Files
runc/libcontainer/rootfs_linux.go
Kir Kolyshkin 89e59902c4 Modernize code for Go 1.24
Brought to you by

	modernize -fix -test ./...

Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
2025-08-27 19:11:02 -07:00

1323 lines
44 KiB
Go

package libcontainer
import (
"encoding/json"
"errors"
"fmt"
"os"
"path"
"path/filepath"
"strconv"
"strings"
"syscall"
"time"
securejoin "github.com/cyphar/filepath-securejoin"
"github.com/moby/sys/mountinfo"
"github.com/moby/sys/userns"
"github.com/mrunalp/fileutils"
"github.com/opencontainers/runtime-spec/specs-go"
"github.com/opencontainers/selinux/go-selinux/label"
"github.com/sirupsen/logrus"
"golang.org/x/sys/unix"
"github.com/opencontainers/cgroups"
devices "github.com/opencontainers/cgroups/devices/config"
"github.com/opencontainers/cgroups/fs2"
"github.com/opencontainers/runc/internal/linux"
"github.com/opencontainers/runc/libcontainer/configs"
"github.com/opencontainers/runc/libcontainer/utils"
)
const defaultMountFlags = unix.MS_NOEXEC | unix.MS_NOSUID | unix.MS_NODEV
// mountConfig contains mount data not specific to a mount point.
type mountConfig struct {
root string
label string
cgroup2Path string
rootlessCgroups bool
cgroupns bool
}
// mountEntry contains mount data specific to a mount point.
type mountEntry struct {
*configs.Mount
srcFile *mountSource
}
// srcName is only meant for error messages, it returns a "friendly" name.
func (m mountEntry) srcName() string {
if m.srcFile != nil {
return m.srcFile.file.Name()
}
return m.Source
}
func (m mountEntry) srcStat() (os.FileInfo, *syscall.Stat_t, error) {
var (
st os.FileInfo
err error
)
if m.srcFile != nil {
st, err = m.srcFile.file.Stat()
} else {
st, err = os.Stat(m.Source)
}
if err != nil {
return nil, nil, err
}
return st, st.Sys().(*syscall.Stat_t), nil
}
func (m mountEntry) srcStatfs() (*unix.Statfs_t, error) {
var st unix.Statfs_t
if m.srcFile != nil {
if err := unix.Fstatfs(int(m.srcFile.file.Fd()), &st); err != nil {
return nil, os.NewSyscallError("fstatfs", err)
}
} else {
if err := unix.Statfs(m.Source, &st); err != nil {
return nil, &os.PathError{Op: "statfs", Path: m.Source, Err: err}
}
}
return &st, nil
}
// needsSetupDev returns true if /dev needs to be set up.
func needsSetupDev(config *configs.Config) bool {
for _, m := range config.Mounts {
if m.Device == "bind" && utils.CleanPath(m.Destination) == "/dev" {
return false
}
}
return true
}
// prepareRootfs sets up the devices, mount points, and filesystems for use
// inside a new mount namespace. It doesn't set anything as ro. You must call
// finalizeRootfs after this function to finish setting up the rootfs.
func prepareRootfs(pipe *syncSocket, iConfig *initConfig) (err error) {
config := iConfig.Config
if err := prepareRoot(config); err != nil {
return fmt.Errorf("error preparing rootfs: %w", err)
}
mountConfig := &mountConfig{
root: config.Rootfs,
label: config.MountLabel,
cgroup2Path: iConfig.Cgroup2Path,
rootlessCgroups: config.RootlessCgroups,
cgroupns: config.Namespaces.Contains(configs.NEWCGROUP),
}
for _, m := range config.Mounts {
entry := mountEntry{Mount: m}
// Figure out whether we need to request runc to give us an
// open_tree(2)-style mountfd. For idmapped mounts, this is always
// necessary. For bind-mounts, this is only necessary if we cannot
// resolve the parent mount (this is only hit if you are running in a
// userns -- but for rootless the host-side thread can't help).
wantSourceFile := m.IsIDMapped()
if m.IsBind() && !config.RootlessEUID {
if _, err := os.Stat(m.Source); err != nil {
wantSourceFile = true
}
}
if wantSourceFile {
// Request a source file from the host.
if err := writeSyncArg(pipe, procMountPlease, m); err != nil {
return fmt.Errorf("failed to request mountfd for %q: %w", m.Source, err)
}
sync, err := readSyncFull(pipe, procMountFd)
if err != nil {
return fmt.Errorf("mountfd request for %q failed: %w", m.Source, err)
}
if sync.File == nil {
return fmt.Errorf("mountfd request for %q: response missing attached fd", m.Source)
}
defer sync.File.Close()
// Sanity-check to make sure we didn't get the wrong fd back. Note
// that while m.Source might contain symlinks, the (*os.File).Name
// is based on the path provided to os.OpenFile, not what it
// resolves to. So this should never happen.
if sync.File.Name() != m.Source {
return fmt.Errorf("returned mountfd for %q doesn't match requested mount configuration: mountfd path is %q", m.Source, sync.File.Name())
}
// Unmarshal the procMountFd argument (the file is sync.File).
var src *mountSource
if sync.Arg == nil {
return fmt.Errorf("sync %q is missing an argument", sync.Type)
}
if err := json.Unmarshal(*sync.Arg, &src); err != nil {
return fmt.Errorf("invalid mount fd response argument %q: %w", string(*sync.Arg), err)
}
if src == nil {
return fmt.Errorf("mountfd request for %q: no mount source info received", m.Source)
}
src.file = sync.File
entry.srcFile = src
}
if err := mountToRootfs(mountConfig, entry); err != nil {
return fmt.Errorf("error mounting %q to rootfs at %q: %w", m.Source, m.Destination, err)
}
}
setupDev := needsSetupDev(config)
if setupDev {
if err := createDevices(config); err != nil {
return fmt.Errorf("error creating device nodes: %w", err)
}
if err := setupPtmx(config); err != nil {
return fmt.Errorf("error setting up ptmx: %w", err)
}
if err := setupDevSymlinks(config.Rootfs); err != nil {
return fmt.Errorf("error setting up /dev symlinks: %w", err)
}
}
// Signal the parent to run the pre-start hooks.
