25 13:46:05 +11:00

259 lines
8.5 KiB
Go

package exeseal
import (
"errors"
"fmt"
"io"
"os"
"strconv"
"github.com/sirupsen/logrus"
"golang.org/x/sys/unix"
"github.com/opencontainers/runc/libcontainer/system"
)
type SealFunc func(**os.File) error
var (
_ SealFunc = sealMemfd
_ SealFunc = sealFile
)
func isExecutable(f *os.File) bool {
if err := unix.Faccessat(int(f.Fd()), "", unix.X_OK, unix.AT_EACCESS|unix.AT_EMPTY_PATH); err == nil {
return true
} else if err == unix.EACCES {
return false
}
path := "/proc/self/fd/" + strconv.Itoa(int(f.Fd()))
if err := unix.Access(path, unix.X_OK); err == nil {
return true
} else if err == unix.EACCES {
return false
}
// Cannot check -- assume it's executable (if not, exec will fail).
logrus.Debugf("cannot do X_OK check on binary %s -- assuming it's executable", f.Name())
return true
}
const baseMemfdSeals = unix.F_SEAL_SEAL | unix.F_SEAL_SHRINK | unix.F_SEAL_GROW | unix.F_SEAL_WRITE
func sealMemfd(f **os.File) error {
if err := (*f).Chmod(0o511); err != nil {
return err
}
// Try to set the newer memfd sealing flags, but we ignore
// errors because they are not needed and we want to continue
// to work on older kernels.
fd := (*f).Fd()
// F_SEAL_FUTURE_WRITE -- Linux 5.1
_, _ = unix.FcntlInt(fd, unix.F_ADD_SEALS, unix.F_SEAL_FUTURE_WRITE)
// F_SEAL_EXEC -- Linux 6.3
const F_SEAL_EXEC = 0x20 //nolint:revive // this matches the unix.* name
_, _ = unix.FcntlInt(fd, unix.F_ADD_SEALS, F_SEAL_EXEC)
// Apply all original memfd seals.
_, err := unix.FcntlInt(fd, unix.F_ADD_SEALS, baseMemfdSeals)
return os.NewSyscallError("fcntl(F_ADD_SEALS)", err)
}
// Memfd creates a sealable executable memfd (supported since Linux 3.17).
func Memfd(comment string) (*os.File, SealFunc, error) {
file, err := system.ExecutableMemfd("runc_cloned:"+comment, unix.MFD_ALLOW_SEALING|unix.MFD_CLOEXEC)
return file, sealMemfd, err
}
func sealFile(f **os.File) error {
// When sealing an O_TMPFILE-style descriptor we need to
// re-open the path as O_PATH to clear the existing write
// handle we have.
opath, err := os.OpenFile(fmt.Sprintf("/proc/self/fd/%d", (*f).Fd()), unix.O_PATH|unix.O_CLOEXEC, 0)
if err != nil {
return fmt.Errorf("reopen tmpfile: %w", err)
}
_ = (*f).Close()
*f = opath
return nil
}
// otmpfile creates an open(O_TMPFILE) file in the given directory (supported
// since Linux 3.11).
func otmpfile(dir string) (*os.File, SealFunc, error) {
file, err := os.OpenFile(dir, unix.O_TMPFILE|unix.O_RDWR|unix.O_EXCL|unix.O_CLOEXEC, 0o700)
if err != nil {
return nil, nil, fmt.Errorf("O_TMPFILE creation failed: %w", err)
}
// Make sure we actually got an unlinked O_TMPFILE descriptor.
var stat unix.Stat_t
if err := unix.Fstat(int(file.Fd()), &stat); err != nil {
file.Close()
return nil, nil, fmt.Errorf("cannot fstat O_TMPFILE fd: %w", err)
} else if stat.Nlink != 0 {
file.Close()
return nil, nil, errors.New("O_TMPFILE has non-zero nlink")
}
return file, sealFile, err
}
// mktemp creates a classic unlinked file in the given directory.
func mktemp(dir string) (*os.File, SealFunc, error) {
file, err := os.CreateTemp(dir, "runc.")
if err != nil {
return nil, nil, err
}
// Unlink the file and verify it was unlinked.
if err := os.Remove(file.Name()); err != nil {
return nil, nil, fmt.Errorf("unlinking classic tmpfile: %w", err)
}
if err := file.Chmod(0o511); err != nil {
return nil, nil, fmt.Errorf("chmod classic tmpfile: %w", err)
}
var stat unix.Stat_t
if err := unix.Fstat(int(file.Fd()), &stat); err != nil {
return nil, nil, fmt.Errorf("cannot fstat classic tmpfile: %w", err)
} else if stat.Nlink != 0 {
return nil, nil, fmt.Errorf("classic tmpfile %s has non-zero nlink after unlink", file.Name())
}
return file, sealFile, err
}
func getSealableFile(comment, tmpDir string) (file *os.File, sealFn SealFunc, err error) {
// First, try an executable memfd (supported since Linux 3.17).
