update vendor

Signed-off-by: Akihiro Suda <akihiro.suda.cz@hco.ntt.co.jp>
This commit is contained in:
Akihiro Suda
2020-03-25 02:50:15 +09:00
parent f1eea9051c
commit dfc1b0cd51
397 changed files with 51252 additions and 95551 deletions

1
vendor/github.com/vishvananda/netlink/.gitignore generated vendored Normal file
View File

@@ -0,0 +1 @@
.idea/

View File

@@ -1,3 +1,19 @@
language: go
go:
- "1.10.x"
- "1.11.x"
- "1.12.x"
before_script:
# make sure we keep path in tact when we sudo
- sudo sed -i -e 's/^Defaults\tsecure_path.*$//' /etc/sudoers
# modprobe ip_gre or else the first gre device can't be deleted
- sudo modprobe ip_gre
# modprobe nf_conntrack for the conntrack testing
- sudo modprobe nf_conntrack
- sudo modprobe nf_conntrack_netlink
- sudo modprobe nf_conntrack_ipv4
- sudo modprobe nf_conntrack_ipv6
- sudo modprobe sch_hfsc
install:
- go get github.com/vishvananda/netns
- go get github.com/vishvananda/netns
go_import_path: github.com/vishvananda/netlink

5
vendor/github.com/vishvananda/netlink/CHANGELOG.md generated vendored Normal file
View File

@@ -0,0 +1,5 @@
# Changelog
## 1.0.0 (2018-03-15)
Initial release tagging

View File

@@ -3,7 +3,8 @@ DIRS := \
nl
DEPS = \
github.com/vishvananda/netns
github.com/vishvananda/netns \
golang.org/x/sys/unix
uniq = $(if $1,$(firstword $1) $(call uniq,$(filter-out $(firstword $1),$1)))
testdirs = $(call uniq,$(foreach d,$(1),$(dir $(wildcard $(d)/*_test.go))))
@@ -11,17 +12,17 @@ goroot = $(addprefix ../../../,$(1))
unroot = $(subst ../../../,,$(1))
fmt = $(addprefix fmt-,$(1))
all: fmt
all: test
$(call goroot,$(DEPS)):
go get $(call unroot,$@)
.PHONY: $(call testdirs,$(DIRS))
$(call testdirs,$(DIRS)):
sudo -E go test -v github.com/vishvananda/netlink/$@
go test -test.exec sudo -test.parallel 4 -timeout 60s -test.v github.com/vishvananda/netlink/$@
$(call fmt,$(call testdirs,$(DIRS))):
! gofmt -l $(subst fmt-,,$@)/*.go | grep ''
! gofmt -l $(subst fmt-,,$@)/*.go | grep -q .
.PHONY: fmt
fmt: $(call fmt,$(call testdirs,$(DIRS)))

View File

@@ -8,7 +8,7 @@ the kernel. It can be used to add and remove interfaces, set ip addresses
and routes, and configure ipsec. Netlink communication requires elevated
privileges, so in most cases this code needs to be run as root. Since
low-level netlink messages are inscrutable at best, the library attempts
to provide an api that is loosely modeled on the CLI provied by iproute2.
to provide an api that is loosely modeled on the CLI provided by iproute2.
Actions like `ip link add` will be accomplished via a similarly named
function like AddLink(). This library began its life as a fork of the
netlink functionality in
@@ -38,15 +38,18 @@ Add a new bridge and add eth1 into it:
package main
import (
"net"
"fmt"
"github.com/vishvananda/netlink"
)
func main() {
la := netlink.NewLinkAttrs()
la.Name = "foo"
mybridge := &netlink.Bridge{la}}
_ := netlink.LinkAdd(mybridge)
mybridge := &netlink.Bridge{LinkAttrs: la}
err := netlink.LinkAdd(mybridge)
if err != nil {
fmt.Printf("could not add %s: %v\n", la.Name, err)
}
eth1, _ := netlink.LinkByName("eth1")
netlink.LinkSetMaster(eth1, mybridge)
}
@@ -63,7 +66,6 @@ Add a new ip address to loopback:
package main
import (
"net"
"github.com/vishvananda/netlink"
)
@@ -87,3 +89,4 @@ There are also a few pieces of low level netlink functionality that still
need to be implemented. Routing rules are not in place and some of the
more advanced link types. Hopefully there is decent structure and testing
in place to make these fairly straightforward to add.

View File

@@ -10,12 +10,18 @@ import (
// include a mask, so it stores the address as a net.IPNet.
type Addr struct {
*net.IPNet
Label string
Label string
Flags int
Scope int
Peer *net.IPNet
Broadcast net.IP
PreferedLft int
ValidLft int
}
// String returns $ip/$netmask $label
func (a Addr) String() string {
return fmt.Sprintf("%s %s", a.IPNet, a.Label)
return strings.TrimSpace(fmt.Sprintf("%s %s", a.IPNet, a.Label))
}
// ParseAddr parses the string representation of an address in the
@@ -41,3 +47,10 @@ func (a Addr) Equal(x Addr) bool {
// ignore label for comparison
return a.IP.Equal(x.IP) && sizea == sizeb
}
func (a Addr) PeerEqual(x Addr) bool {
sizea, _ := a.Peer.Mask.Size()
sizeb, _ := x.Peer.Mask.Size()
// ignore label for comparison
return a.Peer.IP.Equal(x.Peer.IP) && sizea == sizeb
}

View File

@@ -7,57 +7,163 @@ import (
"syscall"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
// AddrAdd will add an IP address to a link device.
// Equivalent to: `ip addr add $addr dev $link`
func AddrAdd(link Link, addr *Addr) error {
// IFA_FLAGS is a u32 attribute.
const IFA_FLAGS = 0x8
req := nl.NewNetlinkRequest(syscall.RTM_NEWADDR, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
return addrHandle(link, addr, req)
// AddrAdd will add an IP address to a link device.
//
// Equivalent to: `ip addr add $addr dev $link`
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func AddrAdd(link Link, addr *Addr) error {
return pkgHandle.AddrAdd(link, addr)
}
// AddrAdd will add an IP address to a link device.
//
// Equivalent to: `ip addr add $addr dev $link`
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func (h *Handle) AddrAdd(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_NEWADDR, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
// AddrReplace will replace (or, if not present, add) an IP address on a link device.
//
// Equivalent to: `ip addr replace $addr dev $link`
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func AddrReplace(link Link, addr *Addr) error {
return pkgHandle.AddrReplace(link, addr)
}
// AddrReplace will replace (or, if not present, add) an IP address on a link device.
//
// Equivalent to: `ip addr replace $addr dev $link`
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func (h *Handle) AddrReplace(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_NEWADDR, unix.NLM_F_CREATE|unix.NLM_F_REPLACE|unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
// AddrDel will delete an IP address from a link device.
//
// Equivalent to: `ip addr del $addr dev $link`
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func AddrDel(link Link, addr *Addr) error {
return pkgHandle.AddrDel(link, addr)
}
// AddrDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func AddrDel(link Link, addr *Addr) error {
req := nl.NewNetlinkRequest(syscall.RTM_DELADDR, syscall.NLM_F_ACK)
return addrHandle(link, addr, req)
//
// If `addr` is an IPv4 address and the broadcast address is not given, it
// will be automatically computed based on the IP mask if /30 or larger.
func (h *Handle) AddrDel(link Link, addr *Addr) error {
req := h.newNetlinkRequest(unix.RTM_DELADDR, unix.NLM_F_ACK)
return h.addrHandle(link, addr, req)
}
func addrHandle(link Link, addr *Addr, req *nl.NetlinkRequest) error {
func (h *Handle) addrHandle(link Link, addr *Addr, req *nl.NetlinkRequest) error {
base := link.Attrs()
if addr.Label != "" && !strings.HasPrefix(addr.Label, base.Name) {
return fmt.Errorf("label must begin with interface name")
}
ensureIndex(base)
h.ensureIndex(base)
family := nl.GetIPFamily(addr.IP)
msg := nl.NewIfAddrmsg(family)
msg.Index = uint32(base.Index)
prefixlen, _ := addr.Mask.Size()
msg.Scope = uint8(addr.Scope)
mask := addr.Mask
if addr.Peer != nil {
mask = addr.Peer.Mask
}
prefixlen, masklen := mask.Size()
msg.Prefixlen = uint8(prefixlen)
req.AddData(msg)
var addrData []byte
var localAddrData []byte
if family == FAMILY_V4 {
addrData = addr.IP.To4()
localAddrData = addr.IP.To4()
} else {
addrData = addr.IP.To16()
localAddrData = addr.IP.To16()
}
localData := nl.NewRtAttr(syscall.IFA_LOCAL, addrData)
localData := nl.NewRtAttr(unix.IFA_LOCAL, localAddrData)
req.AddData(localData)
var peerAddrData []byte
if addr.Peer != nil {
if family == FAMILY_V4 {
peerAddrData = addr.Peer.IP.To4()
} else {
peerAddrData = addr.Peer.IP.To16()
}
} else {
peerAddrData = localAddrData
}
addressData := nl.NewRtAttr(syscall.IFA_ADDRESS, addrData)
addressData := nl.NewRtAttr(unix.IFA_ADDRESS, peerAddrData)
req.AddData(addressData)
if addr.Label != "" {
labelData := nl.NewRtAttr(syscall.IFA_LABEL, nl.ZeroTerminated(addr.Label))
req.AddData(labelData)
if addr.Flags != 0 {
if addr.Flags <= 0xff {
msg.IfAddrmsg.Flags = uint8(addr.Flags)
} else {
b := make([]byte, 4)
native.PutUint32(b, uint32(addr.Flags))
flagsData := nl.NewRtAttr(IFA_FLAGS, b)
req.AddData(flagsData)
}
}
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
if family == FAMILY_V4 {
// Automatically set the broadcast address if it is unset and the
// subnet is large enough to sensibly have one (/30 or larger).
// See: RFC 3021
if addr.Broadcast == nil && prefixlen < 31 {
calcBroadcast := make(net.IP, masklen/8)
for i := range localAddrData {
calcBroadcast[i] = localAddrData[i] | ^mask[i]
}
addr.Broadcast = calcBroadcast
}
if addr.Broadcast != nil {
req.AddData(nl.NewRtAttr(unix.IFA_BROADCAST, addr.Broadcast))
}
if addr.Label != "" {
labelData := nl.NewRtAttr(unix.IFA_LABEL, nl.ZeroTerminated(addr.Label))
req.AddData(labelData)
}
}
// 0 is the default value for these attributes. However, 0 means "expired", while the least-surprising default
// value should be "forever". To compensate for that, only add the attributes if at least one of the values is
// non-zero, which means the caller has explicitly set them
if addr.ValidLft > 0 || addr.PreferedLft > 0 {
cachedata := nl.IfaCacheInfo{
IfaValid: uint32(addr.ValidLft),
IfaPrefered: uint32(addr.PreferedLft),
}
req.AddData(nl.NewRtAttr(unix.IFA_CACHEINFO, cachedata.Serialize()))
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
@@ -65,60 +171,43 @@ func addrHandle(link Link, addr *Addr, req *nl.NetlinkRequest) error {
// Equivalent to: `ip addr show`.
// The list can be filtered by link and ip family.
func AddrList(link Link, family int) ([]Addr, error) {
req := nl.NewNetlinkRequest(syscall.RTM_GETADDR, syscall.NLM_F_DUMP)
return pkgHandle.AddrList(link, family)
}
// AddrList gets a list of IP addresses in the system.
// Equivalent to: `ip addr show`.
// The list can be filtered by link and ip family.
func (h *Handle) AddrList(link Link, family int) ([]Addr, error) {
req := h.newNetlinkRequest(unix.RTM_GETADDR, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_ROUTE, syscall.RTM_NEWADDR)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWADDR)
if err != nil {
return nil, err
}
index := 0
indexFilter := 0
if link != nil {
base := link.Attrs()
ensureIndex(base)
index = base.Index
h.ensureIndex(base)
indexFilter = base.Index
}
var res []Addr
for _, m := range msgs {
msg := nl.DeserializeIfAddrmsg(m)
addr, msgFamily, ifindex, err := parseAddr(m)
if err != nil {
return res, err
}
if link != nil && msg.Index != uint32(index) {
if link != nil && ifindex != indexFilter {
// Ignore messages from other interfaces
continue
}
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
var local, dst *net.IPNet
var addr Addr
for _, attr := range attrs {
switch attr.Attr.Type {
case syscall.IFA_ADDRESS:
dst = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Prefixlen), 8*len(attr.Value)),
}
case syscall.IFA_LOCAL:
local = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Prefixlen), 8*len(attr.Value)),
}
case syscall.IFA_LABEL:
addr.Label = string(attr.Value[:len(attr.Value)-1])
}
}
// IFA_LOCAL should be there but if not, fall back to IFA_ADDRESS
if local != nil {
addr.IPNet = local
} else {
addr.IPNet = dst
if family != FAMILY_ALL && msgFamily != family {
continue
}
res = append(res, addr)
@@ -126,3 +215,203 @@ func AddrList(link Link, family int) ([]Addr, error) {
return res, nil
}
func parseAddr(m []byte) (addr Addr, family, index int, err error) {
msg := nl.DeserializeIfAddrmsg(m)
family = -1
index = -1
attrs, err1 := nl.ParseRouteAttr(m[msg.Len():])
if err1 != nil {
err = err1
return
}
family = int(msg.Family)
index = int(msg.Index)
var local, dst *net.IPNet
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.IFA_ADDRESS:
dst = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(int(msg.Prefixlen), 8*len(attr.Value)),
}
case unix.IFA_LOCAL:
// iproute2 manual:
// If a peer address is specified, the local address
// cannot have a prefix length. The network prefix is
// associated with the peer rather than with the local
// address.
n := 8 * len(attr.Value)
local = &net.IPNet{
IP: attr.Value,
Mask: net.CIDRMask(n, n),
}
case unix.IFA_BROADCAST:
addr.Broadcast = attr.Value
case unix.IFA_LABEL:
addr.Label = string(attr.Value[:len(attr.Value)-1])
case IFA_FLAGS:
addr.Flags = int(native.Uint32(attr.Value[0:4]))
case nl.IFA_CACHEINFO:
ci := nl.DeserializeIfaCacheInfo(attr.Value)
addr.PreferedLft = int(ci.IfaPrefered)
addr.ValidLft = int(ci.IfaValid)
}
}
// libnl addr.c comment:
// IPv6 sends the local address as IFA_ADDRESS with no
// IFA_LOCAL, IPv4 sends both IFA_LOCAL and IFA_ADDRESS
// with IFA_ADDRESS being the peer address if they differ
//
// But obviously, as there are IPv6 PtP addresses, too,
// IFA_LOCAL should also be handled for IPv6.
if local != nil {
if family == FAMILY_V4 && local.IP.Equal(dst.IP) {
addr.IPNet = dst
} else {
addr.IPNet = local
addr.Peer = dst
}
} else {
addr.IPNet = dst
}
addr.Scope = int(msg.Scope)
return
}
type AddrUpdate struct {
LinkAddress net.IPNet
LinkIndex int
Flags int
Scope int
PreferedLft int
ValidLft int
NewAddr bool // true=added false=deleted
}
// AddrSubscribe takes a chan down which notifications will be sent
// when addresses change. Close the 'done' chan to stop subscription.
func AddrSubscribe(ch chan<- AddrUpdate, done <-chan struct{}) error {
return addrSubscribeAt(netns.None(), netns.None(), ch, done, nil, false, 0)
}
// AddrSubscribeAt works like AddrSubscribe plus it allows the caller
// to choose the network namespace in which to subscribe (ns).
func AddrSubscribeAt(ns netns.NsHandle, ch chan<- AddrUpdate, done <-chan struct{}) error {
return addrSubscribeAt(ns, netns.None(), ch, done, nil, false, 0)
}
// AddrSubscribeOptions contains a set of options to use with
// AddrSubscribeWithOptions.
type AddrSubscribeOptions struct {
Namespace *netns.NsHandle
ErrorCallback func(error)
ListExisting bool
ReceiveBufferSize int
}
// AddrSubscribeWithOptions work like AddrSubscribe but enable to
// provide additional options to modify the behavior. Currently, the
// namespace can be provided as well as an error callback.
func AddrSubscribeWithOptions(ch chan<- AddrUpdate, done <-chan struct{}, options AddrSubscribeOptions) error {
if options.Namespace == nil {
none := netns.None()
options.Namespace = &none
}
return addrSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting, options.ReceiveBufferSize)
}
func addrSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- AddrUpdate, done <-chan struct{}, cberr func(error), listExisting bool, rcvbuf int) error {
s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_IPV4_IFADDR, unix.RTNLGRP_IPV6_IFADDR)
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
if rcvbuf != 0 {
err = pkgHandle.SetSocketReceiveBufferSize(rcvbuf, false)
if err != nil {
return err
}
}
if listExisting {
req := pkgHandle.newNetlinkRequest(unix.RTM_GETADDR,
unix.NLM_F_DUMP)
infmsg := nl.NewIfInfomsg(unix.AF_UNSPEC)
req.AddData(infmsg)
if err := s.Send(req); err != nil {
return err
}
}
go func() {
defer close(ch)
for {
msgs, from, err := s.Receive()
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
if from.Pid != nl.PidKernel {
if cberr != nil {
cberr(fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel))
}
continue
}
for _, m := range msgs {
if m.Header.Type == unix.NLMSG_DONE {
continue
}
if m.Header.Type == unix.NLMSG_ERROR {
native := nl.NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
continue
}
if cberr != nil {
cberr(fmt.Errorf("error message: %v",
syscall.Errno(-error)))
}
continue
}
msgType := m.Header.Type
if msgType != unix.RTM_NEWADDR && msgType != unix.RTM_DELADDR {
if cberr != nil {
cberr(fmt.Errorf("bad message type: %d", msgType))
}
continue
}
addr, _, ifindex, err := parseAddr(m.Data)
if err != nil {
if cberr != nil {
cberr(fmt.Errorf("could not parse address: %v", err))
}
continue
}
ch <- AddrUpdate{LinkAddress: *addr.IPNet,
LinkIndex: ifindex,
NewAddr: msgType == unix.RTM_NEWADDR,
Flags: addr.Flags,
Scope: addr.Scope,
PreferedLft: addr.PreferedLft,
ValidLft: addr.ValidLft}
}
}
}()
return nil
}