// The hooks are run after the mounts are setup, but before we switch to the new
// root, so that the old root is still available in the hooks for any mount
// manipulations.
// Note that iConfig.Cwd is not guaranteed to exist here.
if err := syncParentHooks(pipe); err != nil {
return err
}
// The reason these operations are done here rather than in finalizeRootfs
// is because the console-handling code gets quite sticky if we have to set
// up the console before doing the pivot_root(2). This is because the
// Console API has to also work with the ExecIn case, which means that the
// API must be able to deal with being inside as well as outside the
// container. It's just cleaner to do this here (at the expense of the
// operation not being perfectly split).
if err := unix.Chdir(config.Rootfs); err != nil {
return &os.PathError{Op: "chdir", Path: config.Rootfs, Err: err}
}
if s := iConfig.SpecState; s != nil {
s.Pid = unix.Getpid()
s.Status = specs.StateCreating
if err := iConfig.Config.Hooks.Run(configs.CreateContainer, s); err != nil {
return err
}
}
if config.NoPivotRoot {
err = msMoveRoot(config.Rootfs)
} else if config.Namespaces.Contains(configs.NEWNS) {
err = pivotRoot(config.Rootfs)
} else {
err = chroot()
}
if err != nil {
return fmt.Errorf("error jailing process inside rootfs: %w", err)
}
// Apply root mount propagation flags.
// This must be done after pivot_root/chroot because the mount propagation flag is applied
// to the current root ("/"), and not to the old rootfs before it becomes "/". Applying the
// flag in prepareRoot would affect the host mount namespace if the container's
// root mount is shared.
// MS_PRIVATE is skipped as rootfsParentMountPrivate() is already called.
if config.RootPropagation != 0 && config.RootPropagation&unix.MS_PRIVATE == 0 {
if err := mount("", "/", "", uintptr(config.RootPropagation), ""); err != nil {
return fmt.Errorf("unable to apply root propagation flags: %w", err)
}
}
if setupDev {
if err := reOpenDevNull(); err != nil {
return fmt.Errorf("error reopening /dev/null inside container: %w", err)
}
}
if cwd := iConfig.Cwd; cwd != "" {
// Note that spec.Process.Cwd can contain unclean value like "../../../../foo/bar...".
// However, we are safe to call MkDirAll directly because we are in the jail here.
if err := os.MkdirAll(cwd, 0o755); err != nil {
return err
}
}
return nil
}
// finalizeRootfs sets anything to ro if necessary. You must call
// prepareRootfs first.
func finalizeRootfs(config *configs.Config) (err error) {
// All tmpfs mounts and /dev were previously mounted as rw
// by mountPropagate. Remount them read-only as requested.
for _, m := range config.Mounts {
if m.Flags&unix.MS_RDONLY != unix.MS_RDONLY {
continue
}
if m.Device == "tmpfs" || utils.CleanPath(m.Destination) == "/dev" {
if err := remountReadonly(m); err != nil {
return err
}
}
}
// set rootfs ( / ) as readonly
if config.Readonlyfs {
if err := setReadonly(); err != nil {
return fmt.Errorf("error setting rootfs as readonly: %w", err)
}
}
if config.Umask != nil {
unix.Umask(int(*config.Umask))
} else {
unix.Umask(0o022)
}
return nil
}
// /tmp has to be mounted as private to allow MS_MOVE to work in all situations
func prepareTmp(topTmpDir string) (string, error) {
tmpdir, err := os.MkdirTemp(topTmpDir, "runctop")
if err != nil {
return "", err
}
if err := mount(tmpdir, tmpdir, "bind", unix.MS_BIND, ""); err != nil {
return "", err
}
if err := mount("", tmpdir, "", uintptr(unix.MS_PRIVATE), ""); err != nil {
return "", err
}
return tmpdir, nil
}
func cleanupTmp(tmpdir string) {
_ = unix.Unmount(tmpdir, 0)
_ = os.RemoveAll(tmpdir)
}
func mountCgroupV1(m *configs.Mount, c *mountConfig) error {
binds, err := getCgroupMounts(m)
if err != nil {
return err
}
var merged []string
for _, b := range binds {
ss := filepath.Base(b.Destination)
if strings.Contains(ss, ",") {
merged = append(merged, ss)
}
}
tmpfs := &configs.Mount{
Source: "tmpfs",
Device: "tmpfs",
Destination: m.Destination,
Flags: defaultMountFlags,
Data: "mode=755",
PropagationFlags: m.PropagationFlags,
}
if err := mountToRootfs(c, mountEntry{Mount: tmpfs}); err != nil {
return err
}
for _, b := range binds {
if c.cgroupns {
// We just created the tmpfs, and so we can just use filepath.Join
// here (not to mention we want to make sure we create the path
// inside the tmpfs, so we don't want to resolve symlinks).
subsystemPath := filepath.Join(c.root, b.Destination)
subsystemName := filepath.Base(b.Destination)
if err := utils.MkdirAllInRoot(c.root, subsystemPath, 0o755); err != nil {
return err
}
if err := utils.WithProcfd(c.root, b.Destination, func(dstFd string) error {
flags := defaultMountFlags
if m.Flags&unix.MS_RDONLY != 0 {
flags = flags | unix.MS_RDONLY
}
var (
source = "cgroup"
data = subsystemName
)
if data == "systemd" {
data = cgroups.CgroupNamePrefix + data
source = "systemd"
}
return mountViaFds(source, nil, b.Destination, dstFd, "cgroup", uintptr(flags), data)
}); err != nil {
return err
}
} else {
if err := mountToRootfs(c, mountEntry{Mount: b}); err != nil {
return err
}
}
}
for _, mc := range merged {
for ss := range strings.SplitSeq(mc, ",") {
// symlink(2) is very dumb, it will just shove the path into
// the link and doesn't do any checks or relative path
// conversion. Also, don't error out if the cgroup already exists.
