This commit implements support for the SCMP_ACT_NOTIFY action. It
requires libseccomp-2.5.0 to work but runc still works with older
libseccomp if the seccomp policy does not use the SCMP_ACT_NOTIFY
action.
A new synchronization step between runc[INIT] and runc run is introduced
to pass the seccomp fd. runc run fetches the seccomp fd with pidfd_get
from the runc[INIT] process and sends it to the seccomp agent using
SCM_RIGHTS.
As suggested by @kolyshkin, we also make writeSync() a wrapper of
writeSyncWithFd() and wrap the error there. To avoid pointless errors,
we made some existing code paths just return the error instead of
re-wrapping it. If we don't do it, error will look like:
writing syncT <act>: writing syncT: <err>
By adjusting the code path, now they just look like this
writing syncT <act>: <err>
Signed-off-by: Alban Crequy <alban@kinvolk.io>
Signed-off-by: Rodrigo Campos <rodrigo@kinvolk.io>
Co-authored-by: Rodrigo Campos <rodrigo@kinvolk.io>
if function returns error before WriteJSON defer, error will not be
printed out, so move this defer as early as possible and use logrus to
print out error if returns before it.
Signed-off-by: xiadanni <xiadanni1@huawei.com>
For files that end with _linux.go or _linux_test.go, there is no need to
specify linux build tag, as it is assumed from the file name.
In addition, rename libcontainer/notify_linux_v2.go -> libcontainer/notify_v2_linux.go
for the file name to make sense.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
ConfigError was added by commit e918d02139, while removing runc own
error system, to preserve a way for a libcontainer user to distinguish
between a configuration error and something else.
The way ConfigError is implemented requires a different type of check
(compared to all other errors defined by error.go). An attempt was made
to rectify this, but the resulting code became even more complicated.
As no one is using this functionality (of differentiating a "bad config"
type of error from other errors), let's just drop the ConfigError type.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
This removes libcontainer's own error wrapping system, consisting of a
few types and functions, aimed at typization, wrapping and unwrapping
of errors, as well as saving error stack traces.
Since Go 1.13 now provides its own error wrapping mechanism and a few
related functions, it makes sense to switch to it.
While doing that, improve some error messages so that they start
with "error", "unable to", or "can't".
A few things that are worth mentioning:
1. We lose stack traces (which were never shown anyway).
2. Users of libcontainer that relied on particular errors (like
ContainerNotExists) need to switch to using errors.Is with
the new errors defined in error.go.
3. encoding/json is unable to unmarshal the built-in error type,
so we have to introduce initError and wrap the errors into it
(basically passing the error as a string). This is the same
as it was before, just a tad simpler (actually the initError
is a type that got removed in commit afa844311; also suddenly
ierr variable name makes sense now).
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
This should result in no change when the error is printed, but make the
errors returned unwrappable, meaning errors.As and errors.Is will work.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Errors returned by unix are bare. In some cases it's impossible to find
out what went wrong because there's is not enough context.
Add a mountError type (mostly copy-pasted from github.com/moby/sys/mount),
and mount/unmount helpers. Use these where appropriate, and convert error
checks to use errors.Is.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Errors from strconv.Atoi are already descriptive enough, and contain the
value being converted, so our error messages do not need to contain it.
While at it, use %w to wrap errors.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Using fmt.Errorf for errors that do not have %-style formatting
directives is an overkill. Switch to errors.New.
Found by
git grep fmt.Errorf | grep -v ^vendor | grep -v '%'
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
gofumpt (mvdan.cc/gofumpt) is a fork of gofmt with stricter rules.
Brought to you by
git ls-files \*.go | grep -v ^vendor/ | xargs gofumpt -s -w
Looking at the diff, all these changes make sense.
Also, replace gofmt with gofumpt in golangci.yml.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Sometimes debug.bats test cases are failing like this:
> not ok 27 global --debug to --log --log-format 'json'
> # (in test file tests/integration/debug.bats, line 77)
> # `[[ "${output}" == *"child process in init()"* ]]' failed
It happens more when writing to disk.
This issue is caused by the fact that runc spawns log forwarding goroutine
(ForwardLogs) but does not wait for it to finish, resulting in missing
debug lines from nsexec.
ForwardLogs itself, though, never finishes, because it reads from a
reading side of a pipe which writing side is not closed. This is
especially true in case of runc create, which spawns runc init and
exits; meanwhile runc init waits on exec fifo for arbitrarily long
time before doing execve.
So, to fix the failure described above, we need to:
1. Make runc create/run/exec wait for ForwardLogs to finish;
2. Make runc init close its log pipe file descriptor (i.e.
the one which value is passed in _LIBCONTAINER_LOGPIPE
environment variable).