53
vendor/github.com/vishvananda/netlink/bpf_linux.go generated vendored Normal file
View File

@@ -0,0 +1,53 @@
package netlink
import (
"unsafe"
"golang.org/x/sys/unix"
)
type BpfProgType uint32
const (
BPF_PROG_TYPE_UNSPEC BpfProgType = iota
BPF_PROG_TYPE_SOCKET_FILTER
BPF_PROG_TYPE_KPROBE
BPF_PROG_TYPE_SCHED_CLS
BPF_PROG_TYPE_SCHED_ACT
BPF_PROG_TYPE_TRACEPOINT
BPF_PROG_TYPE_XDP
)
type BPFAttr struct {
ProgType uint32
InsnCnt uint32
Insns uintptr
License uintptr
LogLevel uint32
LogSize uint32
LogBuf uintptr
KernVersion uint32
}
// loadSimpleBpf loads a trivial bpf program for testing purposes.
func loadSimpleBpf(progType BpfProgType, ret uint32) (int, error) {
insns := []uint64{
0x00000000000000b7 | (uint64(ret) << 32),
0x0000000000000095,
}
license := []byte{'A', 'S', 'L', '2', '\x00'}
attr := BPFAttr{
ProgType: uint32(progType),
InsnCnt: uint32(len(insns)),
Insns: uintptr(unsafe.Pointer(&insns[0])),
License: uintptr(unsafe.Pointer(&license[0])),
}
fd, _, errno := unix.Syscall(unix.SYS_BPF,
5, /* bpf cmd */
uintptr(unsafe.Pointer(&attr)),
unsafe.Sizeof(attr))
if errno != 0 {
return 0, errno
}
return int(fd), nil
}

112
vendor/github.com/vishvananda/netlink/bridge_linux.go generated vendored Normal file
View File

@@ -0,0 +1,112 @@
package netlink
import (
"fmt"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// BridgeVlanList gets a map of device id to bridge vlan infos.
// Equivalent to: `bridge vlan show`
func BridgeVlanList() (map[int32][]*nl.BridgeVlanInfo, error) {
return pkgHandle.BridgeVlanList()
}
// BridgeVlanList gets a map of device id to bridge vlan infos.
// Equivalent to: `bridge vlan show`
func (h *Handle) BridgeVlanList() (map[int32][]*nl.BridgeVlanInfo, error) {
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
req.AddData(msg)
req.AddData(nl.NewRtAttr(unix.IFLA_EXT_MASK, nl.Uint32Attr(uint32(nl.RTEXT_FILTER_BRVLAN))))
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWLINK)
if err != nil {
return nil, err
}
ret := make(map[int32][]*nl.BridgeVlanInfo)
for _, m := range msgs {
msg := nl.DeserializeIfInfomsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case unix.IFLA_AF_SPEC:
//nested attr
nestAttrs, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, fmt.Errorf("failed to parse nested attr %v", err)
}
for _, nestAttr := range nestAttrs {
switch nestAttr.Attr.Type {
case nl.IFLA_BRIDGE_VLAN_INFO:
vlanInfo := nl.DeserializeBridgeVlanInfo(nestAttr.Value)
ret[msg.Index] = append(ret[msg.Index], vlanInfo)
}
}
}
}
}
return ret, nil
}
// BridgeVlanAdd adds a new vlan filter entry
// Equivalent to: `bridge vlan add dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func BridgeVlanAdd(link Link, vid uint16, pvid, untagged, self, master bool) error {
return pkgHandle.BridgeVlanAdd(link, vid, pvid, untagged, self, master)
}
// BridgeVlanAdd adds a new vlan filter entry
// Equivalent to: `bridge vlan add dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func (h *Handle) BridgeVlanAdd(link Link, vid uint16, pvid, untagged, self, master bool) error {
return h.bridgeVlanModify(unix.RTM_SETLINK, link, vid, pvid, untagged, self, master)
}
// BridgeVlanDel adds a new vlan filter entry
// Equivalent to: `bridge vlan del dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func BridgeVlanDel(link Link, vid uint16, pvid, untagged, self, master bool) error {
return pkgHandle.BridgeVlanDel(link, vid, pvid, untagged, self, master)
}
// BridgeVlanDel adds a new vlan filter entry
// Equivalent to: `bridge vlan del dev DEV vid VID [ pvid ] [ untagged ] [ self ] [ master ]`
func (h *Handle) BridgeVlanDel(link Link, vid uint16, pvid, untagged, self, master bool) error {
return h.bridgeVlanModify(unix.RTM_DELLINK, link, vid, pvid, untagged, self, master)
}
func (h *Handle) bridgeVlanModify(cmd int, link Link, vid uint16, pvid, untagged, self, master bool) error {
base := link.Attrs()
h.ensureIndex(base)
req := h.newNetlinkRequest(cmd, unix.NLM_F_ACK)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
msg.Index = int32(base.Index)
req.AddData(msg)
br := nl.NewRtAttr(unix.IFLA_AF_SPEC, nil)
var flags uint16
if self {
flags |= nl.BRIDGE_FLAGS_SELF
}
if master {
flags |= nl.BRIDGE_FLAGS_MASTER
}
if flags > 0 {
br.AddRtAttr(nl.IFLA_BRIDGE_FLAGS, nl.Uint16Attr(flags))
}
vlanInfo := &nl.BridgeVlanInfo{Vid: vid}
if pvid {
vlanInfo.Flags |= nl.BRIDGE_VLAN_INFO_PVID
}
if untagged {
vlanInfo.Flags |= nl.BRIDGE_VLAN_INFO_UNTAGGED
}
br.AddRtAttr(nl.IFLA_BRIDGE_VLAN_INFO, vlanInfo.Serialize())
req.AddData(br)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}

211
vendor/github.com/vishvananda/netlink/class.go generated vendored Normal file
View File

@@ -0,0 +1,211 @@
package netlink
import (
"fmt"
)
// Class interfaces for all classes
type Class interface {
Attrs() *ClassAttrs
Type() string
}
// Generic networking statistics for netlink users.
// This file contains "gnet_" prefixed structs and relevant functions.
// See Documentation/networking/getn_stats.txt in Linux source code for more details.
// GnetStatsBasic Ref: struct gnet_stats_basic { ... }
type GnetStatsBasic struct {
Bytes uint64 // number of seen bytes
Packets uint32 // number of seen packets
}
// GnetStatsRateEst Ref: struct gnet_stats_rate_est { ... }
type GnetStatsRateEst struct {
Bps uint32 // current byte rate
Pps uint32 // current packet rate
}
// GnetStatsRateEst64 Ref: struct gnet_stats_rate_est64 { ... }
type GnetStatsRateEst64 struct {
Bps uint64 // current byte rate
Pps uint64 // current packet rate
}
// GnetStatsQueue Ref: struct gnet_stats_queue { ... }
type GnetStatsQueue struct {
Qlen uint32 // queue length
Backlog uint32 // backlog size of queue
Drops uint32 // number of dropped packets
Requeues uint32 // number of requues
Overlimits uint32 // number of enqueues over the limit
}
// ClassStatistics representation based on generic networking statistics for netlink.
// See Documentation/networking/gen_stats.txt in Linux source code for more details.
type ClassStatistics struct {
Basic *GnetStatsBasic
Queue *GnetStatsQueue
RateEst *GnetStatsRateEst
}
// NewClassStatistics Construct a ClassStatistics struct which fields are all initialized by 0.
func NewClassStatistics() *ClassStatistics {
return &ClassStatistics{
Basic: &GnetStatsBasic{},
Queue: &GnetStatsQueue{},
RateEst: &GnetStatsRateEst{},
}
}
// ClassAttrs represents a netlink class. A filter is associated with a link,
// has a handle and a parent. The root filter of a device should have a
// parent == HANDLE_ROOT.
type ClassAttrs struct {
LinkIndex int
Handle uint32
Parent uint32
Leaf uint32
Statistics *ClassStatistics
}
func (q ClassAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Leaf: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Leaf)
}
// HtbClassAttrs stores the attributes of HTB class
type HtbClassAttrs struct {
// TODO handle all attributes
Rate uint64
Ceil uint64
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (q HtbClassAttrs) String() string {
return fmt.Sprintf("{Rate: %d, Ceil: %d, Buffer: %d, Cbuffer: %d}", q.Rate, q.Ceil, q.Buffer, q.Cbuffer)
}
// HtbClass represents an Htb class
type HtbClass struct {
ClassAttrs
Rate uint64
Ceil uint64
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (q HtbClass) String() string {
return fmt.Sprintf("{Rate: %d, Ceil: %d, Buffer: %d, Cbuffer: %d}", q.Rate, q.Ceil, q.Buffer, q.Cbuffer)
}
// Attrs returns the class attributes
func (q *HtbClass) Attrs() *ClassAttrs {
return &q.ClassAttrs
}
// Type return the class type
func (q *HtbClass) Type() string {
return "htb"
}
// GenericClass classes represent types that are not currently understood
// by this netlink library.
type GenericClass struct {
ClassAttrs
ClassType string
}
// Attrs return the class attributes
func (class *GenericClass) Attrs() *ClassAttrs {
return &class.ClassAttrs
}
// Type return the class type
func (class *GenericClass) Type() string {
return class.ClassType
}
// ServiceCurve is the way the HFSC curve are represented
type ServiceCurve struct {
m1 uint32
d uint32
m2 uint32
}
// Attrs return the parameters of the service curve
func (c *ServiceCurve) Attrs() (uint32, uint32, uint32) {
return c.m1, c.d, c.m2
}
// HfscClass is a representation of the HFSC class
type HfscClass struct {
ClassAttrs
Rsc ServiceCurve
Fsc ServiceCurve
Usc ServiceCurve
}
// SetUsc sets the Usc curve
func (hfsc *HfscClass) SetUsc(m1 uint32, d uint32, m2 uint32) {
hfsc.Usc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// SetFsc sets the Fsc curve
func (hfsc *HfscClass) SetFsc(m1 uint32, d uint32, m2 uint32) {
hfsc.Fsc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// SetRsc sets the Rsc curve
func (hfsc *HfscClass) SetRsc(m1 uint32, d uint32, m2 uint32) {
hfsc.Rsc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// SetSC implements the SC from the tc CLI
func (hfsc *HfscClass) SetSC(m1 uint32, d uint32, m2 uint32) {
hfsc.Rsc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
hfsc.Fsc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// SetUL implements the UL from the tc CLI
func (hfsc *HfscClass) SetUL(m1 uint32, d uint32, m2 uint32) {
hfsc.Usc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// SetLS implements the LS from the tc CLI
func (hfsc *HfscClass) SetLS(m1 uint32, d uint32, m2 uint32) {
hfsc.Fsc = ServiceCurve{m1: m1 / 8, d: d, m2: m2 / 8}
}
// NewHfscClass returns a new HFSC struct with the set parameters
func NewHfscClass(attrs ClassAttrs) *HfscClass {
return &HfscClass{
ClassAttrs: attrs,
Rsc: ServiceCurve{},
Fsc: ServiceCurve{},
Usc: ServiceCurve{},
}
}
func (hfsc *HfscClass) String() string {
return fmt.Sprintf(
"{%s -- {RSC: {m1=%d d=%d m2=%d}} {FSC: {m1=%d d=%d m2=%d}} {USC: {m1=%d d=%d m2=%d}}}",
hfsc.Attrs(), hfsc.Rsc.m1*8, hfsc.Rsc.d, hfsc.Rsc.m2*8, hfsc.Fsc.m1*8, hfsc.Fsc.d, hfsc.Fsc.m2*8, hfsc.Usc.m1*8, hfsc.Usc.d, hfsc.Usc.m2*8,
)
}
// Attrs return the Hfsc parameters
func (hfsc *HfscClass) Attrs() *ClassAttrs {
return &hfsc.ClassAttrs
}
// Type return the type of the class
func (hfsc *HfscClass) Type() string {
return "hfsc"
}

384
vendor/github.com/vishvananda/netlink/class_linux.go generated vendored Normal file
View File