if err := os.Symlink(mc, filepath.Join(c.root, m.Destination, ss)); err != nil && !os.IsExist(err) {
return err
}
}
}
return nil
}
func mountCgroupV2(m *configs.Mount, c *mountConfig) error {
err := utils.WithProcfd(c.root, m.Destination, func(dstFd string) error {
return mountViaFds(m.Source, nil, m.Destination, dstFd, "cgroup2", uintptr(m.Flags), m.Data)
})
if err == nil || (!errors.Is(err, unix.EPERM) && !errors.Is(err, unix.EBUSY)) {
return err
}
// When we are in UserNS but CgroupNS is not unshared, we cannot mount
// cgroup2 (#2158), so fall back to bind mount.
bindM := &configs.Mount{
Device: "bind",
Source: fs2.UnifiedMountpoint,
Destination: m.Destination,
Flags: unix.MS_BIND | m.Flags,
PropagationFlags: m.PropagationFlags,
}
if c.cgroupns && c.cgroup2Path != "" {
// Emulate cgroupns by bind-mounting the container cgroup path
// rather than the whole /sys/fs/cgroup.
bindM.Source = c.cgroup2Path
}
// mountToRootfs() handles remounting for MS_RDONLY.
err = mountToRootfs(c, mountEntry{Mount: bindM})
if c.rootlessCgroups && errors.Is(err, unix.ENOENT) {
// ENOENT (for `src = c.cgroup2Path`) happens when rootless runc is being executed
// outside the userns+mountns.
//
// Mask `/sys/fs/cgroup` to ensure it is read-only, even when `/sys` is mounted
// with `rbind,ro` (`runc spec --rootless` produces `rbind,ro` for `/sys`).
err = utils.WithProcfd(c.root, m.Destination, func(procfd string) error {
return maskPath(procfd, c.label)
})
}
return err
}
func doTmpfsCopyUp(m mountEntry, rootfs, mountLabel string) (Err error) {
// Set up a scratch dir for the tmpfs on the host.
tmpdir, err := prepareTmp("/tmp")
if err != nil {
return fmt.Errorf("tmpcopyup: failed to setup tmpdir: %w", err)
}
defer cleanupTmp(tmpdir)
tmpDir, err := os.MkdirTemp(tmpdir, "runctmpdir")
if err != nil {
return fmt.Errorf("tmpcopyup: failed to create tmpdir: %w", err)
}
defer os.RemoveAll(tmpDir)
// Configure the *host* tmpdir as if it's the container mount. We change
// m.Destination since we are going to mount *on the host*.
oldDest := m.Destination
m.Destination = tmpDir
err = mountPropagate(m, "/", mountLabel)
m.Destination = oldDest
if err != nil {
return err
}
defer func() {
if Err != nil {
if err := unmount(tmpDir, unix.MNT_DETACH); err != nil {
logrus.Warnf("tmpcopyup: %v", err)
}
}
}()
return utils.WithProcfd(rootfs, m.Destination, func(dstFd string) (Err error) {
// Copy the container data to the host tmpdir. We append "/" to force
// CopyDirectory to resolve the symlink rather than trying to copy the
// symlink itself.
if err := fileutils.CopyDirectory(dstFd+"/", tmpDir); err != nil {
return fmt.Errorf("tmpcopyup: failed to copy %s to %s (%s): %w", m.Destination, dstFd, tmpDir, err)
}
// Now move the mount into the container.
if err := mountViaFds(tmpDir, nil, m.Destination, dstFd, "", unix.MS_MOVE, ""); err != nil {
return fmt.Errorf("tmpcopyup: failed to move mount: %w", err)
}
return nil
})
}
const (
// The atime "enum" flags (which are mutually exclusive).
mntAtimeEnumFlags = unix.MS_NOATIME | unix.MS_RELATIME | unix.MS_STRICTATIME
// All atime-related flags.
mntAtimeFlags = mntAtimeEnumFlags | unix.MS_NODIRATIME
// Flags which can be locked when inheriting mounts in a different userns.
// In the kernel, these are the mounts that are locked using MNT_LOCK_*.
mntLockFlags = unix.MS_RDONLY | unix.MS_NODEV | unix.MS_NOEXEC |
unix.MS_NOSUID | mntAtimeFlags
)
func statfsToMountFlags(st unix.Statfs_t) int {
// From <linux/statfs.h>.
const ST_NOSYMFOLLOW = 0x2000 //nolint:revive
var flags int
for _, f := range []struct {
st, ms int
}{
// See calculate_f_flags() in fs/statfs.c.
{unix.ST_RDONLY, unix.MS_RDONLY},
{unix.ST_NOSUID, unix.MS_NOSUID},
{unix.ST_NODEV, unix.MS_NODEV},
{unix.ST_NOEXEC, unix.MS_NOEXEC},
{unix.ST_MANDLOCK, unix.MS_MANDLOCK},
{unix.ST_SYNCHRONOUS, unix.MS_SYNCHRONOUS},
{unix.ST_NOATIME, unix.MS_NOATIME},
{unix.ST_NODIRATIME, unix.MS_NODIRATIME},
{unix.ST_RELATIME, unix.MS_RELATIME},
{ST_NOSYMFOLLOW, unix.MS_NOSYMFOLLOW},
// There is no ST_STRICTATIME -- see below.