This is exactly what this commit does:
1. Amend ForwardLogs to return a channel, and wait for it in start().
2. In runc init, save the log fd and close it as late as possible.
PS I have to admit I still do not understand why an explicit close of
log pipe fd is required in e.g. (*linuxSetnsInit).Init, right before
the execve which (thanks to CLOEXEC) closes the fd anyway.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Use sync.Once to init Intel RDT when needed for a small speedup to
operations which do not require Intel RDT.
Simplify IntelRdtManager initialization in LinuxFactory.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
The fs2 cgroup driver has a sanity check for path.
Since systemd driver is relying on the same path,
it makes sense to move this check to the common code.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Having map of per-subsystem paths in systemd unified cgroups
driver does not make sense and makes the code less readable.
To get rid of it, move the systemd v1-or-v2 init code to
libcontainer/factory_linux.go which already has a function
to deduce unified path out of paths map.
End result is much cleaner code. Besides, we no longer write pid
to the same cgroup file 7 times in Apply() like we did before.
While at it
- add `rootless` flag which is passed on to fs2 manager
- merge getv2Path() into GetUnifiedPath(), don't overwrite
path if it is set during initialization (on Load).
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
Delete libcontainer/mount in favor of github.com/moby/sys/mountinfo,
which is fast mountinfo parser.
Signed-off-by: Kir Kolyshkin <kolyshkin@gmail.com>
split fs2 package from fs, as mixing up fs and fs2 is very likely to result in
unmaintainable code.
Inspired by containerd/cgroups#109
Fix#2157
Signed-off-by: Akihiro Suda <akihiro.suda.cz@hco.ntt.co.jp>
This will permit us to extend the internals of systemd.Manager to include
further information about the system, such as whether cgroupv1, cgroupv2 or
both are in effect.
Furthermore, it allows a future refactor of moving more of UseSystemd() code
into the factory initialization function.
Signed-off-by: Filipe Brandenburger <filbranden@gmail.com>
Memory Bandwidth Allocation (MBA) is a resource allocation sub-feature
of Intel Resource Director Technology (RDT) which is supported on some
Intel Xeon platforms. Intel RDT/MBA provides indirect and approximate
throttle over memory bandwidth for the software. A user controls the
resource by indicating the percentage of maximum memory bandwidth.
Hardware details of Intel RDT/MBA can be found in section 17.18 of
Intel Software Developer Manual:
https://software.intel.com/en-us/articles/intel-sdm
In Linux 4.12 kernel and newer, Intel RDT/MBA is enabled by kernel
config CONFIG_INTEL_RDT. If hardware support, CPU flags `rdt_a` and
`mba` will be set in /proc/cpuinfo.
Intel RDT "resource control" filesystem hierarchy:
mount -t resctrl resctrl /sys/fs/resctrl
tree /sys/fs/resctrl
/sys/fs/resctrl/
|-- info
| |-- L3
| | |-- cbm_mask
| | |-- min_cbm_bits
| | |-- num_closids
| |-- MB
| |-- bandwidth_gran
| |-- delay_linear
| |-- min_bandwidth
| |-- num_closids
|-- ...
|-- schemata
|-- tasks
|-- <container_id>
|-- ...
|-- schemata
|-- tasks
For MBA support for `runc`, we will reuse the infrastructure and code
base of Intel RDT/CAT which implemented in #1279. We could also make
use of `tasks` and `schemata` configuration for memory bandwidth
resource constraints.
The file `tasks` has a list of tasks that belongs to this group (e.g.,
<container_id>" group). Tasks can be added to a group by writing the
task ID to the "tasks" file (which will automatically remove them from
the previous group to which they belonged). New tasks created by
fork(2) and clone(2) are added to the same group as their parent.
The file `schemata` has a list of all the resources available to this
group. Each resource (L3 cache, memory bandwidth) has its own line and
format.
Memory bandwidth schema:
It has allocation values for memory bandwidth on each socket, which
contains L3 cache id and memory bandwidth percentage.
Format: "MB:<cache_id0>=bandwidth0;<cache_id1>=bandwidth1;..."
The minimum bandwidth percentage value for each CPU model is predefined
and can be looked up through "info/MB/min_bandwidth". The bandwidth
granularity that is allocated is also dependent on the CPU model and
can be looked up at "info/MB/bandwidth_gran". The available bandwidth
control steps are: min_bw + N * bw_gran. Intermediate values are
rounded to the next control step available on the hardware.
For more information about Intel RDT kernel interface:
https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt
An example for runc:
Consider a two-socket machine with two L3 caches where the minimum
memory bandwidth of 10% with a memory bandwidth granularity of 10%.