@@ -0,0 +1,384 @@
package netlink
import (
"bytes"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// Internal tc_stats representation in Go struct.
// This is for internal uses only to deserialize the payload of rtattr.
// After the deserialization, this should be converted into the canonical stats
// struct, ClassStatistics, in case of statistics of a class.
// Ref: struct tc_stats { ... }
type tcStats struct {
Bytes uint64 // Number of enqueued bytes
Packets uint32 // Number of enqueued packets
Drops uint32 // Packets dropped because of lack of resources
Overlimits uint32 // Number of throttle events when this flow goes out of allocated bandwidth
Bps uint32 // Current flow byte rate
Pps uint32 // Current flow packet rate
Qlen uint32
Backlog uint32
}
// NewHtbClass NOTE: function is in here because it uses other linux functions
func NewHtbClass(attrs ClassAttrs, cattrs HtbClassAttrs) *HtbClass {
mtu := 1600
rate := cattrs.Rate / 8
ceil := cattrs.Ceil / 8
buffer := cattrs.Buffer
cbuffer := cattrs.Cbuffer
if ceil == 0 {
ceil = rate
}
if buffer == 0 {
buffer = uint32(float64(rate)/Hz() + float64(mtu))
}
buffer = uint32(Xmittime(rate, buffer))
if cbuffer == 0 {
cbuffer = uint32(float64(ceil)/Hz() + float64(mtu))
}
cbuffer = uint32(Xmittime(ceil, cbuffer))
return &HtbClass{
ClassAttrs: attrs,
Rate: rate,
Ceil: ceil,
Buffer: buffer,
Cbuffer: cbuffer,
Quantum: 10,
Level: 0,
Prio: 0,
}
}
// ClassDel will delete a class from the system.
// Equivalent to: `tc class del $class`
func ClassDel(class Class) error {
return pkgHandle.ClassDel(class)
}
// ClassDel will delete a class from the system.
// Equivalent to: `tc class del $class`
func (h *Handle) ClassDel(class Class) error {
return h.classModify(unix.RTM_DELTCLASS, 0, class)
}
// ClassChange will change a class in place
// Equivalent to: `tc class change $class`
// The parent and handle MUST NOT be changed.
func ClassChange(class Class) error {
return pkgHandle.ClassChange(class)
}
// ClassChange will change a class in place
// Equivalent to: `tc class change $class`
// The parent and handle MUST NOT be changed.
func (h *Handle) ClassChange(class Class) error {
return h.classModify(unix.RTM_NEWTCLASS, 0, class)
}
// ClassReplace will replace a class to the system.
// quivalent to: `tc class replace $class`
// The handle MAY be changed.
// If a class already exist with this parent/handle pair, the class is changed.
// If a class does not already exist with this parent/handle, a new class is created.
func ClassReplace(class Class) error {
return pkgHandle.ClassReplace(class)
}
// ClassReplace will replace a class to the system.
// quivalent to: `tc class replace $class`
// The handle MAY be changed.
// If a class already exist with this parent/handle pair, the class is changed.
// If a class does not already exist with this parent/handle, a new class is created.
func (h *Handle) ClassReplace(class Class) error {
return h.classModify(unix.RTM_NEWTCLASS, unix.NLM_F_CREATE, class)
}
// ClassAdd will add a class to the system.
// Equivalent to: `tc class add $class`
func ClassAdd(class Class) error {
return pkgHandle.ClassAdd(class)
}
// ClassAdd will add a class to the system.
// Equivalent to: `tc class add $class`
func (h *Handle) ClassAdd(class Class) error {
return h.classModify(
unix.RTM_NEWTCLASS,
unix.NLM_F_CREATE|unix.NLM_F_EXCL,
class,
)
}
func (h *Handle) classModify(cmd, flags int, class Class) error {
req := h.newNetlinkRequest(cmd, flags|unix.NLM_F_ACK)
base := class.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
}
req.AddData(msg)
if cmd != unix.RTM_DELTCLASS {
if err := classPayload(req, class); err != nil {
return err
}
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func classPayload(req *nl.NetlinkRequest, class Class) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(class.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
switch class.Type() {
case "htb":
htb := class.(*HtbClass)
opt := nl.TcHtbCopt{}
opt.Buffer = htb.Buffer
opt.Cbuffer = htb.Cbuffer
opt.Quantum = htb.Quantum
opt.Level = htb.Level
opt.Prio = htb.Prio
// TODO: Handle Debug properly. For now default to 0
/* Calculate {R,C}Tab and set Rate and Ceil */
cellLog := -1
ccellLog := -1
linklayer := nl.LINKLAYER_ETHERNET
mtu := 1600
var rtab [256]uint32
var ctab [256]uint32
tcrate := nl.TcRateSpec{Rate: uint32(htb.Rate)}
if CalcRtable(&tcrate, rtab[:], cellLog, uint32(mtu), linklayer) < 0 {
return errors.New("HTB: failed to calculate rate table")
}
opt.Rate = tcrate
tcceil := nl.TcRateSpec{Rate: uint32(htb.Ceil)}
if CalcRtable(&tcceil, ctab[:], ccellLog, uint32(mtu), linklayer) < 0 {
return errors.New("HTB: failed to calculate ceil rate table")
}
opt.Ceil = tcceil
options.AddRtAttr(nl.TCA_HTB_PARMS, opt.Serialize())
options.AddRtAttr(nl.TCA_HTB_RTAB, SerializeRtab(rtab))
options.AddRtAttr(nl.TCA_HTB_CTAB, SerializeRtab(ctab))
case "hfsc":
hfsc := class.(*HfscClass)
opt := nl.HfscCopt{}
opt.Rsc.Set(hfsc.Rsc.Attrs())
opt.Fsc.Set(hfsc.Fsc.Attrs())
opt.Usc.Set(hfsc.Usc.Attrs())
options.AddRtAttr(nl.TCA_HFSC_RSC, nl.SerializeHfscCurve(&opt.Rsc))
options.AddRtAttr(nl.TCA_HFSC_FSC, nl.SerializeHfscCurve(&opt.Fsc))
options.AddRtAttr(nl.TCA_HFSC_USC, nl.SerializeHfscCurve(&opt.Usc))
}
req.AddData(options)
return nil
}
// ClassList gets a list of classes in the system.
// Equivalent to: `tc class show`.
// Generally returns nothing if link and parent are not specified.
func ClassList(link Link, parent uint32) ([]Class, error) {
return pkgHandle.ClassList(link, parent)
}
// ClassList gets a list of classes in the system.
// Equivalent to: `tc class show`.
// Generally returns nothing if link and parent are not specified.
func (h *Handle) ClassList(link Link, parent uint32) ([]Class, error) {
req := h.newNetlinkRequest(unix.RTM_GETTCLASS, unix.NLM_F_DUMP)
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Parent: parent,
}
if link != nil {
base := link.Attrs()
h.ensureIndex(base)
msg.Ifindex = int32(base.Index)
}
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWTCLASS)
if err != nil {
return nil, err
}
var res []Class
for _, m := range msgs {
msg := nl.DeserializeTcMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
base := ClassAttrs{
LinkIndex: int(msg.Ifindex),
Handle: msg.Handle,
Parent: msg.Parent,
Statistics: nil,
}
var class Class
classType := ""
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.TCA_KIND:
classType = string(attr.Value[:len(attr.Value)-1])
switch classType {
case "htb":
class = &HtbClass{}
case "hfsc":
class = &HfscClass{}
default:
class = &GenericClass{ClassType: classType}
}
case nl.TCA_OPTIONS:
switch classType {
case "htb":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
_, err = parseHtbClassData(class, data)
if err != nil {
return nil, err
}
case "hfsc":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
_, err = parseHfscClassData(class, data)
if err != nil {
return nil, err
}
}
// For backward compatibility.
case nl.TCA_STATS:
base.Statistics, err = parseTcStats(attr.Value)
if err != nil {
return nil, err
}
case nl.TCA_STATS2:
base.Statistics, err = parseTcStats2(attr.Value)
if err != nil {
return nil, err
}
}
}
*class.Attrs() = base
res = append(res, class)
}
return res, nil
}
func parseHtbClassData(class Class, data []syscall.NetlinkRouteAttr) (bool, error) {
htb := class.(*HtbClass)
detailed := false
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_HTB_PARMS:
opt := nl.DeserializeTcHtbCopt(datum.Value)
htb.Rate = uint64(opt.Rate.Rate)
htb.Ceil = uint64(opt.Ceil.Rate)
htb.Buffer = opt.Buffer
htb.Cbuffer = opt.Cbuffer
htb.Quantum = opt.Quantum
htb.Level = opt.Level
htb.Prio = opt.Prio
}
}
return detailed, nil
}
func parseHfscClassData(class Class, data []syscall.NetlinkRouteAttr) (bool, error) {
hfsc := class.(*HfscClass)
detailed := false
for _, datum := range data {
m1, d, m2 := nl.DeserializeHfscCurve(datum.Value).Attrs()
switch datum.Attr.Type {
case nl.TCA_HFSC_RSC:
hfsc.Rsc = ServiceCurve{m1: m1, d: d, m2: m2}
case nl.TCA_HFSC_FSC:
hfsc.Fsc = ServiceCurve{m1: m1, d: d, m2: m2}
case nl.TCA_HFSC_USC:
hfsc.Usc = ServiceCurve{m1: m1, d: d, m2: m2}
}
}
return detailed, nil
}
func parseTcStats(data []byte) (*ClassStatistics, error) {
buf := &bytes.Buffer{}
buf.Write(data)
native := nl.NativeEndian()
tcStats := &tcStats{}
if err := binary.Read(buf, native, tcStats); err != nil {
return nil, err
}
stats := NewClassStatistics()
stats.Basic.Bytes = tcStats.Bytes
stats.Basic.Packets = tcStats.Packets
stats.Queue.Qlen = tcStats.Qlen
stats.Queue.Backlog = tcStats.Backlog
stats.Queue.Drops = tcStats.Drops
stats.Queue.Overlimits = tcStats.Overlimits
stats.RateEst.Bps = tcStats.Bps
stats.RateEst.Pps = tcStats.Pps
return stats, nil
}
func parseGnetStats(data []byte, gnetStats interface{}) error {
buf := &bytes.Buffer{}
buf.Write(data)
native := nl.NativeEndian()
return binary.Read(buf, native, gnetStats)
}
func parseTcStats2(data []byte) (*ClassStatistics, error) {
rtAttrs, err := nl.ParseRouteAttr(data)
if err != nil {
return nil, err
}
stats := NewClassStatistics()
for _, datum := range rtAttrs {
switch datum.Attr.Type {
case nl.TCA_STATS_BASIC:
if err := parseGnetStats(datum.Value, stats.Basic); err != nil {
return nil, fmt.Errorf("Failed to parse ClassStatistics.Basic with: %v\n%s",
err, hex.Dump(datum.Value))
}
case nl.TCA_STATS_QUEUE:
if err := parseGnetStats(datum.Value, stats.Queue); err != nil {
return nil, fmt.Errorf("Failed to parse ClassStatistics.Queue with: %v\n%s",
err, hex.Dump(datum.Value))
}
case nl.TCA_STATS_RATE_EST:
if err := parseGnetStats(datum.Value, stats.RateEst); err != nil {
return nil, fmt.Errorf("Failed to parse ClassStatistics.RateEst with: %v\n%s",
err, hex.Dump(datum.Value))
}
}
}
return stats, nil
}