} {
if int(st.Flags)&f.st == f.st {
flags |= f.ms
}
}
// MS_STRICTATIME is a "fake" MS_* flag. It isn't stored in mnt->mnt_flags,
// and so it doesn't show up in statfs(2). If none of the other flags in
// atime enum are present, the mount is MS_STRICTATIME.
if flags&mntAtimeEnumFlags == 0 {
flags |= unix.MS_STRICTATIME
}
return flags
}
var errRootfsToFile = errors.New("config tries to change rootfs to file")
func createMountpoint(rootfs string, m mountEntry) (string, error) {
dest, err := securejoin.SecureJoin(rootfs, m.Destination)
if err != nil {
return "", err
}
if err := checkProcMount(rootfs, dest, m); err != nil {
return "", fmt.Errorf("check proc-safety of %s mount: %w", m.Destination, err)
}
switch m.Device {
case "bind":
fi, _, err := m.srcStat()
if err != nil {
// Error out if the source of a bind mount does not exist as we
// will be unable to bind anything to it.
return "", err
}
// If the original source is not a directory, make the target a file.
if !fi.IsDir() {
// Make sure we aren't tricked into trying to make the root a file.
if rootfs == dest {
return "", fmt.Errorf("%w: file bind mount over rootfs", errRootfsToFile)
}
// Make the parent directory.
destDir, destBase := filepath.Split(dest)
destDirFd, err := utils.MkdirAllInRootOpen(rootfs, destDir, 0o755)
if err != nil {
return "", fmt.Errorf("make parent dir of file bind-mount: %w", err)
}
defer destDirFd.Close()
// Make the target file. We want to avoid opening any file that is
// already there because it could be a "bad" file like an invalid
// device or hung tty that might cause a DoS, so we use mknodat.
// destBase does not contain any "/" components, and mknodat does
// not follow trailing symlinks, so we can safely just call mknodat
// here.
if err := unix.Mknodat(int(destDirFd.Fd()), destBase, unix.S_IFREG|0o644, 0); err != nil {
// If we get EEXIST, there was already an inode there and
// we can consider that a success.
if !errors.Is(err, unix.EEXIST) {
err = &os.PathError{Op: "mknod regular file", Path: dest, Err: err}
return "", fmt.Errorf("create target of file bind-mount: %w", err)
}
}
// Nothing left to do.
return dest, nil
}
case "tmpfs":
// If the original target exists, copy the mode for the tmpfs mount.
if stat, err := os.Stat(dest); err == nil {
dt := fmt.Sprintf("mode=%04o", syscallMode(stat.Mode()))
if m.Data != "" {
dt = dt + "," + m.Data
}
m.Data = dt
// Nothing left to do.
return dest, nil
}
}
if err := utils.MkdirAllInRoot(rootfs, dest, 0o755); err != nil {
return "", err
}
return dest, nil
}
func mountToRootfs(c *mountConfig, m mountEntry) error {
rootfs := c.root
// procfs and sysfs are special because we need to ensure they are actually
// mounted on a specific path in a container without any funny business.
switch m.Device {
case "proc", "sysfs":
// If the destination already exists and is not a directory, we bail
// out. This is to avoid mounting through a symlink or similar -- which
// has been a "fun" attack scenario in the past.
// TODO: This won't be necessary once we switch to libpathrs and we can
// stop all of these symlink-exchange attacks.
dest := filepath.Clean(m.Destination)
if !utils.IsLexicallyInRoot(rootfs, dest) {
// Do not use securejoin as it resolves symlinks.
dest = filepath.Join(rootfs, dest)
}
if err := checkProcMount(rootfs, dest, m); err != nil {
return err
}
if fi, err := os.Lstat(dest); err != nil {
if !os.IsNotExist(err) {
return err
}
} else if !fi.IsDir() {
return fmt.Errorf("filesystem %q must be mounted on ordinary directory", m.Device)
}
if err := utils.MkdirAllInRoot(rootfs, dest, 0o755); err != nil {
return err
}
// Selinux kernels do not support labeling of /proc or /sys.
return mountPropagate(m, rootfs, "")
}
dest, err := createMountpoint(rootfs, m)
if err != nil {
return fmt.Errorf("create mountpoint for %s mount: %w", m.Destination, err)
}
mountLabel := c.label
switch m.Device {
case "mqueue":
if err := mountPropagate(m, rootfs, ""); err != nil {
return err
}
return label.SetFileLabel(dest, mountLabel)
case "tmpfs":
if m.Extensions&configs.EXT_COPYUP == configs.EXT_COPYUP {
err = doTmpfsCopyUp(m, rootfs, mountLabel)
} else {
err = mountPropagate(m, rootfs, mountLabel)
}
return err
case "bind":
// open_tree()-related shenanigans are all handled in mountViaFds.
if err := mountPropagate(m, rootfs, mountLabel); err != nil {
return err
}
// The initial MS_BIND won't change the mount options, we need to do a
// separate MS_BIND|MS_REMOUNT to apply the mount options. We skip
// doing this if the user has not specified any mount flags at all
// (including cleared flags) -- in which case we just keep the original
// mount flags.
//
// Note that the fact we check whether any clearing flags are set is in
// contrast to mount(8)'s current behaviour, but is what users probably
// expect. See <https://github.com/util-linux/util-linux/issues/2433>.
if m.Flags & ^(unix.MS_BIND|unix.MS_REC|unix.MS_REMOUNT) != 0 || m.ClearedFlags != 0 {
if err := utils.WithProcfd(rootfs, m.Destination, func(dstFd string) error {
flags := m.Flags | unix.MS_BIND | unix.MS_REMOUNT
// The runtime-spec says we SHOULD map to the relevant mount(8)
// behaviour. However, it's not clear whether we want the
// "mount --bind -o ..." or "mount --bind -o remount,..."
// behaviour here -- both of which are somewhat broken[1].
//
// So, if the user has passed "remount" as a mount option, we
// implement the "mount --bind -o remount" behaviour, otherwise
// we implement the spiritual intent of the "mount --bind -o"
// behaviour, which should match what users expect. Maybe
// mount(8) will eventually implement this behaviour too..
//
// [1]: https://github.com/util-linux/util-linux/issues/2433
// Initially, we emulate "mount --bind -o ..." where we set
// only the requested flags (clearing any existing flags). The
// only difference from mount(8) is that we do this
// unconditionally, regardless of whether any set-me mount
// options have been requested.