Tasks inside the container may use a maximum memory bandwidth of 20%
on socket 0 and 70% on socket 1.
"linux": {
"intelRdt": {
"memBwSchema": "MB:0=20;1=70"
}
}
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
This PR decomposes `libcontainer/configs.Config.Rootless bool` into `RootlessEUID bool` and
`RootlessCgroups bool`, so as to make "runc-in-userns" to be more compatible with "rootful" runc.
`RootlessEUID` denotes that runc is being executed as a non-root user (euid != 0) in
the current user namespace. `RootlessEUID` is almost identical to the former `Rootless`
except cgroups stuff.
`RootlessCgroups` denotes that runc is unlikely to have the full access to cgroups.
`RootlessCgroups` is set to false if runc is executed as the root (euid == 0) in the initial namespace.
Otherwise `RootlessCgroups` is set to true.
(Hint: if `RootlessEUID` is true, `RootlessCgroups` becomes true as well)
When runc is executed as the root (euid == 0) in an user namespace (e.g. by Docker-in-LXD, Podman, Usernetes),
`RootlessEUID` is set to false but `RootlessCgroups` is set to true.
So, "runc-in-userns" behaves almost same as "rootful" runc except that cgroups errors are ignored.
This PR does not have any impact on CLI flags and `state.json`.
Note about CLI:
* Now `runc --rootless=(auto|true|false)` CLI flag is only used for setting `RootlessCgroups`.
* Now `runc spec --rootless` is only required when `RootlessEUID` is set to true.
For runc-in-userns, `runc spec` without `--rootless` should work, when sufficient numbers of
UID/GID are mapped.
Note about `$XDG_RUNTIME_DIR` (e.g. `/run/user/1000`):
* `$XDG_RUNTIME_DIR` is ignored if runc is being executed as the root (euid == 0) in the initial namespace, for backward compatibility.
(`/run/runc` is used)
* If runc is executed as the root (euid == 0) in an user namespace, `$XDG_RUNTIME_DIR` is honored if `$USER != "" && $USER != "root"`.
This allows unprivileged users to allow execute runc as the root in userns, without mounting writable `/run/runc`.
Note about `state.json`:
* `rootless` is set to true when `RootlessEUID == true && RootlessCgroups == true`.
Signed-off-by: Akihiro Suda <suda.akihiro@lab.ntt.co.jp>
In some cases, /sys/fs/cgroups is mounted read-only. In rootless
containers we can consider this effectively identical to having cgroups
that we don't have write permission to -- because the user isn't
responsible for the read-only setup and cannot modify it. The rules are
identical to when /sys/fs/cgroups is not writable by the unprivileged
user.
An example of this is the default configuration of Docker, where cgroups
are mounted as read-only as a preventative security measure.
Reported-by: Vladimir Rutsky <rutsky@google.com>
Signed-off-by: Aleksa Sarai <asarai@suse.de>
This allows runc to be used as a target for docker's reexec module that
depends on a correct argv0 to select which process entrypoint to invoke.
Without this patch, when runc re-execs argv0 is set to "/proc/self/exe"
and the reexec module doesn't know what to do with it.
Signed-off-by: Petros Angelatos <petrosagg@gmail.com>
In current implementation:
Either Intel RDT is not enabled by hardware and kernel, or intelRdt is
not specified in original config, we don't init IntelRdtManager in the
container to handle intelrdt constraint. It is a tradeoff that Intel RDT
has hardware limitation to support only limited number of groups.
This patch makes a minor change to support update command:
Whether or not intelRdt is specified in config, we always init
IntelRdtManager in the container if Intel RDT is enabled. If intelRdt is
not specified in original config, we just don't Apply() to create
intelrdt group or attach tasks for this container.
In update command, we could re-enable through IntelRdtManager.Apply()
and then update intelrdt constraint.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
Take advantage of the newuidmap/newgidmap tools to allow multiple
users/groups to be mapped into the new user namespace in the rootless
case.
Signed-off-by: Giuseppe Scrivano <gscrivan@redhat.com>
[ rebased to handle intelrdt changes. ]
Signed-off-by: Aleksa Sarai <asarai@suse.de>
This is the follow-up PR of #1279 to fix remaining issues:
Use init() to avoid race condition in IsIntelRdtEnabled().
Add also rename some variables and functions.
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
About Intel RDT/CAT feature:
Intel platforms with new Xeon CPU support Intel Resource Director Technology
(RDT). Cache Allocation Technology (CAT) is a sub-feature of RDT, which
currently supports L3 cache resource allocation.
This feature provides a way for the software to restrict cache allocation to a
defined 'subset' of L3 cache which may be overlapping with other 'subsets'.
The different subsets are identified by class of service (CLOS) and each CLOS
has a capacity bitmask (CBM).