View File

@@ -0,0 +1,394 @@
package netlink
import (
"bytes"
"encoding/binary"
"errors"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
const (
// ConntrackTable Conntrack table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK 1
ConntrackTable = 1
// ConntrackExpectTable Conntrack expect table
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink.h -> #define NFNL_SUBSYS_CTNETLINK_EXP 2
ConntrackExpectTable = 2
)
const (
// backward compatibility with golang 1.6 which does not have io.SeekCurrent
seekCurrent = 1
)
// InetFamily Family type
type InetFamily uint8
// -L [table] [options] List conntrack or expectation table
// -G [table] parameters Get conntrack or expectation
// -I [table] parameters Create a conntrack or expectation
// -U [table] parameters Update a conntrack
// -E [table] [options] Show events
// -C [table] Show counter
// -S Show statistics
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return pkgHandle.ConntrackTableList(table, family)
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return pkgHandle.ConntrackTableFlush(table)
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
return pkgHandle.ConntrackDeleteFilter(table, family, filter)
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return nil, err
}
// Deserialize all the flows
var result []*ConntrackFlow
for _, dataRaw := range res {
result = append(result, parseRawData(dataRaw))
}
return result, nil
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
req := h.newConntrackRequest(table, unix.AF_INET, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_NETFILTER, 0)
return err
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter CustomConntrackFilter) (uint, error) {
res, err := h.dumpConntrackTable(table, family)
if err != nil {
return 0, err
}
var matched uint
for _, dataRaw := range res {
flow := parseRawData(dataRaw)
if match := filter.MatchConntrackFlow(flow); match {
req2 := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_DELETE, unix.NLM_F_ACK)
// skip the first 4 byte that are the netfilter header, the newConntrackRequest is adding it already
req2.AddRawData(dataRaw[4:])
req2.Execute(unix.NETLINK_NETFILTER, 0)
matched++
}
}
return matched, nil
}
func (h *Handle) newConntrackRequest(table ConntrackTableType, family InetFamily, operation, flags int) *nl.NetlinkRequest {
// Create the Netlink request object
req := h.newNetlinkRequest((int(table)<<8)|operation, flags)
// Add the netfilter header
msg := &nl.Nfgenmsg{
NfgenFamily: uint8(family),
Version: nl.NFNETLINK_V0,
ResId: 0,
}
req.AddData(msg)
return req
}
func (h *Handle) dumpConntrackTable(table ConntrackTableType, family InetFamily) ([][]byte, error) {
req := h.newConntrackRequest(table, family, nl.IPCTNL_MSG_CT_GET, unix.NLM_F_DUMP)
return req.Execute(unix.NETLINK_NETFILTER, 0)
}
// The full conntrack flow structure is very complicated and can be found in the file:
// http://git.netfilter.org/libnetfilter_conntrack/tree/include/internal/object.h
// For the time being, the structure below allows to parse and extract the base information of a flow
type ipTuple struct {
Bytes uint64
DstIP net.IP
DstPort uint16
Packets uint64
Protocol uint8
SrcIP net.IP
SrcPort uint16
}
type ConntrackFlow struct {
FamilyType uint8
Forward ipTuple
Reverse ipTuple
Mark uint32
}
func (s *ConntrackFlow) String() string {
// conntrack cmd output:
// udp 17 src=127.0.0.1 dst=127.0.0.1 sport=4001 dport=1234 packets=5 bytes=532 [UNREPLIED] src=127.0.0.1 dst=127.0.0.1 sport=1234 dport=4001 packets=10 bytes=1078 mark=0
return fmt.Sprintf("%s\t%d src=%s dst=%s sport=%d dport=%d packets=%d bytes=%d\tsrc=%s dst=%s sport=%d dport=%d packets=%d bytes=%d mark=%d",
nl.L4ProtoMap[s.Forward.Protocol], s.Forward.Protocol,
s.Forward.SrcIP.String(), s.Forward.DstIP.String(), s.Forward.SrcPort, s.Forward.DstPort, s.Forward.Packets, s.Forward.Bytes,
s.Reverse.SrcIP.String(), s.Reverse.DstIP.String(), s.Reverse.SrcPort, s.Reverse.DstPort, s.Reverse.Packets, s.Reverse.Bytes,
s.Mark)
}
// This method parse the ip tuple structure
// The message structure is the following:
// <len, [CTA_IP_V4_SRC|CTA_IP_V6_SRC], 16 bytes for the IP>
// <len, [CTA_IP_V4_DST|CTA_IP_V6_DST], 16 bytes for the IP>
// <len, NLA_F_NESTED|nl.CTA_TUPLE_PROTO, 1 byte for the protocol, 3 bytes of padding>
// <len, CTA_PROTO_SRC_PORT, 2 bytes for the source port, 2 bytes of padding>
// <len, CTA_PROTO_DST_PORT, 2 bytes for the source port, 2 bytes of padding>
func parseIpTuple(reader *bytes.Reader, tpl *ipTuple) uint8 {
for i := 0; i < 2; i++ {
_, t, _, v := parseNfAttrTLV(reader)
switch t {
case nl.CTA_IP_V4_SRC, nl.CTA_IP_V6_SRC:
tpl.SrcIP = v
case nl.CTA_IP_V4_DST, nl.CTA_IP_V6_DST:
tpl.DstIP = v
}
}
// Skip the next 4 bytes nl.NLA_F_NESTED|nl.CTA_TUPLE_PROTO
reader.Seek(4, seekCurrent)
_, t, _, v := parseNfAttrTLV(reader)
if t == nl.CTA_PROTO_NUM {
tpl.Protocol = uint8(v[0])
}
// Skip some padding 3 bytes
reader.Seek(3, seekCurrent)
for i := 0; i < 2; i++ {
_, t, _ := parseNfAttrTL(reader)
switch t {
case nl.CTA_PROTO_SRC_PORT:
parseBERaw16(reader, &tpl.SrcPort)
case nl.CTA_PROTO_DST_PORT:
parseBERaw16(reader, &tpl.DstPort)
}
// Skip some padding 2 byte
reader.Seek(2, seekCurrent)
}
return tpl.Protocol
}
func parseNfAttrTLV(r *bytes.Reader) (isNested bool, attrType, len uint16, value []byte) {
isNested, attrType, len = parseNfAttrTL(r)
value = make([]byte, len)
binary.Read(r, binary.BigEndian, &value)
return isNested, attrType, len, value
}
func parseNfAttrTL(r *bytes.Reader) (isNested bool, attrType, len uint16) {
binary.Read(r, nl.NativeEndian(), &len)
len -= nl.SizeofNfattr
binary.Read(r, nl.NativeEndian(), &attrType)
isNested = (attrType & nl.NLA_F_NESTED) == nl.NLA_F_NESTED
attrType = attrType & (nl.NLA_F_NESTED - 1)
return isNested, attrType, len
}
func parseBERaw16(r *bytes.Reader, v *uint16) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw32(r *bytes.Reader, v *uint32) {
binary.Read(r, binary.BigEndian, v)
}
func parseBERaw64(r *bytes.Reader, v *uint64) {
binary.Read(r, binary.BigEndian, v)
}
func parseByteAndPacketCounters(r *bytes.Reader) (bytes, packets uint64) {
for i := 0; i < 2; i++ {
switch _, t, _ := parseNfAttrTL(r); t {
case nl.CTA_COUNTERS_BYTES:
parseBERaw64(r, &bytes)
case nl.CTA_COUNTERS_PACKETS:
parseBERaw64(r, &packets)
default:
return
}
}
return
}
func parseConnectionMark(r *bytes.Reader) (mark uint32) {
parseBERaw32(r, &mark)
return
}
func parseRawData(data []byte) *ConntrackFlow {
s := &ConntrackFlow{}
// First there is the Nfgenmsg header
// consume only the family field
reader := bytes.NewReader(data)
binary.Read(reader, nl.NativeEndian(), &s.FamilyType)
// skip rest of the Netfilter header
reader.Seek(3, seekCurrent)
// The message structure is the following:
// <len, NLA_F_NESTED|CTA_TUPLE_ORIG> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the forward flow
// <len, NLA_F_NESTED|CTA_TUPLE_REPLY> 4 bytes
// <len, NLA_F_NESTED|CTA_TUPLE_IP> 4 bytes
// flow information of the reverse flow
for reader.Len() > 0 {
if nested, t, l := parseNfAttrTL(reader); nested {
switch t {
case nl.CTA_TUPLE_ORIG:
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Forward)
}
case nl.CTA_TUPLE_REPLY:
if nested, t, _ = parseNfAttrTL(reader); nested && t == nl.CTA_TUPLE_IP {
parseIpTuple(reader, &s.Reverse)
} else {
// Header not recognized skip it
reader.Seek(int64(l), seekCurrent)
}
case nl.CTA_COUNTERS_ORIG:
s.Forward.Bytes, s.Forward.Packets = parseByteAndPacketCounters(reader)
case nl.CTA_COUNTERS_REPLY:
s.Reverse.Bytes, s.Reverse.Packets = parseByteAndPacketCounters(reader)
}
} else {
switch t {
case nl.CTA_MARK:
s.Mark = parseConnectionMark(reader)
}
}
}
return s
}
// Conntrack parameters and options:
// -n, --src-nat ip source NAT ip
// -g, --dst-nat ip destination NAT ip
// -j, --any-nat ip source or destination NAT ip
// -m, --mark mark Set mark
// -c, --secmark secmark Set selinux secmark
// -e, --event-mask eventmask Event mask, eg. NEW,DESTROY
// -z, --zero Zero counters while listing
// -o, --output type[,...] Output format, eg. xml
// -l, --label label[,...] conntrack labels
// Common parameters and options:
// -s, --src, --orig-src ip Source address from original direction
// -d, --dst, --orig-dst ip Destination address from original direction
// -r, --reply-src ip Source address from reply direction
// -q, --reply-dst ip Destination address from reply direction
// -p, --protonum proto Layer 4 Protocol, eg. 'tcp'
// -f, --family proto Layer 3 Protocol, eg. 'ipv6'
// -t, --timeout timeout Set timeout
// -u, --status status Set status, eg. ASSURED
// -w, --zone value Set conntrack zone
// --orig-zone value Set zone for original direction
// --reply-zone value Set zone for reply direction
// -b, --buffer-size Netlink socket buffer size
// --mask-src ip Source mask address
// --mask-dst ip Destination mask address
// Filter types
type ConntrackFilterType uint8
const (
ConntrackOrigSrcIP = iota // -orig-src ip Source address from original direction
ConntrackOrigDstIP // -orig-dst ip Destination address from original direction
ConntrackReplySrcIP // --reply-src ip Reply Source IP
ConntrackReplyDstIP // --reply-dst ip Reply Destination IP
ConntrackReplyAnyIP // Match source or destination reply IP
ConntrackNatSrcIP = ConntrackReplySrcIP // deprecated use instead ConntrackReplySrcIP
ConntrackNatDstIP = ConntrackReplyDstIP // deprecated use instead ConntrackReplyDstIP
ConntrackNatAnyIP = ConntrackReplyAnyIP // deprecated use instaed ConntrackReplyAnyIP
)
type CustomConntrackFilter interface {
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches
// the filter or false otherwise
MatchConntrackFlow(flow *ConntrackFlow) bool
}
type ConntrackFilter struct {
ipFilter map[ConntrackFilterType]net.IP
}
// AddIP adds an IP to the conntrack filter
func (f *ConntrackFilter) AddIP(tp ConntrackFilterType, ip net.IP) error {
if f.ipFilter == nil {
f.ipFilter = make(map[ConntrackFilterType]net.IP)
}
if _, ok := f.ipFilter[tp]; ok {
return errors.New("Filter attribute already present")
}
f.ipFilter[tp] = ip
return nil
}
// MatchConntrackFlow applies the filter to the flow and returns true if the flow matches the filter
// false otherwise
func (f *ConntrackFilter) MatchConntrackFlow(flow *ConntrackFlow) bool {
if len(f.ipFilter) == 0 {
// empty filter always not match
return false
}
match := true
// -orig-src ip Source address from original direction
if elem, found := f.ipFilter[ConntrackOrigSrcIP]; found {
match = match && elem.Equal(flow.Forward.SrcIP)
}
// -orig-dst ip Destination address from original direction
if elem, found := f.ipFilter[ConntrackOrigDstIP]; match && found {
match = match && elem.Equal(flow.Forward.DstIP)
}
// -src-nat ip Source NAT ip
if elem, found := f.ipFilter[ConntrackReplySrcIP]; match && found {
match = match && elem.Equal(flow.Reverse.SrcIP)
}
// -dst-nat ip Destination NAT ip
if elem, found := f.ipFilter[ConntrackReplyDstIP]; match && found {
match = match && elem.Equal(flow.Reverse.DstIP)
}
// Match source or destination reply IP
if elem, found := f.ipFilter[ConntrackReplyAnyIP]; match && found {
match = match && (elem.Equal(flow.Reverse.SrcIP) || elem.Equal(flow.Reverse.DstIP))
}
return match
}
var _ CustomConntrackFilter = (*ConntrackFilter)(nil)

View File

@@ -0,0 +1,53 @@
// +build !linux
package netlink
// ConntrackTableType Conntrack table for the netlink operation
type ConntrackTableType uint8
// InetFamily Family type
type InetFamily uint8
// ConntrackFlow placeholder
type ConntrackFlow struct{}
// ConntrackFilter placeholder
type ConntrackFilter struct{}
// ConntrackTableList returns the flow list of a table of a specific family
// conntrack -L [table] [options] List conntrack or expectation table
func ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return nil, ErrNotImplemented
}
// ConntrackTableFlush flushes all the flows of a specified table
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func ConntrackTableFlush(table ConntrackTableType) error {
return ErrNotImplemented
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter
// conntrack -D [table] parameters Delete conntrack or expectation
func ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter *ConntrackFilter) (uint, error) {
return 0, ErrNotImplemented
}
// ConntrackTableList returns the flow list of a table of a specific family using the netlink handle passed
// conntrack -L [table] [options] List conntrack or expectation table
func (h *Handle) ConntrackTableList(table ConntrackTableType, family InetFamily) ([]*ConntrackFlow, error) {
return nil, ErrNotImplemented
}
// ConntrackTableFlush flushes all the flows of a specified table using the netlink handle passed
// conntrack -F [table] Flush table
// The flush operation applies to all the family types
func (h *Handle) ConntrackTableFlush(table ConntrackTableType) error {
return ErrNotImplemented
}
// ConntrackDeleteFilter deletes entries on the specified table on the base of the filter using the netlink handle passed
// conntrack -D [table] parameters Delete conntrack or expectation
func (h *Handle) ConntrackDeleteFilter(table ConntrackTableType, family InetFamily, filter *ConntrackFilter) (uint, error) {
return 0, ErrNotImplemented
}

272
vendor/github.com/vishvananda/netlink/devlink_linux.go generated vendored Normal file
View File

@@ -0,0 +1,272 @@
package netlink
import (
"syscall"
"fmt"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// DevlinkDevEswitchAttr represents device's eswitch attributes
type DevlinkDevEswitchAttr struct {
Mode string
InlineMode string
EncapMode string
}
// DevlinkDevAttrs represents device attributes
type DevlinkDevAttrs struct {
Eswitch DevlinkDevEswitchAttr
}
// DevlinkDevice represents device and its attributes
type DevlinkDevice struct {
BusName string
DeviceName string
Attrs DevlinkDevAttrs
}
func parseDevLinkDeviceList(msgs [][]byte) ([]*DevlinkDevice, error) {
devices := make([]*DevlinkDevice, 0, len(msgs))
for _, m := range msgs {
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
dev := &DevlinkDevice{}
if err = dev.parseAttributes(attrs); err != nil {
return nil, err
}
devices = append(devices, dev)
}
return devices, nil
}
func eswitchStringToMode(modeName string) (uint16, error) {
if modeName == "legacy" {
return nl.DEVLINK_ESWITCH_MODE_LEGACY, nil
} else if modeName == "switchdev" {
return nl.DEVLINK_ESWITCH_MODE_SWITCHDEV, nil
} else {
return 0xffff, fmt.Errorf("invalid switchdev mode")
}
}
func parseEswitchMode(mode uint16) string {
var eswitchMode = map[uint16]string{
nl.DEVLINK_ESWITCH_MODE_LEGACY: "legacy",
nl.DEVLINK_ESWITCH_MODE_SWITCHDEV: "switchdev",
}
if eswitchMode[mode] == "" {
return "unknown"
} else {
return eswitchMode[mode]
}
}
func parseEswitchInlineMode(inlinemode uint8) string {
var eswitchInlineMode = map[uint8]string{
nl.DEVLINK_ESWITCH_INLINE_MODE_NONE: "none",
nl.DEVLINK_ESWITCH_INLINE_MODE_LINK: "link",
nl.DEVLINK_ESWITCH_INLINE_MODE_NETWORK: "network",
nl.DEVLINK_ESWITCH_INLINE_MODE_TRANSPORT: "transport",
}
if eswitchInlineMode[inlinemode] == "" {
return "unknown"
} else {
return eswitchInlineMode[inlinemode]
}
}
func parseEswitchEncapMode(encapmode uint8) string {
var eswitchEncapMode = map[uint8]string{
nl.DEVLINK_ESWITCH_ENCAP_MODE_NONE: "disable",
nl.DEVLINK_ESWITCH_ENCAP_MODE_BASIC: "enable",
}
if eswitchEncapMode[encapmode] == "" {
return "unknown"
} else {
return eswitchEncapMode[encapmode]
}
}
func (d *DevlinkDevice) parseAttributes(attrs []syscall.NetlinkRouteAttr) error {
for _, a := range attrs {
switch a.Attr.Type {
case nl.DEVLINK_ATTR_BUS_NAME:
d.BusName = string(a.Value)
case nl.DEVLINK_ATTR_DEV_NAME:
d.DeviceName = string(a.Value)
case nl.DEVLINK_ATTR_ESWITCH_MODE:
d.Attrs.Eswitch.Mode = parseEswitchMode(native.Uint16(a.Value))
case nl.DEVLINK_ATTR_ESWITCH_INLINE_MODE:
d.Attrs.Eswitch.InlineMode = parseEswitchInlineMode(uint8(a.Value[0]))
case nl.DEVLINK_ATTR_ESWITCH_ENCAP_MODE:
d.Attrs.Eswitch.EncapMode = parseEswitchEncapMode(uint8(a.Value[0]))
}
}
return nil
}
func (dev *DevlinkDevice) parseEswitchAttrs(msgs [][]byte) {
m := msgs[0]
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return
}
dev.parseAttributes(attrs)
}
func (h *Handle) getEswitchAttrs(family *GenlFamily, dev *DevlinkDevice) {
msg := &nl.Genlmsg{
Command: nl.DEVLINK_CMD_ESWITCH_GET,
Version: nl.GENL_DEVLINK_VERSION,
}
req := h.newNetlinkRequest(int(family.ID), unix.NLM_F_REQUEST|unix.NLM_F_ACK)
req.AddData(msg)
b := make([]byte, len(dev.BusName))
copy(b, dev.BusName)
data := nl.NewRtAttr(nl.DEVLINK_ATTR_BUS_NAME, b)
req.AddData(data)
b = make([]byte, len(dev.DeviceName))
copy(b, dev.DeviceName)
data = nl.NewRtAttr(nl.DEVLINK_ATTR_DEV_NAME, b)
req.AddData(data)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return
}
dev.parseEswitchAttrs(msgs)
}
// DevLinkGetDeviceList provides a pointer to devlink devices and nil error,
// otherwise returns an error code.
func (h *Handle) DevLinkGetDeviceList() ([]*DevlinkDevice, error) {
f, err := h.GenlFamilyGet(nl.GENL_DEVLINK_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.DEVLINK_CMD_GET,
Version: nl.GENL_DEVLINK_VERSION,
}
req := h.newNetlinkRequest(int(f.ID),
unix.NLM_F_REQUEST|unix.NLM_F_ACK|unix.NLM_F_DUMP)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
devices, err := parseDevLinkDeviceList(msgs)
if err != nil {
return nil, err
}
for _, d := range devices {
h.getEswitchAttrs(f, d)
}
return devices, nil
}
// DevLinkGetDeviceList provides a pointer to devlink devices and nil error,
// otherwise returns an error code.
func DevLinkGetDeviceList() ([]*DevlinkDevice, error) {
return pkgHandle.DevLinkGetDeviceList()
}
func parseDevlinkDevice(msgs [][]byte) (*DevlinkDevice, error) {
m := msgs[0]
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
dev := &DevlinkDevice{}
if err = dev.parseAttributes(attrs); err != nil {
return nil, err
}
return dev, nil
}
func (h *Handle) createCmdReq(cmd uint8, bus string, device string) (*GenlFamily, *nl.NetlinkRequest, error) {
f, err := h.GenlFamilyGet(nl.GENL_DEVLINK_NAME)
if err != nil {
return nil, nil, err
}
msg := &nl.Genlmsg{
Command: cmd,
Version: nl.GENL_DEVLINK_VERSION,
}
req := h.newNetlinkRequest(int(f.ID),
unix.NLM_F_REQUEST|unix.NLM_F_ACK)
req.AddData(msg)
b := make([]byte, len(bus)+1)
copy(b, bus)
data := nl.NewRtAttr(nl.DEVLINK_ATTR_BUS_NAME, b)
req.AddData(data)
b = make([]byte, len(device)+1)
copy(b, device)
data = nl.NewRtAttr(nl.DEVLINK_ATTR_DEV_NAME, b)
req.AddData(data)
return f, req, nil
}
// DevlinkGetDeviceByName provides a pointer to devlink device and nil error,
// otherwise returns an error code.
func (h *Handle) DevLinkGetDeviceByName(Bus string, Device string) (*DevlinkDevice, error) {
f, req, err := h.createCmdReq(nl.DEVLINK_CMD_GET, Bus, Device)
if err != nil {
return nil, err
}
respmsg, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
dev, err := parseDevlinkDevice(respmsg)
if err == nil {
h.getEswitchAttrs(f, dev)
}
return dev, err
}
// DevlinkGetDeviceByName provides a pointer to devlink device and nil error,
// otherwise returns an error code.
func DevLinkGetDeviceByName(Bus string, Device string) (*DevlinkDevice, error) {
return pkgHandle.DevLinkGetDeviceByName(Bus, Device)
}
// DevLinkSetEswitchMode sets eswitch mode if able to set successfully or
// returns an error code.
// Equivalent to: `devlink dev eswitch set $dev mode switchdev`
// Equivalent to: `devlink dev eswitch set $dev mode legacy`
func (h *Handle) DevLinkSetEswitchMode(Dev *DevlinkDevice, NewMode string) error {
mode, err := eswitchStringToMode(NewMode)
if err != nil {
return err
}
_, req, err := h.createCmdReq(nl.DEVLINK_CMD_ESWITCH_SET, Dev.BusName, Dev.DeviceName)
if err != nil {
return err
}
req.AddData(nl.NewRtAttr(nl.DEVLINK_ATTR_ESWITCH_MODE, nl.Uint16Attr(mode)))
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
// DevLinkSetEswitchMode sets eswitch mode if able to set successfully or
// returns an error code.
// Equivalent to: `devlink dev eswitch set $dev mode switchdev`
// Equivalent to: `devlink dev eswitch set $dev mode legacy`
func DevLinkSetEswitchMode(Dev *DevlinkDevice, NewMode string) error {
return pkgHandle.DevLinkSetEswitchMode(Dev, NewMode)
}