//
// TODO: We are not doing any special handling of the atime
// flags here, which means that the mount will inherit the old
// atime flags if the user didn't explicitly request a
// different set of flags. This also has the mount(8) bug where
// "nodiratime,norelatime" will result in a
// "nodiratime,relatime" mount.
mountErr := mountViaFds("", nil, m.Destination, dstFd, "", uintptr(flags), "")
if mountErr == nil {
return nil
}
// If the mount failed, the mount may contain locked mount
// flags. In that case, we emulate "mount --bind -o
// remount,...", where we take the existing mount flags of the
// mount and apply the request flags (including clearing flags)
// on top. The main divergence we have from mount(8) here is
// that we handle atimes correctly to make sure we error out if
// we cannot fulfil the requested mount flags.
st, err := m.srcStatfs()
if err != nil {
return err
}
srcFlags := statfsToMountFlags(*st)
logrus.Debugf(
"working around failure to set vfs flags on bind-mount %s: srcFlags=%s flagsSet=%s flagsClr=%s: %v",
m.Destination, stringifyMountFlags(srcFlags),
stringifyMountFlags(m.Flags), stringifyMountFlags(m.ClearedFlags), mountErr)
// If the user explicitly request one of the locked flags *not*
// be set, we need to return an error to avoid producing mounts
// that don't match the user's request.
if cannotClearFlags := srcFlags & m.ClearedFlags & mntLockFlags; cannotClearFlags != 0 {
return fmt.Errorf("cannot clear locked flags %s: %w", stringifyMountFlags(cannotClearFlags), mountErr)
}
// If an MS_*ATIME flag was requested, it must match the
// existing one. This handles two separate kernel bugs, and
// matches the logic of can_change_locked_flags() but without
// these bugs:
//
// * (2.6.30+) Since commit 613cbe3d4870 ("Don't set relatime
// when noatime is specified"), MS_RELATIME is ignored when
// MS_NOATIME is set. This means that us inheriting MS_NOATIME
// from a mount while requesting MS_RELATIME would *silently*
// produce an MS_NOATIME mount.
//
// * (2.6.30+) Since its introduction in commit d0adde574b84
// ("Add a strictatime mount option"), MS_STRICTATIME has
// caused any passed MS_RELATIME and MS_NOATIME flags to be
// ignored which results in us *silently* producing
// MS_STRICTATIME mounts even if the user requested MS_RELATIME
// or MS_NOATIME.
if m.Flags&mntAtimeFlags != 0 && m.Flags&mntAtimeFlags != srcFlags&mntAtimeFlags {
return fmt.Errorf("cannot change locked atime flags %s: %w", stringifyMountFlags(srcFlags&mntAtimeFlags), mountErr)
}
// Retry the mount with the existing lockable mount flags
// applied.
flags |= srcFlags & mntLockFlags
mountErr = mountViaFds("", nil, m.Destination, dstFd, "", uintptr(flags), "")
if mountErr != nil {
mountErr = fmt.Errorf("remount with locked flags %s re-applied: %w", stringifyMountFlags(srcFlags&mntLockFlags), mountErr)
}
return mountErr
}); err != nil {
return fmt.Errorf("failed to set user-requested vfs flags on bind-mount: %w", err)
}
}
if m.Relabel != "" {
if err := label.Validate(m.Relabel); err != nil {
return err
}
shared := label.IsShared(m.Relabel)
if err := label.Relabel(m.Source, mountLabel, shared); err != nil {
return err
}
}
return setRecAttr(m.Mount, rootfs)
case "cgroup":
if cgroups.IsCgroup2UnifiedMode() {
return mountCgroupV2(m.Mount, c)
}
return mountCgroupV1(m.Mount, c)
default:
return mountPropagate(m, rootfs, mountLabel)
}
}
func getCgroupMounts(m *configs.Mount) ([]*configs.Mount, error) {
mounts, err := cgroups.GetCgroupMounts(false)
if err != nil {
return nil, err
}
// We don't need to use /proc/thread-self here because runc always runs
// with every thread in the same cgroup. This lets us avoid having to do
// runtime.LockOSThread.
cgroupPaths, err := cgroups.ParseCgroupFile("/proc/self/cgroup")
if err != nil {
return nil, err
}
var binds []*configs.Mount
for _, mm := range mounts {
dir, err := mm.GetOwnCgroup(cgroupPaths)
if err != nil {
return nil, err
}
relDir, err := filepath.Rel(mm.Root, dir)
if err != nil {
return nil, err
}
binds = append(binds, &configs.Mount{
Device: "bind",
Source: filepath.Join(mm.Mountpoint, relDir),
Destination: filepath.Join(m.Destination, filepath.Base(mm.Mountpoint)),
Flags: unix.MS_BIND | unix.MS_REC | m.Flags,
PropagationFlags: m.PropagationFlags,
})
}
return binds, nil
}
// Taken from <include/linux/proc_ns.h>. If a file is on a filesystem of type
// PROC_SUPER_MAGIC, we're guaranteed that only the root of the superblock will
// have this inode number.
const procRootIno = 1
// checkProcMount checks to ensure that the mount destination is not over the top of /proc.
// dest is required to be an abs path and have any symlinks resolved before calling this function.
//
// If m is nil, don't stat the filesystem. This is used for restore of a checkpoint.
func checkProcMount(rootfs, dest string, m mountEntry) error {
const procPath = "/proc"
path, err := filepath.Rel(filepath.Join(rootfs, procPath), dest)
if err != nil {
return err
}
// pass if the mount path is located outside of /proc
if strings.HasPrefix(path, "..") {
return nil
}
if path == "." {
// Only allow bind-mounts on top of /proc, and only if the source is a
// procfs mount.
if m.IsBind() {
fsSt, err := m.srcStatfs()
if err != nil {
return err
}
if fsSt.Type == unix.PROC_SUPER_MAGIC {
if _, uSt, err := m.srcStat(); err != nil {
return err
} else if uSt.Ino != procRootIno {
// We cannot error out in this case, because we've
// supported these kinds of mounts for a long time.