For more information about Intel RDT/CAT can be found in the section 17.17
of Intel Software Developer Manual.
About Intel RDT/CAT kernel interface:
In Linux 4.10 kernel or newer, the interface is defined and exposed via
"resource control" filesystem, which is a "cgroup-like" interface.
Comparing with cgroups, it has similar process management lifecycle and
interfaces in a container. But unlike cgroups' hierarchy, it has single level
filesystem layout.
Intel RDT "resource control" filesystem hierarchy:
mount -t resctrl resctrl /sys/fs/resctrl
tree /sys/fs/resctrl
/sys/fs/resctrl/
|-- info
| |-- L3
| |-- cbm_mask
| |-- min_cbm_bits
| |-- num_closids
|-- cpus
|-- schemata
|-- tasks
|-- <container_id>
|-- cpus
|-- schemata
|-- tasks
For runc, we can make use of `tasks` and `schemata` configuration for L3 cache
resource constraints.
The file `tasks` has a list of tasks that belongs to this group (e.g.,
<container_id>" group). Tasks can be added to a group by writing the task ID
to the "tasks" file (which will automatically remove them from the previous
group to which they belonged). New tasks created by fork(2) and clone(2) are
added to the same group as their parent. If a pid is not in any sub group, it
Is in root group.
The file `schemata` has allocation bitmasks/values for L3 cache on each socket,
which contains L3 cache id and capacity bitmask (CBM).
Format: "L3:<cache_id0>=<cbm0>;<cache_id1>=<cbm1>;..."
For example, on a two-socket machine, L3's schema line could be `L3:0=ff;1=c0`
which means L3 cache id 0's CBM is 0xff, and L3 cache id 1's CBM is 0xc0.
The valid L3 cache CBM is a *contiguous bits set* and number of bits that can
be set is less than the max bit. The max bits in the CBM is varied among
supported Intel Xeon platforms. In Intel RDT "resource control" filesystem
layout, the CBM in a group should be a subset of the CBM in root. Kernel will
check if it is valid when writing. e.g., 0xfffff in root indicates the max bits
of CBM is 20 bits, which mapping to entire L3 cache capacity. Some valid CBM
values to set in a group: 0xf, 0xf0, 0x3ff, 0x1f00 and etc.
For more information about Intel RDT/CAT kernel interface:
https://www.kernel.org/doc/Documentation/x86/intel_rdt_ui.txt
An example for runc:
Consider a two-socket machine with two L3 caches where the default CBM is
0xfffff and the max CBM length is 20 bits. With this configuration, tasks
inside the container only have access to the "upper" 80% of L3 cache id 0 and
the "lower" 50% L3 cache id 1:
"linux": {
"intelRdt": {
"l3CacheSchema": "L3:0=ffff0;1=3ff"
}
}
Signed-off-by: Xiaochen Shen <xiaochen.shen@intel.com>
While we have significant protections in place against CVE-2016-9962, we
still were holding onto a file descriptor that referenced the host
filesystem. This meant that in certain scenarios it was still possible
for a semi-privileged container to gain access to the host filesystem
(if they had CAP_SYS_PTRACE).
Instead, open the FIFO itself using a O_PATH. This allows us to
reference the FIFO directly without providing the ability for
directory-level access. When opening the FIFO inside the init process,
open it through procfs to re-open the actual FIFO (this is currently the
only supported way to open such a file descriptor).
Signed-off-by: Aleksa Sarai <asarai@suse.de>
It appears as though these semantics were not fully thought out when
implementing them for rootless containers. It is not necessary (and
could be potentially dangerous) to set the owner of /run/ctr/$id to be
the root inside the container (if user namespaces are being used).
Instead, just use the e{g,u}id of runc to determine the owner.
Signed-off-by: Aleksa Sarai <asarai@suse.de>
Since syscall is outdated and broken for some architectures,
use x/sys/unix instead.
There are still some dependencies on the syscall package that will
remain in syscall for the forseeable future:
Errno
Signal
SysProcAttr
Additionally:
- os still uses syscall, so it needs to be kept for anything
returning *os.ProcessState, such as process.Wait.
Signed-off-by: Christy Perez <christy@linux.vnet.ibm.com>
Previously Host{U,G}ID only gave you the root mapping, which isn't very
useful if you are trying to do other things with the IDMaps.
Signed-off-by: Aleksa Sarai <asarai@suse.de>
The rootless cgroup manager acts as a noop for all set and apply
operations. It is just used for rootless setups. Currently this is far
too simple (we need to add opportunistic cgroup management), but is good
enough as a first-pass at a noop cgroup manager.
Signed-off-by: Aleksa Sarai <asarai@suse.de>