View File

@@ -2,6 +2,7 @@ package netlink
import (
"fmt"
"net"
)
type Filter interface {
@@ -9,7 +10,7 @@ type Filter interface {
Type() string
}
// Filter represents a netlink filter. A filter is associated with a link,
// FilterAttrs represents a netlink filter. A filter is associated with a link,
// has a handle and a parent. The root filter of a device should have a
// parent == HANDLE_ROOT.
type FilterAttrs struct {
@@ -17,26 +18,294 @@ type FilterAttrs struct {
Handle uint32
Parent uint32
Priority uint16 // lower is higher priority
Protocol uint16 // syscall.ETH_P_*
Protocol uint16 // unix.ETH_P_*
}
func (q FilterAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Priority: %d, Protocol: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Priority, q.Protocol)
}
// U32 filters on many packet related properties
type U32 struct {
FilterAttrs
// Currently only supports redirecting to another interface
RedirIndex int
type TcAct int32
const (
TC_ACT_UNSPEC TcAct = -1
TC_ACT_OK TcAct = 0
TC_ACT_RECLASSIFY TcAct = 1
TC_ACT_SHOT TcAct = 2
TC_ACT_PIPE TcAct = 3
TC_ACT_STOLEN TcAct = 4
TC_ACT_QUEUED TcAct = 5
TC_ACT_REPEAT TcAct = 6
TC_ACT_REDIRECT TcAct = 7
TC_ACT_JUMP TcAct = 0x10000000
)
func (a TcAct) String() string {
switch a {
case TC_ACT_UNSPEC:
return "unspec"
case TC_ACT_OK:
return "ok"
case TC_ACT_RECLASSIFY:
return "reclassify"
case TC_ACT_SHOT:
return "shot"
case TC_ACT_PIPE:
return "pipe"
case TC_ACT_STOLEN:
return "stolen"
case TC_ACT_QUEUED:
return "queued"
case TC_ACT_REPEAT:
return "repeat"
case TC_ACT_REDIRECT:
return "redirect"
case TC_ACT_JUMP:
return "jump"
}
return fmt.Sprintf("0x%x", int32(a))
}
func (filter *U32) Attrs() *FilterAttrs {
type TcPolAct int32
const (
TC_POLICE_UNSPEC TcPolAct = TcPolAct(TC_ACT_UNSPEC)
TC_POLICE_OK TcPolAct = TcPolAct(TC_ACT_OK)
TC_POLICE_RECLASSIFY TcPolAct = TcPolAct(TC_ACT_RECLASSIFY)
TC_POLICE_SHOT TcPolAct = TcPolAct(TC_ACT_SHOT)
TC_POLICE_PIPE TcPolAct = TcPolAct(TC_ACT_PIPE)
)
func (a TcPolAct) String() string {
switch a {
case TC_POLICE_UNSPEC:
return "unspec"
case TC_POLICE_OK:
return "ok"
case TC_POLICE_RECLASSIFY:
return "reclassify"
case TC_POLICE_SHOT:
return "shot"
case TC_POLICE_PIPE:
return "pipe"
}
return fmt.Sprintf("0x%x", int32(a))
}
type ActionAttrs struct {
Index int
Capab int
Action TcAct
Refcnt int
Bindcnt int
}
func (q ActionAttrs) String() string {
return fmt.Sprintf("{Index: %d, Capab: %x, Action: %s, Refcnt: %d, Bindcnt: %d}", q.Index, q.Capab, q.Action.String(), q.Refcnt, q.Bindcnt)
}
// Action represents an action in any supported filter.
type Action interface {
Attrs() *ActionAttrs
Type() string
}
type GenericAction struct {
ActionAttrs
}
func (action *GenericAction) Type() string {
return "generic"
}
func (action *GenericAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
type BpfAction struct {
ActionAttrs
Fd int
Name string
}
func (action *BpfAction) Type() string {
return "bpf"
}
func (action *BpfAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
type ConnmarkAction struct {
ActionAttrs
Zone uint16
}
func (action *ConnmarkAction) Type() string {
return "connmark"
}
func (action *ConnmarkAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
func NewConnmarkAction() *ConnmarkAction {
return &ConnmarkAction{
ActionAttrs: ActionAttrs{
Action: TC_ACT_PIPE,
},
}
}
type MirredAct uint8
func (a MirredAct) String() string {
switch a {
case TCA_EGRESS_REDIR:
return "egress redir"
case TCA_EGRESS_MIRROR:
return "egress mirror"
case TCA_INGRESS_REDIR:
return "ingress redir"
case TCA_INGRESS_MIRROR:
return "ingress mirror"
}
return "unknown"
}
const (
TCA_EGRESS_REDIR MirredAct = 1 /* packet redirect to EGRESS*/
TCA_EGRESS_MIRROR MirredAct = 2 /* mirror packet to EGRESS */
TCA_INGRESS_REDIR MirredAct = 3 /* packet redirect to INGRESS*/
TCA_INGRESS_MIRROR MirredAct = 4 /* mirror packet to INGRESS */
)
type MirredAction struct {
ActionAttrs
MirredAction MirredAct
Ifindex int
}
func (action *MirredAction) Type() string {
return "mirred"
}
func (action *MirredAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
func NewMirredAction(redirIndex int) *MirredAction {
return &MirredAction{
ActionAttrs: ActionAttrs{
Action: TC_ACT_STOLEN,
},
MirredAction: TCA_EGRESS_REDIR,
Ifindex: redirIndex,
}
}
type TunnelKeyAct int8
const (
TCA_TUNNEL_KEY_SET TunnelKeyAct = 1 // set tunnel key
TCA_TUNNEL_KEY_UNSET TunnelKeyAct = 2 // unset tunnel key
)
type TunnelKeyAction struct {
ActionAttrs
Action TunnelKeyAct
SrcAddr net.IP
DstAddr net.IP
KeyID uint32
}
func (action *TunnelKeyAction) Type() string {
return "tunnel_key"
}
func (action *TunnelKeyAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
func NewTunnelKeyAction() *TunnelKeyAction {
return &TunnelKeyAction{
ActionAttrs: ActionAttrs{
Action: TC_ACT_PIPE,
},
}
}
type SkbEditAction struct {
ActionAttrs
QueueMapping *uint16
PType *uint16
Priority *uint32
Mark *uint32
}
func (action *SkbEditAction) Type() string {
return "skbedit"
}
func (action *SkbEditAction) Attrs() *ActionAttrs {
return &action.ActionAttrs
}
func NewSkbEditAction() *SkbEditAction {
return &SkbEditAction{
ActionAttrs: ActionAttrs{
Action: TC_ACT_PIPE,
},
}
}
// MatchAll filters match all packets
type MatchAll struct {
FilterAttrs
ClassId uint32
Actions []Action
}
func (filter *MatchAll) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *U32) Type() string {
return "u32"
func (filter *MatchAll) Type() string {
return "matchall"
}
type FilterFwAttrs struct {
ClassId uint32
InDev string
Mask uint32
Index uint32
Buffer uint32
Mtu uint32
Mpu uint16
Rate uint32
AvRate uint32
PeakRate uint32
Action TcPolAct
Overhead uint16
LinkLayer int
}
type BpfFilter struct {
FilterAttrs
ClassId uint32
Fd int
Name string
DirectAction bool
Id int
Tag string
}
func (filter *BpfFilter) Type() string {
return "bpf"
}
func (filter *BpfFilter) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
// GenericFilter filters represent types that are not currently understood