// However, we would expect users to bind-mount the root of
// a real procfs on top of /proc in the container. We might
// want to block this in the future.
logrus.Warnf("bind-mount %v (source %v) is of type procfs but is not the root of a procfs (inode %d). Future versions of runc might block this configuration -- please report an issue to <https://github.com/opencontainers/runc> if you see this warning.", dest, m.srcName(), uSt.Ino)
}
return nil
}
} else if m.Device == "proc" {
// Fresh procfs-type mounts are always safe to mount on top of /proc.
return nil
}
return fmt.Errorf("%q cannot be mounted because it is not of type proc", dest)
}
// Here dest is definitely under /proc. Do not allow those,
// except for a few specific entries emulated by lxcfs.
validProcMounts := []string{
"/proc/cpuinfo",
"/proc/diskstats",
"/proc/meminfo",
"/proc/stat",
"/proc/swaps",
"/proc/uptime",
"/proc/loadavg",
"/proc/slabinfo",
"/proc/sys/kernel/ns_last_pid",
"/proc/sys/crypto/fips_enabled",
}
for _, valid := range validProcMounts {
path, err := filepath.Rel(filepath.Join(rootfs, valid), dest)
if err != nil {
return err
}
if path == "." {
return nil
}
}
return fmt.Errorf("%q cannot be mounted because it is inside /proc", dest)
}
func setupDevSymlinks(rootfs string) error {
// In theory, these should be links to /proc/thread-self, but systems
// expect these to be /proc/self and this matches how most distributions
// work.
links := [][2]string{
{"/proc/self/fd", "/dev/fd"},
{"/proc/self/fd/0", "/dev/stdin"},
{"/proc/self/fd/1", "/dev/stdout"},
{"/proc/self/fd/2", "/dev/stderr"},
}
// kcore support can be toggled with CONFIG_PROC_KCORE; only create a symlink
// in /dev if it exists in /proc.
if _, err := os.Stat("/proc/kcore"); err == nil {
links = append(links, [2]string{"/proc/kcore", "/dev/core"})
}
for _, link := range links {
var (
src = link[0]
dst = filepath.Join(rootfs, link[1])
)
if err := os.Symlink(src, dst); err != nil && !os.IsExist(err) {
return err
}
}
return nil
}
// If stdin, stdout, and/or stderr are pointing to `/dev/null` in the parent's rootfs
// this method will make them point to `/dev/null` in this container's rootfs. This
// needs to be called after we chroot/pivot into the container's rootfs so that any
// symlinks are resolved locally.
func reOpenDevNull() error {
var stat, devNullStat unix.Stat_t
file, err := os.OpenFile("/dev/null", os.O_RDWR, 0)
if err != nil {
return err
}
defer file.Close()
if err := unix.Fstat(int(file.Fd()), &devNullStat); err != nil {
return &os.PathError{Op: "fstat", Path: file.Name(), Err: err}
}
for fd := range 3 {
if err := unix.Fstat(fd, &stat); err != nil {
return &os.PathError{Op: "fstat", Path: "fd " + strconv.Itoa(fd), Err: err}
}
if stat.Rdev == devNullStat.Rdev {
// Close and re-open the fd.
if err := linux.Dup3(int(file.Fd()), fd, 0); err != nil {
return err
}
}
}
return nil
}
// Create the device nodes in the container.
func createDevices(config *configs.Config) error {
useBindMount := userns.RunningInUserNS() || config.Namespaces.Contains(configs.NEWUSER)
for _, node := range config.Devices {
// The /dev/ptmx device is setup by setupPtmx()
if utils.CleanPath(node.Path) == "/dev/ptmx" {
continue
}
// containers running in a user namespace are not allowed to mknod
// devices so we can just bind mount it from the host.
if err := createDeviceNode(config.Rootfs, node, useBindMount); err != nil {
return err
}
}
return nil
}
func bindMountDeviceNode(rootfs, dest string, node *devices.Device) error {
f, err := os.Create(dest)
if err != nil && !os.IsExist(err) {
return err
}
if f != nil {
_ = f.Close()
}
return utils.WithProcfd(rootfs, dest, func(dstFd string) error {
return mountViaFds(node.Path, nil, dest, dstFd, "bind", unix.MS_BIND, "")
})
}
// Creates the device node in the rootfs of the container.
func createDeviceNode(rootfs string, node *devices.Device, bind bool) error {
if node.Path == "" {
// The node only exists for cgroup reasons, ignore it here.
return nil
}
dest, err := securejoin.SecureJoin(rootfs, node.Path)
if err != nil {
return err
}
if dest == rootfs {
return fmt.Errorf("%w: mknod over rootfs", errRootfsToFile)
}
if err := utils.MkdirAllInRoot(rootfs, filepath.Dir(dest), 0o755); err != nil {
return err
}
if bind {
return bindMountDeviceNode(rootfs, dest, node)
}
if err := mknodDevice(dest, node); err != nil {
if errors.Is(err, os.ErrExist) {
return nil
} else if errors.Is(err, os.ErrPermission) {
return bindMountDeviceNode(rootfs, dest, node)
}
return err
}
return nil
}
func mknodDevice(dest string, node *devices.Device) error {
fileMode := node.FileMode
switch node.Type {
case devices.BlockDevice:
fileMode |= unix.S_IFBLK
case devices.CharDevice:
fileMode |= unix.S_IFCHR
case devices.FifoDevice:
fileMode |= unix.S_IFIFO
default:
return fmt.Errorf("%c is not a valid device type for device %s", node.Type, node.Path)
}
dev, err := node.Mkdev()
if err != nil {
return err
}
if err := unix.Mknod(dest, uint32(fileMode), int(dev)); err != nil {
return &os.PathError{Op: "mknod", Path: dest, Err: err}
}
// Ensure permission bits (can be different because of umask).
if err := os.Chmod(dest, fileMode); err != nil {
return err
}
return os.Chown(dest, int(node.Uid), int(node.Gid))
}
// rootfsParentMountPrivate ensures rootfs parent mount is private.