file, sealFn, err = Memfd(comment)
if err == nil {
return
}
logrus.Debugf("memfd cloned binary failed, falling back to O_TMPFILE: %v", err)
// The tmpDir here (c.root) might be mounted noexec, so we need a couple of
// fallbacks to try. It's possible that none of these are writable and
// executable, in which case there's nothing we can practically do (other
// than mounting our own executable tmpfs, which would have its own
// issues).
tmpDirs := []string{
tmpDir,
os.TempDir(),
"/tmp",
".",
"/bin",
"/",
}
// Try to fallback to O_TMPFILE (supported since Linux 3.11).
for _, dir := range tmpDirs {
file, sealFn, err = otmpfile(dir)
if err != nil {
continue
}
if !isExecutable(file) {
logrus.Debugf("tmpdir %s is noexec -- trying a different tmpdir", dir)
file.Close()
continue
}
return
}
logrus.Debugf("O_TMPFILE cloned binary failed, falling back to mktemp(): %v", err)
// Finally, try a classic unlinked temporary file.
for _, dir := range tmpDirs {
file, sealFn, err = mktemp(dir)
if err != nil {
continue
}
if !isExecutable(file) {
logrus.Debugf("tmpdir %s is noexec -- trying a different tmpdir", dir)
file.Close()
continue
}
return
}
return nil, nil, fmt.Errorf("could not create sealable file for cloned binary: %w", err)
}
// CloneBinary creates a "sealed" clone of a given binary, which can be used to
// thwart attempts by the container process to gain access to host binaries
// through procfs magic-link shenanigans. For more details on why this is
// necessary, see CVE-2019-5736.
func CloneBinary(src io.Reader, size int64, name, tmpDir string) (*os.File, error) {
logrus.Debugf("cloning %s binary (%d bytes)", name, size)
file, sealFn, err := getSealableFile(name, tmpDir)
if err != nil {
return nil, err
}
copied, err := system.Copy(file, src)
if err != nil {
file.Close()
return nil, fmt.Errorf("copy binary: %w", err)
} else if copied != size {
file.Close()
return nil, fmt.Errorf("copied binary size mismatch: %d != %d", copied, size)
}
if err := sealFn(&file); err != nil {
file.Close()
return nil, fmt.Errorf("could not seal fd: %w", err)
}
return file, nil
}
// IsCloned returns whether the given file can be guaranteed to be a safe exe.
func IsCloned(exe *os.File) bool {
seals, err := unix.FcntlInt(exe.Fd(), unix.F_GET_SEALS, 0)
if err != nil {
// /proc/self/exe is probably not a memfd
logrus.Debugf("F_GET_SEALS on %s failed: %v", exe.Name(), err)
return false
}
// The memfd must have all of the base seals applied.
logrus.Debugf("checking %s memfd seals: 0x%x", exe.Name(), seals)
return seals&baseMemfdSeals == baseMemfdSeals
}
// CloneSelfExe makes a clone of the current process's binary (through
// /proc/self/exe). This binary can then be used for "runc init" in order to
// make sure the container process can never resolve the original runc binary.
// For more details on why this is necessary, see CVE-2019-5736.
func CloneSelfExe(tmpDir string) (*os.File, error) {
// Try to create a temporary overlayfs to produce a readonly version of
// /proc/self/exe that cannot be "unwrapped" by the container. In contrast
// to CloneBinary, this technique does not require any extra memory usage
// and does not have the (fairly noticeable) performance impact of copying
// a large binary file into a memfd.
//
// Based on some basic performance testing, the overlayfs approach has
// effectively no performance overhead (it is on par with both
// MS_BIND+MS_RDONLY and no binary cloning at all) while memfd copying adds
// around ~60% overhead during container startup.
overlayFile, err := sealedOverlayfs("/proc/self/exe", tmpDir)
if err == nil {
logrus.Debug("runc exeseal: using overlayfs for sealed /proc/self/exe") // used for tests
return overlayFile, nil
}
logrus.WithError(err).Debugf("could not use overlayfs for /proc/self/exe sealing -- falling back to making a temporary copy")
selfExe, err := os.Open("/proc/self/exe")
if err != nil {
return nil, fmt.Errorf("opening current binary: %w", err)
}
defer selfExe.Close()
stat, err := selfExe.Stat()
if err != nil {
return nil, fmt.Errorf("checking /proc/self/exe size: %w", err)
}
size := stat.Size()
return CloneBinary(selfExe, size, "/proc/self/exe", tmpDir)
}
// IsSelfExeCloned returns whether /proc/self/exe is a cloned binary that can
// be guaranteed to be safe. This means that it must be a sealed memfd. Other
// types of clones cannot be completely verified as safe.
func IsSelfExeCloned() bool {
selfExe, err := os.Open("/proc/self/exe")
if err != nil {
logrus.Debugf("open /proc/self/exe failed: %v", err)
return false
}
defer selfExe.Close()
return IsCloned(selfExe)
}