View File

@@ -1,16 +1,135 @@
package netlink
import (
"bytes"
"encoding/binary"
"encoding/hex"
"errors"
"fmt"
"net"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// Constants used in TcU32Sel.Flags.
const (
TC_U32_TERMINAL = nl.TC_U32_TERMINAL
TC_U32_OFFSET = nl.TC_U32_OFFSET
TC_U32_VAROFFSET = nl.TC_U32_VAROFFSET
TC_U32_EAT = nl.TC_U32_EAT
)
// Sel of the U32 filters that contains multiple TcU32Key. This is the type
// alias and the frontend representation of nl.TcU32Sel. It is serialized into
// canonical nl.TcU32Sel with the appropriate endianness.
type TcU32Sel = nl.TcU32Sel
// TcU32Key contained of Sel in the U32 filters. This is the type alias and the
// frontend representation of nl.TcU32Key. It is serialized into chanonical
// nl.TcU32Sel with the appropriate endianness.
type TcU32Key = nl.TcU32Key
// U32 filters on many packet related properties
type U32 struct {
FilterAttrs
ClassId uint32
Divisor uint32 // Divisor MUST be power of 2.
Hash uint32
RedirIndex int
Sel *TcU32Sel
Actions []Action
}
func (filter *U32) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *U32) Type() string {
return "u32"
}
// Fw filter filters on firewall marks
// NOTE: this is in filter_linux because it refers to nl.TcPolice which
// is defined in nl/tc_linux.go
type Fw struct {
FilterAttrs
ClassId uint32
// TODO remove nl type from interface
Police nl.TcPolice
InDev string
// TODO Action
Mask uint32
AvRate uint32
Rtab [256]uint32
Ptab [256]uint32
}
func NewFw(attrs FilterAttrs, fattrs FilterFwAttrs) (*Fw, error) {
var rtab [256]uint32
var ptab [256]uint32
rcellLog := -1
pcellLog := -1
avrate := fattrs.AvRate / 8
police := nl.TcPolice{}
police.Rate.Rate = fattrs.Rate / 8
police.PeakRate.Rate = fattrs.PeakRate / 8
buffer := fattrs.Buffer
linklayer := nl.LINKLAYER_ETHERNET
if fattrs.LinkLayer != nl.LINKLAYER_UNSPEC {
linklayer = fattrs.LinkLayer
}
police.Action = int32(fattrs.Action)
if police.Rate.Rate != 0 {
police.Rate.Mpu = fattrs.Mpu
police.Rate.Overhead = fattrs.Overhead
if CalcRtable(&police.Rate, rtab[:], rcellLog, fattrs.Mtu, linklayer) < 0 {
return nil, errors.New("TBF: failed to calculate rate table")
}
police.Burst = uint32(Xmittime(uint64(police.Rate.Rate), uint32(buffer)))
}
police.Mtu = fattrs.Mtu
if police.PeakRate.Rate != 0 {
police.PeakRate.Mpu = fattrs.Mpu
police.PeakRate.Overhead = fattrs.Overhead
if CalcRtable(&police.PeakRate, ptab[:], pcellLog, fattrs.Mtu, linklayer) < 0 {
return nil, errors.New("POLICE: failed to calculate peak rate table")
}
}
return &Fw{
FilterAttrs: attrs,
ClassId: fattrs.ClassId,
InDev: fattrs.InDev,
Mask: fattrs.Mask,
Police: police,
AvRate: avrate,
Rtab: rtab,
Ptab: ptab,
}, nil
}
func (filter *Fw) Attrs() *FilterAttrs {
return &filter.FilterAttrs
}
func (filter *Fw) Type() string {
return "fw"
}
// FilterDel will delete a filter from the system.
// Equivalent to: `tc filter del $filter`
func FilterDel(filter Filter) error {
req := nl.NewNetlinkRequest(syscall.RTM_DELTFILTER, syscall.NLM_F_ACK)
return pkgHandle.FilterDel(filter)
}
// FilterDel will delete a filter from the system.
// Equivalent to: `tc filter del $filter`
func (h *Handle) FilterDel(filter Filter) error {
req := h.newNetlinkRequest(unix.RTM_DELTFILTER, unix.NLM_F_ACK)
base := filter.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
@@ -21,14 +140,37 @@ func FilterDel(filter Filter) error {
}
req.AddData(msg)
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// FilterAdd will add a filter to the system.
// Equivalent to: `tc filter add $filter`
func FilterAdd(filter Filter) error {
req := nl.NewNetlinkRequest(syscall.RTM_NEWTFILTER, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
return pkgHandle.FilterAdd(filter)
}
// FilterAdd will add a filter to the system.
// Equivalent to: `tc filter add $filter`
func (h *Handle) FilterAdd(filter Filter) error {
return h.filterModify(filter, unix.NLM_F_CREATE|unix.NLM_F_EXCL)
}
// FilterReplace will replace a filter.
// Equivalent to: `tc filter replace $filter`
func FilterReplace(filter Filter) error {
return pkgHandle.FilterReplace(filter)
}
// FilterReplace will replace a filter.
// Equivalent to: `tc filter replace $filter`
func (h *Handle) FilterReplace(filter Filter) error {
return h.filterModify(filter, unix.NLM_F_CREATE)
}
func (h *Handle) filterModify(filter Filter, flags int) error {
native = nl.NativeEndian()
req := h.newNetlinkRequest(unix.RTM_NEWTFILTER, flags|unix.NLM_F_ACK)
base := filter.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
@@ -41,48 +183,138 @@ func FilterAdd(filter Filter) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(filter.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
if u32, ok := filter.(*U32); ok {
// match all
sel := nl.TcU32Sel{
Nkeys: 1,
Flags: nl.TC_U32_TERMINAL,
switch filter := filter.(type) {
case *U32:
sel := filter.Sel
if sel == nil {
// match all
sel = &nl.TcU32Sel{
Nkeys: 1,
Flags: nl.TC_U32_TERMINAL,
}
sel.Keys = append(sel.Keys, nl.TcU32Key{})
}
sel.Keys = append(sel.Keys, nl.TcU32Key{})
nl.NewRtAttrChild(options, nl.TCA_U32_SEL, sel.Serialize())
actions := nl.NewRtAttrChild(options, nl.TCA_U32_ACT, nil)
table := nl.NewRtAttrChild(actions, nl.TCA_ACT_TAB, nil)
nl.NewRtAttrChild(table, nl.TCA_KIND, nl.ZeroTerminated("mirred"))
// redirect to other interface
mir := nl.TcMirred{
Action: nl.TC_ACT_STOLEN,
Eaction: nl.TCA_EGRESS_REDIR,
Ifindex: uint32(u32.RedirIndex),
if native != networkOrder {
// Copy TcU32Sel.
cSel := *sel
keys := make([]nl.TcU32Key, cap(sel.Keys))
copy(keys, sel.Keys)
cSel.Keys = keys
sel = &cSel
// Handle the endianness of attributes
sel.Offmask = native.Uint16(htons(sel.Offmask))
sel.Hmask = native.Uint32(htonl(sel.Hmask))
for i, key := range sel.Keys {
sel.Keys[i].Mask = native.Uint32(htonl(key.Mask))
sel.Keys[i].Val = native.Uint32(htonl(key.Val))
}
}
sel.Nkeys = uint8(len(sel.Keys))
options.AddRtAttr(nl.TCA_U32_SEL, sel.Serialize())
if filter.ClassId != 0 {
options.AddRtAttr(nl.TCA_U32_CLASSID, nl.Uint32Attr(filter.ClassId))
}
if filter.Divisor != 0 {
if (filter.Divisor-1)&filter.Divisor != 0 {
return fmt.Errorf("illegal divisor %d. Must be a power of 2", filter.Divisor)
}
options.AddRtAttr(nl.TCA_U32_DIVISOR, nl.Uint32Attr(filter.Divisor))
}
if filter.Hash != 0 {
options.AddRtAttr(nl.TCA_U32_HASH, nl.Uint32Attr(filter.Hash))
}
actionsAttr := options.AddRtAttr(nl.TCA_U32_ACT, nil)
// backwards compatibility
if filter.RedirIndex != 0 {
filter.Actions = append([]Action{NewMirredAction(filter.RedirIndex)}, filter.Actions...)
}
if err := EncodeActions(actionsAttr, filter.Actions); err != nil {
return err
}
case *Fw:
if filter.Mask != 0 {
b := make([]byte, 4)
native.PutUint32(b, filter.Mask)
options.AddRtAttr(nl.TCA_FW_MASK, b)
}
if filter.InDev != "" {
options.AddRtAttr(nl.TCA_FW_INDEV, nl.ZeroTerminated(filter.InDev))
}
if (filter.Police != nl.TcPolice{}) {
police := options.AddRtAttr(nl.TCA_FW_POLICE, nil)
police.AddRtAttr(nl.TCA_POLICE_TBF, filter.Police.Serialize())
if (filter.Police.Rate != nl.TcRateSpec{}) {
payload := SerializeRtab(filter.Rtab)
police.AddRtAttr(nl.TCA_POLICE_RATE, payload)
}
if (filter.Police.PeakRate != nl.TcRateSpec{}) {
payload := SerializeRtab(filter.Ptab)
police.AddRtAttr(nl.TCA_POLICE_PEAKRATE, payload)
}
}
if filter.ClassId != 0 {
b := make([]byte, 4)
native.PutUint32(b, filter.ClassId)
options.AddRtAttr(nl.TCA_FW_CLASSID, b)
}
case *BpfFilter:
var bpfFlags uint32
if filter.ClassId != 0 {
options.AddRtAttr(nl.TCA_BPF_CLASSID, nl.Uint32Attr(filter.ClassId))
}
if filter.Fd >= 0 {
options.AddRtAttr(nl.TCA_BPF_FD, nl.Uint32Attr((uint32(filter.Fd))))
}
if filter.Name != "" {
options.AddRtAttr(nl.TCA_BPF_NAME, nl.ZeroTerminated(filter.Name))
}
if filter.DirectAction {
bpfFlags |= nl.TCA_BPF_FLAG_ACT_DIRECT
}
options.AddRtAttr(nl.TCA_BPF_FLAGS, nl.Uint32Attr(bpfFlags))
case *MatchAll:
actionsAttr := options.AddRtAttr(nl.TCA_MATCHALL_ACT, nil)
if err := EncodeActions(actionsAttr, filter.Actions); err != nil {
return err
}
if filter.ClassId != 0 {
options.AddRtAttr(nl.TCA_MATCHALL_CLASSID, nl.Uint32Attr(filter.ClassId))
}
aopts := nl.NewRtAttrChild(table, nl.TCA_OPTIONS, nil)
nl.NewRtAttrChild(aopts, nl.TCA_MIRRED_PARMS, mir.Serialize())
}
req.AddData(options)
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// FilterList gets a list of filters in the system.
// Equivalent to: `tc filter show`.
// Generally retunrs nothing if link and parent are not specified.
// Generally returns nothing if link and parent are not specified.
func FilterList(link Link, parent uint32) ([]Filter, error) {
req := nl.NewNetlinkRequest(syscall.RTM_GETTFILTER, syscall.NLM_F_DUMP)
return pkgHandle.FilterList(link, parent)
}
// FilterList gets a list of filters in the system.
// Equivalent to: `tc filter show`.
// Generally returns nothing if link and parent are not specified.
func (h *Handle) FilterList(link Link, parent uint32) ([]Filter, error) {
req := h.newNetlinkRequest(unix.RTM_GETTFILTER, unix.NLM_F_DUMP)
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Parent: parent,
}
if link != nil {
base := link.Attrs()
ensureIndex(base)
h.ensureIndex(base)
msg.Ifindex = int32(base.Index)
}
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_ROUTE, syscall.RTM_NEWTFILTER)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWTFILTER)
if err != nil {
return nil, err
}
@@ -114,20 +346,43 @@ func FilterList(link Link, parent uint32) ([]Filter, error) {
switch filterType {
case "u32":
filter = &U32{}
case "fw":
filter = &Fw{}
case "bpf":
filter = &BpfFilter{}
case "matchall":
filter = &MatchAll{}
default:
filter = &GenericFilter{FilterType: filterType}
}
case nl.TCA_OPTIONS:
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
switch filterType {
case "u32":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
detailed, err = parseU32Data(filter, data)
if err != nil {
return nil, err
}
case "fw":
detailed, err = parseFwData(filter, data)
if err != nil {
return nil, err
}
case "bpf":
detailed, err = parseBpfData(filter, data)
if err != nil {
return nil, err
}
case "matchall":
detailed, err = parseMatchAllData(filter, data)
if err != nil {
return nil, err
}
default:
detailed = true
}
}
}
@@ -141,6 +396,235 @@ func FilterList(link Link, parent uint32) ([]Filter, error) {
return res, nil
}
func toTcGen(attrs *ActionAttrs, tcgen *nl.TcGen) {
tcgen.Index = uint32(attrs.Index)
tcgen.Capab = uint32(attrs.Capab)
tcgen.Action = int32(attrs.Action)
tcgen.Refcnt = int32(attrs.Refcnt)
tcgen.Bindcnt = int32(attrs.Bindcnt)
}
func toAttrs(tcgen *nl.TcGen, attrs *ActionAttrs) {
attrs.Index = int(tcgen.Index)
attrs.Capab = int(tcgen.Capab)
attrs.Action = TcAct(tcgen.Action)
attrs.Refcnt = int(tcgen.Refcnt)
attrs.Bindcnt = int(tcgen.Bindcnt)
}
func EncodeActions(attr *nl.RtAttr, actions []Action) error {
tabIndex := int(nl.TCA_ACT_TAB)
for _, action := range actions {
switch action := action.(type) {
default:
return fmt.Errorf("unknown action type %s", action.Type())
case *MirredAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("mirred"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
mirred := nl.TcMirred{
Eaction: int32(action.MirredAction),
Ifindex: uint32(action.Ifindex),
}
toTcGen(action.Attrs(), &mirred.TcGen)
aopts.AddRtAttr(nl.TCA_MIRRED_PARMS, mirred.Serialize())
case *TunnelKeyAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("tunnel_key"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
tun := nl.TcTunnelKey{
Action: int32(action.Action),
}
toTcGen(action.Attrs(), &tun.TcGen)
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_PARMS, tun.Serialize())
if action.Action == TCA_TUNNEL_KEY_SET {
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_ENC_KEY_ID, htonl(action.KeyID))
if v4 := action.SrcAddr.To4(); v4 != nil {
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_ENC_IPV4_SRC, v4[:])
} else if v6 := action.SrcAddr.To16(); v6 != nil {
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_ENC_IPV6_SRC, v6[:])
} else {
return fmt.Errorf("invalid src addr %s for tunnel_key action", action.SrcAddr)
}
if v4 := action.DstAddr.To4(); v4 != nil {
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_ENC_IPV4_DST, v4[:])
} else if v6 := action.DstAddr.To16(); v6 != nil {
aopts.AddRtAttr(nl.TCA_TUNNEL_KEY_ENC_IPV6_DST, v6[:])
} else {
return fmt.Errorf("invalid dst addr %s for tunnel_key action", action.DstAddr)
}
}
case *SkbEditAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("skbedit"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
skbedit := nl.TcSkbEdit{}
toTcGen(action.Attrs(), &skbedit.TcGen)
aopts.AddRtAttr(nl.TCA_SKBEDIT_PARMS, skbedit.Serialize())
if action.QueueMapping != nil {
aopts.AddRtAttr(nl.TCA_SKBEDIT_QUEUE_MAPPING, nl.Uint16Attr(*action.QueueMapping))
}
if action.Priority != nil {
aopts.AddRtAttr(nl.TCA_SKBEDIT_PRIORITY, nl.Uint32Attr(*action.Priority))
}
if action.PType != nil {
aopts.AddRtAttr(nl.TCA_SKBEDIT_PTYPE, nl.Uint16Attr(*action.PType))
}
if action.Mark != nil {
aopts.AddRtAttr(nl.TCA_SKBEDIT_MARK, nl.Uint32Attr(*action.Mark))
}
case *ConnmarkAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("connmark"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
connmark := nl.TcConnmark{
Zone: action.Zone,
}
toTcGen(action.Attrs(), &connmark.TcGen)
aopts.AddRtAttr(nl.TCA_CONNMARK_PARMS, connmark.Serialize())
case *BpfAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("bpf"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
gen := nl.TcGen{}
toTcGen(action.Attrs(), &gen)
aopts.AddRtAttr(nl.TCA_ACT_BPF_PARMS, gen.Serialize())
aopts.AddRtAttr(nl.TCA_ACT_BPF_FD, nl.Uint32Attr(uint32(action.Fd)))
aopts.AddRtAttr(nl.TCA_ACT_BPF_NAME, nl.ZeroTerminated(action.Name))
case *GenericAction:
table := attr.AddRtAttr(tabIndex, nil)
tabIndex++
table.AddRtAttr(nl.TCA_ACT_KIND, nl.ZeroTerminated("gact"))
aopts := table.AddRtAttr(nl.TCA_ACT_OPTIONS, nil)
gen := nl.TcGen{}
toTcGen(action.Attrs(), &gen)
aopts.AddRtAttr(nl.TCA_GACT_PARMS, gen.Serialize())
}
}
return nil
}
func parseActions(tables []syscall.NetlinkRouteAttr) ([]Action, error) {
var actions []Action
for _, table := range tables {
var action Action
var actionType string
aattrs, err := nl.ParseRouteAttr(table.Value)
if err != nil {
return nil, err
}
nextattr:
for _, aattr := range aattrs {
switch aattr.Attr.Type {
case nl.TCA_KIND:
actionType = string(aattr.Value[:len(aattr.Value)-1])
// only parse if the action is mirred or bpf
switch actionType {
case "mirred":
action = &MirredAction{}
case "bpf":
action = &BpfAction{}
case "connmark":
action = &ConnmarkAction{}
case "gact":
action = &GenericAction{}
case "tunnel_key":
action = &TunnelKeyAction{}
case "skbedit":
action = &SkbEditAction{}
default:
break nextattr
}
case nl.TCA_OPTIONS:
adata, err := nl.ParseRouteAttr(aattr.Value)
if err != nil {
return nil, err
}
for _, adatum := range adata {
switch actionType {
case "mirred":
switch adatum.Attr.Type {
case nl.TCA_MIRRED_PARMS:
mirred := *nl.DeserializeTcMirred(adatum.Value)
action.(*MirredAction).ActionAttrs = ActionAttrs{}
toAttrs(&mirred.TcGen, action.Attrs())
action.(*MirredAction).Ifindex = int(mirred.Ifindex)
action.(*MirredAction).MirredAction = MirredAct(mirred.Eaction)
}
case "tunnel_key":
switch adatum.Attr.Type {
case nl.TCA_TUNNEL_KEY_PARMS:
tun := *nl.DeserializeTunnelKey(adatum.Value)
action.(*TunnelKeyAction).ActionAttrs = ActionAttrs{}
toAttrs(&tun.TcGen, action.Attrs())
action.(*TunnelKeyAction).Action = TunnelKeyAct(tun.Action)
case nl.TCA_TUNNEL_KEY_ENC_KEY_ID:
action.(*TunnelKeyAction).KeyID = networkOrder.Uint32(adatum.Value[0:4])
case nl.TCA_TUNNEL_KEY_ENC_IPV6_SRC:
case nl.TCA_TUNNEL_KEY_ENC_IPV4_SRC:
action.(*TunnelKeyAction).SrcAddr = net.IP(adatum.Value[:])
case nl.TCA_TUNNEL_KEY_ENC_IPV6_DST:
case nl.TCA_TUNNEL_KEY_ENC_IPV4_DST:
action.(*TunnelKeyAction).DstAddr = net.IP(adatum.Value[:])
}
case "skbedit":
switch adatum.Attr.Type {
case nl.TCA_SKBEDIT_PARMS:
skbedit := *nl.DeserializeSkbEdit(adatum.Value)
action.(*SkbEditAction).ActionAttrs = ActionAttrs{}
toAttrs(&skbedit.TcGen, action.Attrs())
case nl.TCA_SKBEDIT_MARK:
mark := native.Uint32(adatum.Value[0:4])
action.(*SkbEditAction).Mark = &mark
case nl.TCA_SKBEDIT_PRIORITY:
priority := native.Uint32(adatum.Value[0:4])
action.(*SkbEditAction).Priority = &priority
case nl.TCA_SKBEDIT_PTYPE:
ptype := native.Uint16(adatum.Value[0:2])
action.(*SkbEditAction).PType = &ptype
case nl.TCA_SKBEDIT_QUEUE_MAPPING:
mapping := native.Uint16(adatum.Value[0:2])
action.(*SkbEditAction).QueueMapping = &mapping
}
case "bpf":
switch adatum.Attr.Type {
case nl.TCA_ACT_BPF_PARMS:
gen := *nl.DeserializeTcGen(adatum.Value)
toAttrs(&gen, action.Attrs())
case nl.TCA_ACT_BPF_FD:
action.(*BpfAction).Fd = int(native.Uint32(adatum.Value[0:4]))
case nl.TCA_ACT_BPF_NAME:
action.(*BpfAction).Name = string(adatum.Value[:len(adatum.Value)-1])
}
case "connmark":
switch adatum.Attr.Type {
case nl.TCA_CONNMARK_PARMS:
connmark := *nl.DeserializeTcConnmark(adatum.Value)
action.(*ConnmarkAction).ActionAttrs = ActionAttrs{}
toAttrs(&connmark.TcGen, action.Attrs())
action.(*ConnmarkAction).Zone = connmark.Zone
}
case "gact":
switch adatum.Attr.Type {
case nl.TCA_GACT_PARMS:
gen := *nl.DeserializeTcGen(adatum.Value)
toAttrs(&gen, action.Attrs())
}
}
}
}
}
actions = append(actions, action)
}
return actions, nil
}
func parseU32Data(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
u32 := filter.(*U32)
@@ -150,42 +634,174 @@ func parseU32Data(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error)
case nl.TCA_U32_SEL:
detailed = true
sel := nl.DeserializeTcU32Sel(datum.Value)
// only parse if we have a very basic redirect
if sel.Flags&nl.TC_U32_TERMINAL == 0 || sel.Nkeys != 1 {
return detailed, nil
u32.Sel = sel
if native != networkOrder {
// Handle the endianness of attributes
u32.Sel.Offmask = native.Uint16(htons(sel.Offmask))
u32.Sel.Hmask = native.Uint32(htonl(sel.Hmask))
for i, key := range u32.Sel.Keys {
u32.Sel.Keys[i].Mask = native.Uint32(htonl(key.Mask))
u32.Sel.Keys[i].Val = native.Uint32(htonl(key.Val))
}
}
case nl.TCA_U32_ACT:
table, err := nl.ParseRouteAttr(datum.Value)
tables, err := nl.ParseRouteAttr(datum.Value)
if err != nil {
return detailed, err
}
if len(table) != 1 || table[0].Attr.Type != nl.TCA_ACT_TAB {
return detailed, fmt.Errorf("Action table not formed properly")
u32.Actions, err = parseActions(tables)
if err != nil {
return detailed, err
}
aattrs, err := nl.ParseRouteAttr(table[0].Value)
for _, aattr := range aattrs {
for _, action := range u32.Actions {
if action, ok := action.(*MirredAction); ok {
u32.RedirIndex = int(action.Ifindex)
}
}
case nl.TCA_U32_CLASSID:
u32.ClassId = native.Uint32(datum.Value)
case nl.TCA_U32_DIVISOR:
u32.Divisor = native.Uint32(datum.Value)
case nl.TCA_U32_HASH:
u32.Hash = native.Uint32(datum.Value)
}
}
return detailed, nil
}
func parseFwData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
fw := filter.(*Fw)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FW_MASK:
fw.Mask = native.Uint32(datum.Value[0:4])
case nl.TCA_FW_CLASSID:
fw.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_FW_INDEV:
fw.InDev = string(datum.Value[:len(datum.Value)-1])
case nl.TCA_FW_POLICE:
adata, _ := nl.ParseRouteAttr(datum.Value)
for _, aattr := range adata {
switch aattr.Attr.Type {
case nl.TCA_KIND:
actionType := string(aattr.Value[:len(aattr.Value)-1])
// only parse if the action is mirred
if actionType != "mirred" {
return detailed, nil
}
case nl.TCA_OPTIONS:
adata, err := nl.ParseRouteAttr(aattr.Value)
if err != nil {
return detailed, err
}
for _, adatum := range adata {
switch adatum.Attr.Type {
case nl.TCA_MIRRED_PARMS:
mir := nl.DeserializeTcMirred(adatum.Value)
u32.RedirIndex = int(mir.Ifindex)
}
}
case nl.TCA_POLICE_TBF:
fw.Police = *nl.DeserializeTcPolice(aattr.Value)
case nl.TCA_POLICE_RATE:
fw.Rtab = DeserializeRtab(aattr.Value)
case nl.TCA_POLICE_PEAKRATE:
fw.Ptab = DeserializeRtab(aattr.Value)
}
}
}
}
return detailed, nil
}
func parseBpfData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
bpf := filter.(*BpfFilter)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_BPF_FD:
bpf.Fd = int(native.Uint32(datum.Value[0:4]))
case nl.TCA_BPF_NAME:
bpf.Name = string(datum.Value[:len(datum.Value)-1])
case nl.TCA_BPF_CLASSID:
bpf.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_BPF_FLAGS:
flags := native.Uint32(datum.Value[0:4])
if (flags & nl.TCA_BPF_FLAG_ACT_DIRECT) != 0 {
bpf.DirectAction = true
}
case nl.TCA_BPF_ID:
bpf.Id = int(native.Uint32(datum.Value[0:4]))
case nl.TCA_BPF_TAG:
bpf.Tag = hex.EncodeToString(datum.Value[:len(datum.Value)-1])
}
}
return detailed, nil
}
func parseMatchAllData(filter Filter, data []syscall.NetlinkRouteAttr) (bool, error) {
native = nl.NativeEndian()
matchall := filter.(*MatchAll)
detailed := true
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_MATCHALL_CLASSID:
matchall.ClassId = native.Uint32(datum.Value[0:4])
case nl.TCA_MATCHALL_ACT:
tables, err := nl.ParseRouteAttr(datum.Value)
if err != nil {
return detailed, err
}
matchall.Actions, err = parseActions(tables)
if err != nil {
return detailed, err
}
}
}
return detailed, nil
}
func AlignToAtm(size uint) uint {
var linksize, cells int
cells = int(size / nl.ATM_CELL_PAYLOAD)
if (size % nl.ATM_CELL_PAYLOAD) > 0 {
cells++
}
linksize = cells * nl.ATM_CELL_SIZE
return uint(linksize)
}
func AdjustSize(sz uint, mpu uint, linklayer int) uint {
if sz < mpu {
sz = mpu
}
switch linklayer {
case nl.LINKLAYER_ATM:
return AlignToAtm(sz)
default:
return sz
}
}
func CalcRtable(rate *nl.TcRateSpec, rtab []uint32, cellLog int, mtu uint32, linklayer int) int {
bps := rate.Rate
mpu := rate.Mpu
var sz uint
if mtu == 0 {
mtu = 2047
}
if cellLog < 0 {
cellLog = 0
for (mtu >> uint(cellLog)) > 255 {
cellLog++
}
}
for i := 0; i < 256; i++ {
sz = AdjustSize(uint((i+1)<<uint32(cellLog)), uint(mpu), linklayer)
rtab[i] = uint32(Xmittime(uint64(bps), uint32(sz)))
}
rate.CellAlign = -1
rate.CellLog = uint8(cellLog)
rate.Linklayer = uint8(linklayer & nl.TC_LINKLAYER_MASK)
return cellLog
}
func DeserializeRtab(b []byte) [256]uint32 {
var rtab [256]uint32
native := nl.NativeEndian()
r := bytes.NewReader(b)
_ = binary.Read(r, native, &rtab)
return rtab
}
func SerializeRtab(rtab [256]uint32) []byte {
native := nl.NativeEndian()
var w bytes.Buffer
_ = binary.Write(&w, native, rtab)
return w.Bytes()
}