// This is needed for two reasons:
// - pivot_root() will fail if parent mount is shared;
// - when we bind mount rootfs, if its parent is not private, the new mount
// will propagate (leak!) to parent namespace and we don't want that.
func rootfsParentMountPrivate(path string) error {
var err error
// Assuming path is absolute and clean (this is checked in
// libcontainer/validate). Any error other than EINVAL means we failed,
// and EINVAL means this is not a mount point, so traverse up until we
// find one.
for {
err = unix.Mount("", path, "", unix.MS_PRIVATE, "")
if err == nil {
return nil
}
if err != unix.EINVAL || path == "/" {
break
}
path = filepath.Dir(path)
}
return &mountError{
op: "remount-private",
target: path,
flags: unix.MS_PRIVATE,
err: err,
}
}
func prepareRoot(config *configs.Config) error {
flag := unix.MS_SLAVE | unix.MS_REC
if config.RootPropagation != 0 {
flag = config.RootPropagation
}
if err := mount("", "/", "", uintptr(flag), ""); err != nil {
return err
}
if err := rootfsParentMountPrivate(config.Rootfs); err != nil {
return err
}
return mount(config.Rootfs, config.Rootfs, "bind", unix.MS_BIND|unix.MS_REC, "")
}
func setReadonly() error {
flags := uintptr(unix.MS_BIND | unix.MS_REMOUNT | unix.MS_RDONLY)
err := mount("", "/", "", flags, "")
if err == nil {
return nil
}
var s unix.Statfs_t
if err := unix.Statfs("/", &s); err != nil {
return &os.PathError{Op: "statfs", Path: "/", Err: err}
}
flags |= uintptr(s.Flags)
return mount("", "/", "", flags, "")
}
func setupPtmx(config *configs.Config) error {
ptmx := filepath.Join(config.Rootfs, "dev/ptmx")
if err := os.Remove(ptmx); err != nil && !os.IsNotExist(err) {
return err
}
if err := os.Symlink("pts/ptmx", ptmx); err != nil {
return err
}
return nil
}
// pivotRoot will call pivot_root such that rootfs becomes the new root
// filesystem, and everything else is cleaned up.
func pivotRoot(rootfs string) error {
// While the documentation may claim otherwise, pivot_root(".", ".") is
// actually valid. What this results in is / being the new root but
// /proc/self/cwd being the old root. Since we can play around with the cwd
// with pivot_root this allows us to pivot without creating directories in
// the rootfs. Shout-outs to the LXC developers for giving us this idea.
oldroot, err := linux.Open("/", unix.O_DIRECTORY|unix.O_RDONLY, 0)
if err != nil {
return err
}
defer unix.Close(oldroot)
newroot, err := linux.Open(rootfs, unix.O_DIRECTORY|unix.O_RDONLY, 0)
if err != nil {
return err
}
defer unix.Close(newroot)
// Change to the new root so that the pivot_root actually acts on it.
if err := unix.Fchdir(newroot); err != nil {
return &os.PathError{Op: "fchdir", Path: "fd " + strconv.Itoa(newroot), Err: err}
}
if err := unix.PivotRoot(".", "."); err != nil {
return &os.PathError{Op: "pivot_root", Path: ".", Err: err}
}
// Currently our "." is oldroot (according to the current kernel code).
// However, purely for safety, we will fchdir(oldroot) since there isn't
// really any guarantee from the kernel what /proc/self/cwd will be after a
// pivot_root(2).
if err := unix.Fchdir(oldroot); err != nil {
return &os.PathError{Op: "fchdir", Path: "fd " + strconv.Itoa(oldroot), Err: err}
}
// Make oldroot rslave to make sure our unmounts don't propagate to the
// host (and thus bork the machine). We don't use rprivate because this is
// known to cause issues due to races where we still have a reference to a
// mount while a process in the host namespace are trying to operate on
// something they think has no mounts (devicemapper in particular).
if err := mount("", ".", "", unix.MS_SLAVE|unix.MS_REC, ""); err != nil {
return err
}
// Perform the unmount. MNT_DETACH allows us to unmount /proc/self/cwd.
if err := unmount(".", unix.MNT_DETACH); err != nil {
return err
}
// Switch back to our shiny new root.
if err := unix.Chdir("/"); err != nil {
return &os.PathError{Op: "chdir", Path: "/", Err: err}
}
return nil
}
func msMoveRoot(rootfs string) error {
// Before we move the root and chroot we have to mask all "full" sysfs and
// procfs mounts which exist on the host. This is because while the kernel
// has protections against mounting procfs if it has masks, when using
// chroot(2) the *host* procfs mount is still reachable in the mount
// namespace and the kernel permits procfs mounts inside --no-pivot
// containers.
//
// Users shouldn't be using --no-pivot except in exceptional circumstances,
// but to avoid such a trivial security flaw we apply a best-effort
// protection here. The kernel only allows a mount of a pseudo-filesystem
// like procfs or sysfs if there is a *full* mount (the root of the
// filesystem is mounted) without any other locked mount points covering a
// subtree of the mount.