21
vendor/github.com/vishvananda/netlink/fou.go generated vendored Normal file
View File

@@ -0,0 +1,21 @@
package netlink
import (
"errors"
)
var (
// ErrAttrHeaderTruncated is returned when a netlink attribute's header is
// truncated.
ErrAttrHeaderTruncated = errors.New("attribute header truncated")
// ErrAttrBodyTruncated is returned when a netlink attribute's body is
// truncated.
ErrAttrBodyTruncated = errors.New("attribute body truncated")
)
type Fou struct {
Family int
Port int
Protocol int
EncapType int
}

211
vendor/github.com/vishvananda/netlink/fou_linux.go generated vendored Normal file
View File

@@ -0,0 +1,211 @@
// +build linux
package netlink
import (
"encoding/binary"
"errors"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const (
FOU_GENL_NAME = "fou"
)
const (
FOU_CMD_UNSPEC uint8 = iota
FOU_CMD_ADD
FOU_CMD_DEL
FOU_CMD_GET
FOU_CMD_MAX = FOU_CMD_GET
)
const (
FOU_ATTR_UNSPEC = iota
FOU_ATTR_PORT
FOU_ATTR_AF
FOU_ATTR_IPPROTO
FOU_ATTR_TYPE
FOU_ATTR_REMCSUM_NOPARTIAL
FOU_ATTR_MAX = FOU_ATTR_REMCSUM_NOPARTIAL
)
const (
FOU_ENCAP_UNSPEC = iota
FOU_ENCAP_DIRECT
FOU_ENCAP_GUE
FOU_ENCAP_MAX = FOU_ENCAP_GUE
)
var fouFamilyId int
func FouFamilyId() (int, error) {
if fouFamilyId != 0 {
return fouFamilyId, nil
}
fam, err := GenlFamilyGet(FOU_GENL_NAME)
if err != nil {
return -1, err
}
fouFamilyId = int(fam.ID)
return fouFamilyId, nil
}
func FouAdd(f Fou) error {
return pkgHandle.FouAdd(f)
}
func (h *Handle) FouAdd(f Fou) error {
fam_id, err := FouFamilyId()
if err != nil {
return err
}
// setting ip protocol conflicts with encapsulation type GUE
if f.EncapType == FOU_ENCAP_GUE && f.Protocol != 0 {
return errors.New("GUE encapsulation doesn't specify an IP protocol")
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_ACK)
// int to byte for port
bp := make([]byte, 2)
binary.BigEndian.PutUint16(bp[0:2], uint16(f.Port))
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_PORT, bp),
nl.NewRtAttr(FOU_ATTR_TYPE, []byte{uint8(f.EncapType)}),
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(f.Family)}),
nl.NewRtAttr(FOU_ATTR_IPPROTO, []byte{uint8(f.Protocol)}),
}
raw := []byte{FOU_CMD_ADD, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
func FouDel(f Fou) error {
return pkgHandle.FouDel(f)
}
func (h *Handle) FouDel(f Fou) error {
fam_id, err := FouFamilyId()
if err != nil {
return err
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_ACK)
// int to byte for port
bp := make([]byte, 2)
binary.BigEndian.PutUint16(bp[0:2], uint16(f.Port))
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_PORT, bp),
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(f.Family)}),
}
raw := []byte{FOU_CMD_DEL, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return err
}
return nil
}
func FouList(fam int) ([]Fou, error) {
return pkgHandle.FouList(fam)
}
func (h *Handle) FouList(fam int) ([]Fou, error) {
fam_id, err := FouFamilyId()
if err != nil {
return nil, err
}
req := h.newNetlinkRequest(fam_id, unix.NLM_F_DUMP)
attrs := []*nl.RtAttr{
nl.NewRtAttr(FOU_ATTR_AF, []byte{uint8(fam)}),
}
raw := []byte{FOU_CMD_GET, 1, 0, 0}
for _, a := range attrs {
raw = append(raw, a.Serialize()...)
}
req.AddRawData(raw)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
fous := make([]Fou, 0, len(msgs))
for _, m := range msgs {
f, err := deserializeFouMsg(m)
if err != nil {
return fous, err
}
fous = append(fous, f)
}
return fous, nil
}
func deserializeFouMsg(msg []byte) (Fou, error) {
// we'll skip to byte 4 to first attribute
msg = msg[3:]
var shift int
fou := Fou{}
for {
// attribute header is at least 16 bits
if len(msg) < 4 {
return fou, ErrAttrHeaderTruncated
}
lgt := int(binary.BigEndian.Uint16(msg[0:2]))
if len(msg) < lgt+4 {
return fou, ErrAttrBodyTruncated
}
attr := binary.BigEndian.Uint16(msg[2:4])
shift = lgt + 3
switch attr {
case FOU_ATTR_AF:
fou.Family = int(msg[5])
case FOU_ATTR_PORT:
fou.Port = int(binary.BigEndian.Uint16(msg[5:7]))
// port is 2 bytes
shift = lgt + 2
case FOU_ATTR_IPPROTO:
fou.Protocol = int(msg[5])
case FOU_ATTR_TYPE:
fou.EncapType = int(msg[5])
}
msg = msg[shift:]
if len(msg) < 4 {
break
}
}
return fou, nil
}

View File

@@ -0,0 +1,15 @@
// +build !linux
package netlink
func FouAdd(f Fou) error {
return ErrNotImplemented
}
func FouDel(f Fou) error {
return ErrNotImplemented
}
func FouList(fam int) ([]Fou, error) {
return nil, ErrNotImplemented
}

View File

@@ -0,0 +1,171 @@
package netlink
import (
"fmt"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
type GenlOp struct {
ID uint32
Flags uint32
}
type GenlMulticastGroup struct {
ID uint32
Name string
}
type GenlFamily struct {
ID uint16
HdrSize uint32
Name string
Version uint32
MaxAttr uint32
Ops []GenlOp
Groups []GenlMulticastGroup
}
func parseOps(b []byte) ([]GenlOp, error) {
attrs, err := nl.ParseRouteAttr(b)
if err != nil {
return nil, err
}
ops := make([]GenlOp, 0, len(attrs))
for _, a := range attrs {
nattrs, err := nl.ParseRouteAttr(a.Value)
if err != nil {
return nil, err
}
var op GenlOp
for _, na := range nattrs {
switch na.Attr.Type {
case nl.GENL_CTRL_ATTR_OP_ID:
op.ID = native.Uint32(na.Value)
case nl.GENL_CTRL_ATTR_OP_FLAGS:
op.Flags = native.Uint32(na.Value)
}
}
ops = append(ops, op)
}
return ops, nil
}
func parseMulticastGroups(b []byte) ([]GenlMulticastGroup, error) {
attrs, err := nl.ParseRouteAttr(b)
if err != nil {
return nil, err
}
groups := make([]GenlMulticastGroup, 0, len(attrs))
for _, a := range attrs {
nattrs, err := nl.ParseRouteAttr(a.Value)
if err != nil {
return nil, err
}
var g GenlMulticastGroup
for _, na := range nattrs {
switch na.Attr.Type {
case nl.GENL_CTRL_ATTR_MCAST_GRP_NAME:
g.Name = nl.BytesToString(na.Value)
case nl.GENL_CTRL_ATTR_MCAST_GRP_ID:
g.ID = native.Uint32(na.Value)
}
}
groups = append(groups, g)
}
return groups, nil
}
func (f *GenlFamily) parseAttributes(attrs []syscall.NetlinkRouteAttr) error {
for _, a := range attrs {
switch a.Attr.Type {
case nl.GENL_CTRL_ATTR_FAMILY_NAME:
f.Name = nl.BytesToString(a.Value)
case nl.GENL_CTRL_ATTR_FAMILY_ID:
f.ID = native.Uint16(a.Value)
case nl.GENL_CTRL_ATTR_VERSION:
f.Version = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_HDRSIZE:
f.HdrSize = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_MAXATTR:
f.MaxAttr = native.Uint32(a.Value)
case nl.GENL_CTRL_ATTR_OPS:
ops, err := parseOps(a.Value)
if err != nil {
return err
}
f.Ops = ops
case nl.GENL_CTRL_ATTR_MCAST_GROUPS:
groups, err := parseMulticastGroups(a.Value)
if err != nil {
return err
}
f.Groups = groups
}
}
return nil
}
func parseFamilies(msgs [][]byte) ([]*GenlFamily, error) {
families := make([]*GenlFamily, 0, len(msgs))
for _, m := range msgs {
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
family := &GenlFamily{}
if err := family.parseAttributes(attrs); err != nil {
return nil, err
}
families = append(families, family)
}
return families, nil
}
func (h *Handle) GenlFamilyList() ([]*GenlFamily, error) {
msg := &nl.Genlmsg{
Command: nl.GENL_CTRL_CMD_GETFAMILY,
Version: nl.GENL_CTRL_VERSION,
}
req := h.newNetlinkRequest(nl.GENL_ID_CTRL, unix.NLM_F_DUMP)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
return parseFamilies(msgs)
}
func GenlFamilyList() ([]*GenlFamily, error) {
return pkgHandle.GenlFamilyList()
}
func (h *Handle) GenlFamilyGet(name string) (*GenlFamily, error) {
msg := &nl.Genlmsg{
Command: nl.GENL_CTRL_CMD_GETFAMILY,
Version: nl.GENL_CTRL_VERSION,
}
req := h.newNetlinkRequest(nl.GENL_ID_CTRL, 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_CTRL_ATTR_FAMILY_NAME, nl.ZeroTerminated(name)))
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
families, err := parseFamilies(msgs)
if err != nil {
return nil, err
}
if len(families) != 1 {
return nil, fmt.Errorf("invalid response for GENL_CTRL_CMD_GETFAMILY")
}
return families[0], nil
}
func GenlFamilyGet(name string) (*GenlFamily, error) {
return pkgHandle.GenlFamilyGet(name)
}