//
// So we try to unmount (or mount tmpfs on top of) any mountpoint which is
// a full mount of either sysfs or procfs (since those are the most
// concerning filesystems to us).
mountinfos, err := mountinfo.GetMounts(func(info *mountinfo.Info) (skip, stop bool) {
// Collect every sysfs and procfs filesystem, except for those which
// are non-full mounts or are inside the rootfs of the container.
if info.Root != "/" ||
(info.FSType != "proc" && info.FSType != "sysfs") ||
strings.HasPrefix(info.Mountpoint, rootfs) {
skip = true
}
return
})
if err != nil {
return err
}
for _, info := range mountinfos {
p := info.Mountpoint
// Be sure umount events are not propagated to the host.
if err := mount("", p, "", unix.MS_SLAVE|unix.MS_REC, ""); err != nil {
if errors.Is(err, unix.ENOENT) {
// If the mountpoint doesn't exist that means that we've
// already blasted away some parent directory of the mountpoint
// and so we don't care about this error.
continue
}
return err
}
if err := unmount(p, unix.MNT_DETACH); err != nil {
if !errors.Is(err, unix.EINVAL) && !errors.Is(err, unix.EPERM) {
return err
} else {
// If we have not privileges for umounting (e.g. rootless), then
// cover the path.
if err := mount("tmpfs", p, "tmpfs", 0, ""); err != nil {
return err
}
}
}
}
// Move the rootfs on top of "/" in our mount namespace.
if err := mount(rootfs, "/", "", unix.MS_MOVE, ""); err != nil {
return err
}
return chroot()
}
func chroot() error {
if err := unix.Chroot("."); err != nil {
return &os.PathError{Op: "chroot", Path: ".", Err: err}
}
if err := unix.Chdir("/"); err != nil {
return &os.PathError{Op: "chdir", Path: "/", Err: err}
}
return nil
}
// readonlyPath will make a path read only.
func readonlyPath(path string) error {
if err := mount(path, path, "", unix.MS_BIND|unix.MS_REC, ""); err != nil {
if errors.Is(err, os.ErrNotExist) {
return nil
}
return err
}
var s unix.Statfs_t
if err := unix.Statfs(path, &s); err != nil {
return &os.PathError{Op: "statfs", Path: path, Err: err}
}
flags := uintptr(s.Flags) & (unix.MS_NOSUID | unix.MS_NODEV | unix.MS_NOEXEC)
if err := mount(path, path, "", flags|unix.MS_BIND|unix.MS_REMOUNT|unix.MS_RDONLY, ""); err != nil {
return err
}
return nil
}
// remountReadonly will remount an existing mount point and ensure that it is read-only.
func remountReadonly(m *configs.Mount) error {
var (
dest = m.Destination
flags = m.Flags
)
for range 5 {
// There is a special case in the kernel for
// MS_REMOUNT | MS_BIND, which allows us to change only the
// flags even as an unprivileged user (i.e. user namespace)
// assuming we don't drop any security related flags (nodev,
// nosuid, etc.). So, let's use that case so that we can do
// this re-mount without failing in a userns.
flags |= unix.MS_REMOUNT | unix.MS_BIND | unix.MS_RDONLY
if err := mount("", dest, "", uintptr(flags), ""); err != nil {
if errors.Is(err, unix.EBUSY) {
time.Sleep(100 * time.Millisecond)
continue
}
return err
}
return nil
}
return fmt.Errorf("unable to mount %s as readonly max retries reached", dest)
}
// maskPath masks the top of the specified path inside a container to avoid
// security issues from processes reading information from non-namespace aware
// mounts ( proc/kcore ).
// For files, maskPath bind mounts /dev/null over the top of the specified path.
// For directories, maskPath mounts read-only tmpfs over the top of the specified path.
func maskPath(path string, mountLabel string) error {
if err := mount("/dev/null", path, "", unix.MS_BIND, ""); err != nil && !errors.Is(err, os.ErrNotExist) {
if errors.Is(err, unix.ENOTDIR) {
return mount("tmpfs", path, "tmpfs", unix.MS_RDONLY, label.FormatMountLabel("", mountLabel))
}
return err
}
return nil
}
// writeSystemProperty writes the value to a path under /proc/sys as determined from the key.
// For e.g. net.ipv4.ip_forward translated to /proc/sys/net/ipv4/ip_forward.
func writeSystemProperty(key, value string) error {
keyPath := strings.ReplaceAll(key, ".", "/")
return os.WriteFile(path.Join("/proc/sys", keyPath), []byte(value), 0o644)
}
// Do the mount operation followed by additional mounts required to take care
// of propagation flags. This will always be scoped inside the container rootfs.
func mountPropagate(m mountEntry, rootfs string, mountLabel string) error {
var (
data = label.FormatMountLabel(m.Data, mountLabel)
flags = m.Flags
)
// Delay mounting the filesystem read-only if we need to do further
// operations on it. We need to set up files in "/dev", and other tmpfs
// mounts may need to be chmod-ed after mounting. These mounts will be
// remounted ro later in finalizeRootfs(), if necessary.
if m.Device == "tmpfs" || utils.CleanPath(m.Destination) == "/dev" {
flags &= ^unix.MS_RDONLY
}
// Because the destination is inside a container path which might be
// mutating underneath us, we verify that we are actually going to mount
// inside the container with WithProcfd() -- mounting through a procfd
// mounts on the target.
if err := utils.WithProcfd(rootfs, m.Destination, func(dstFd string) error {
return mountViaFds(m.Source, m.srcFile, m.Destination, dstFd, m.Device, uintptr(flags), data)
}); err != nil {
return err
}
// We have to apply mount propagation flags in a separate WithProcfd() call
// because the previous call invalidates the passed procfd -- the mount
// target needs to be re-opened.
if err := utils.WithProcfd(rootfs, m.Destination, func(dstFd string) error {
for _, pflag := range m.PropagationFlags {
if err := mountViaFds("", nil, m.Destination, dstFd, "", uintptr(pflag), ""); err != nil {
return err
}
}
return nil
}); err != nil {
return fmt.Errorf("change mount propagation through procfd: %w", err)
}
return nil
}
func setRecAttr(m *configs.Mount, rootfs string) error {
if m.RecAttr == nil {
return nil
}
return utils.WithProcfd(rootfs, m.Destination, func(procfd string) error {
return unix.MountSetattr(-1, procfd, unix.AT_RECURSIVE, m.RecAttr)
})
}