View File

@@ -0,0 +1,25 @@
// +build !linux
package netlink
type GenlOp struct{}
type GenlMulticastGroup struct{}
type GenlFamily struct{}
func (h *Handle) GenlFamilyList() ([]*GenlFamily, error) {
return nil, ErrNotImplemented
}
func GenlFamilyList() ([]*GenlFamily, error) {
return nil, ErrNotImplemented
}
func (h *Handle) GenlFamilyGet(name string) (*GenlFamily, error) {
return nil, ErrNotImplemented
}
func GenlFamilyGet(name string) (*GenlFamily, error) {
return nil, ErrNotImplemented
}

8
vendor/github.com/vishvananda/netlink/go.mod generated vendored Normal file
View File

@@ -0,0 +1,8 @@
module github.com/vishvananda/netlink
go 1.12
require (
github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df
golang.org/x/sys v0.0.0-20190606203320-7fc4e5ec1444
)

4
vendor/github.com/vishvananda/netlink/go.sum generated vendored Normal file
View File

@@ -0,0 +1,4 @@
github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df h1:OviZH7qLw/7ZovXvuNyL3XQl8UFofeikI1NW1Gypu7k=
github.com/vishvananda/netns v0.0.0-20191106174202-0a2b9b5464df/go.mod h1:JP3t17pCcGlemwknint6hfoeCVQrEMVwxRLRjXpq+BU=
golang.org/x/sys v0.0.0-20190606203320-7fc4e5ec1444 h1:/d2cWp6PSamH4jDPFLyO150psQdqvtoNX8Zjg3AQ31g=
golang.org/x/sys v0.0.0-20190606203320-7fc4e5ec1444/go.mod h1:h1NjWce9XRLGQEsW7wpKNCjG9DtNlClVuFLEZdDNbEs=

239
vendor/github.com/vishvananda/netlink/gtp_linux.go generated vendored Normal file
View File

@@ -0,0 +1,239 @@
package netlink
import (
"fmt"
"net"
"strings"
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
type PDP struct {
Version uint32
TID uint64
PeerAddress net.IP
MSAddress net.IP
Flow uint16
NetNSFD uint32
ITEI uint32
OTEI uint32
}
func (pdp *PDP) String() string {
elems := []string{}
elems = append(elems, fmt.Sprintf("Version: %d", pdp.Version))
if pdp.Version == 0 {
elems = append(elems, fmt.Sprintf("TID: %d", pdp.TID))
} else if pdp.Version == 1 {
elems = append(elems, fmt.Sprintf("TEI: %d/%d", pdp.ITEI, pdp.OTEI))
}
elems = append(elems, fmt.Sprintf("MS-Address: %s", pdp.MSAddress))
elems = append(elems, fmt.Sprintf("Peer-Address: %s", pdp.PeerAddress))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (p *PDP) parseAttributes(attrs []syscall.NetlinkRouteAttr) error {
for _, a := range attrs {
switch a.Attr.Type {
case nl.GENL_GTP_ATTR_VERSION:
p.Version = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_TID:
p.TID = native.Uint64(a.Value)
case nl.GENL_GTP_ATTR_PEER_ADDRESS:
p.PeerAddress = net.IP(a.Value)
case nl.GENL_GTP_ATTR_MS_ADDRESS:
p.MSAddress = net.IP(a.Value)
case nl.GENL_GTP_ATTR_FLOW:
p.Flow = native.Uint16(a.Value)
case nl.GENL_GTP_ATTR_NET_NS_FD:
p.NetNSFD = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_I_TEI:
p.ITEI = native.Uint32(a.Value)
case nl.GENL_GTP_ATTR_O_TEI:
p.OTEI = native.Uint32(a.Value)
}
}
return nil
}
func parsePDP(msgs [][]byte) ([]*PDP, error) {
pdps := make([]*PDP, 0, len(msgs))
for _, m := range msgs {
attrs, err := nl.ParseRouteAttr(m[nl.SizeofGenlmsg:])
if err != nil {
return nil, err
}
pdp := &PDP{}
if err := pdp.parseAttributes(attrs); err != nil {
return nil, err
}
pdps = append(pdps, pdp)
}
return pdps, nil
}
func (h *Handle) GTPPDPList() ([]*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_DUMP)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
return parsePDP(msgs)
}
func GTPPDPList() ([]*PDP, error) {
return pkgHandle.GTPPDPList()
}
func gtpPDPGet(req *nl.NetlinkRequest) (*PDP, error) {
msgs, err := req.Execute(unix.NETLINK_GENERIC, 0)
if err != nil {
return nil, err
}
pdps, err := parsePDP(msgs)
if err != nil {
return nil, err
}
if len(pdps) != 1 {
return nil, fmt.Errorf("invalid reqponse for GENL_GTP_CMD_GETPDP")
}
return pdps[0], nil
}
func (h *Handle) GTPPDPByTID(link Link, tid int) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(0)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(uint64(tid))))
return gtpPDPGet(req)
}
func GTPPDPByTID(link Link, tid int) (*PDP, error) {
return pkgHandle.GTPPDPByTID(link, tid)
}
func (h *Handle) GTPPDPByITEI(link Link, itei int) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(1)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(uint32(itei))))
return gtpPDPGet(req)
}
func GTPPDPByITEI(link Link, itei int) (*PDP, error) {
return pkgHandle.GTPPDPByITEI(link, itei)
}
func (h *Handle) GTPPDPByMSAddress(link Link, addr net.IP) (*PDP, error) {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return nil, err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_GETPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), 0)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(0)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_MS_ADDRESS, []byte(addr.To4())))
return gtpPDPGet(req)
}
func GTPPDPByMSAddress(link Link, addr net.IP) (*PDP, error) {
return pkgHandle.GTPPDPByMSAddress(link, addr)
}
func (h *Handle) GTPPDPAdd(link Link, pdp *PDP) error {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_NEWPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_EXCL|unix.NLM_F_ACK)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(pdp.Version)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_PEER_ADDRESS, []byte(pdp.PeerAddress.To4())))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_MS_ADDRESS, []byte(pdp.MSAddress.To4())))
switch pdp.Version {
case 0:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(pdp.TID)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_FLOW, nl.Uint16Attr(pdp.Flow)))
case 1:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(pdp.ITEI)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_O_TEI, nl.Uint32Attr(pdp.OTEI)))
default:
return fmt.Errorf("unsupported GTP version: %d", pdp.Version)
}
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
func GTPPDPAdd(link Link, pdp *PDP) error {
return pkgHandle.GTPPDPAdd(link, pdp)
}
func (h *Handle) GTPPDPDel(link Link, pdp *PDP) error {
f, err := h.GenlFamilyGet(nl.GENL_GTP_NAME)
if err != nil {
return err
}
msg := &nl.Genlmsg{
Command: nl.GENL_GTP_CMD_DELPDP,
Version: nl.GENL_GTP_VERSION,
}
req := h.newNetlinkRequest(int(f.ID), unix.NLM_F_EXCL|unix.NLM_F_ACK)
req.AddData(msg)
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_VERSION, nl.Uint32Attr(pdp.Version)))
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_LINK, nl.Uint32Attr(uint32(link.Attrs().Index))))
switch pdp.Version {
case 0:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_TID, nl.Uint64Attr(pdp.TID)))
case 1:
req.AddData(nl.NewRtAttr(nl.GENL_GTP_ATTR_I_TEI, nl.Uint32Attr(pdp.ITEI)))
default:
return fmt.Errorf("unsupported GTP version: %d", pdp.Version)
}
_, err = req.Execute(unix.NETLINK_GENERIC, 0)
return err
}
func GTPPDPDel(link Link, pdp *PDP) error {
return pkgHandle.GTPPDPDel(link, pdp)
}

144
vendor/github.com/vishvananda/netlink/handle_linux.go generated vendored Normal file
View File

@@ -0,0 +1,144 @@
package netlink
import (
"fmt"
"time"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
// Empty handle used by the netlink package methods
var pkgHandle = &Handle{}
// Handle is an handle for the netlink requests on a
// specific network namespace. All the requests on the
// same netlink family share the same netlink socket,
// which gets released when the handle is deleted.
type Handle struct {
sockets map[int]*nl.SocketHandle
lookupByDump bool
}
// SupportsNetlinkFamily reports whether the passed netlink family is supported by this Handle
func (h *Handle) SupportsNetlinkFamily(nlFamily int) bool {
_, ok := h.sockets[nlFamily]
return ok
}
// NewHandle returns a netlink handle on the current network namespace.
// Caller may specify the netlink families the handle should support.
// If no families are specified, all the families the netlink package
// supports will be automatically added.
func NewHandle(nlFamilies ...int) (*Handle, error) {
return newHandle(netns.None(), netns.None(), nlFamilies...)
}
// SetSocketTimeout sets the send and receive timeout for each socket in the
// netlink handle. Although the socket timeout has granularity of one
// microsecond, the effective granularity is floored by the kernel timer tick,
// which default value is four milliseconds.
func (h *Handle) SetSocketTimeout(to time.Duration) error {
if to < time.Microsecond {
return fmt.Errorf("invalid timeout, minimul value is %s", time.Microsecond)
}
tv := unix.NsecToTimeval(to.Nanoseconds())
for _, sh := range h.sockets {
if err := sh.Socket.SetSendTimeout(&tv); err != nil {
return err
}
if err := sh.Socket.SetReceiveTimeout(&tv); err != nil {
return err
}
}
return nil
}
// SetSocketReceiveBufferSize sets the receive buffer size for each
// socket in the netlink handle. The maximum value is capped by
// /proc/sys/net/core/rmem_max.
func (h *Handle) SetSocketReceiveBufferSize(size int, force bool) error {
opt := unix.SO_RCVBUF
if force {
opt = unix.SO_RCVBUFFORCE
}
for _, sh := range h.sockets {
fd := sh.Socket.GetFd()
err := unix.SetsockoptInt(fd, unix.SOL_SOCKET, opt, size)
if err != nil {
return err
}
}
return nil
}
// GetSocketReceiveBufferSize gets the receiver buffer size for each
// socket in the netlink handle. The retrieved value should be the
// double to the one set for SetSocketReceiveBufferSize.
func (h *Handle) GetSocketReceiveBufferSize() ([]int, error) {
results := make([]int, len(h.sockets))
i := 0
for _, sh := range h.sockets {
fd := sh.Socket.GetFd()
size, err := unix.GetsockoptInt(fd, unix.SOL_SOCKET, unix.SO_RCVBUF)
if err != nil {
return nil, err
}
results[i] = size
i++
}
return results, nil
}
// NewHandleAt returns a netlink handle on the network namespace
// specified by ns. If ns=netns.None(), current network namespace
// will be assumed
func NewHandleAt(ns netns.NsHandle, nlFamilies ...int) (*Handle, error) {
return newHandle(ns, netns.None(), nlFamilies...)
}
// NewHandleAtFrom works as NewHandle but allows client to specify the
// new and the origin netns Handle.
func NewHandleAtFrom(newNs, curNs netns.NsHandle) (*Handle, error) {
return newHandle(newNs, curNs)
}
func newHandle(newNs, curNs netns.NsHandle, nlFamilies ...int) (*Handle, error) {
h := &Handle{sockets: map[int]*nl.SocketHandle{}}
fams := nl.SupportedNlFamilies
if len(nlFamilies) != 0 {
fams = nlFamilies
}
for _, f := range fams {
s, err := nl.GetNetlinkSocketAt(newNs, curNs, f)
if err != nil {
return nil, err
}
h.sockets[f] = &nl.SocketHandle{Socket: s}
}
return h, nil
}
// Delete releases the resources allocated to this handle
func (h *Handle) Delete() {
for _, sh := range h.sockets {
sh.Close()
}
h.sockets = nil
}
func (h *Handle) newNetlinkRequest(proto, flags int) *nl.NetlinkRequest {
// Do this so that package API still use nl package variable nextSeqNr
if h.sockets == nil {
return nl.NewNetlinkRequest(proto, flags)
}
return &nl.NetlinkRequest{
NlMsghdr: unix.NlMsghdr{
Len: uint32(unix.SizeofNlMsghdr),
Type: uint16(proto),
Flags: unix.NLM_F_REQUEST | uint16(flags),
},
Sockets: h.sockets,
}
}

View File

@@ -0,0 +1,270 @@
// +build !linux
package netlink
import (
"net"
"time"
"github.com/vishvananda/netns"
)
type Handle struct{}
func NewHandle(nlFamilies ...int) (*Handle, error) {
return nil, ErrNotImplemented
}
func NewHandleAt(ns netns.NsHandle, nlFamilies ...int) (*Handle, error) {
return nil, ErrNotImplemented
}
func NewHandleAtFrom(newNs, curNs netns.NsHandle) (*Handle, error) {
return nil, ErrNotImplemented
}
func (h *Handle) Delete() {}
func (h *Handle) SupportsNetlinkFamily(nlFamily int) bool {
return false
}
func (h *Handle) SetSocketTimeout(to time.Duration) error {
return ErrNotImplemented
}
func (h *Handle) SetPromiscOn(link Link) error {
return ErrNotImplemented
}
func (h *Handle) SetPromiscOff(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetUp(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetDown(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMTU(link Link, mtu int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetName(link Link, name string) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetAlias(link Link, name string) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfVlan(link Link, vf, vlan int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfVlanQos(link Link, vf, vlan, qos int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfTxRate(link Link, vf, rate int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetVfRate(link Link, vf, minRate, maxRate int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMaster(link Link, master *Bridge) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNoMaster(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetMasterByIndex(link Link, masterIndex int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNsPid(link Link, nspid int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetNsFd(link Link, fd int) error {
return ErrNotImplemented
}
func (h *Handle) LinkAdd(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkDel(link Link) error {
return ErrNotImplemented
}
func (h *Handle) LinkByName(name string) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkByAlias(alias string) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkByIndex(index int) (Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkList() ([]Link, error) {
return nil, ErrNotImplemented
}
func (h *Handle) LinkSetHairpin(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetGuard(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetFastLeave(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetLearning(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetRootBlock(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetFlood(link Link, mode bool) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetTxQLen(link Link, qlen int) error {
return ErrNotImplemented
}
func (h *Handle) LinkSetGroup(link Link, group int) error {
return ErrNotImplemented
}
func (h *Handle) setProtinfoAttr(link Link, mode bool, attr int) error {
return ErrNotImplemented
}
func (h *Handle) AddrAdd(link Link, addr *Addr) error {
return ErrNotImplemented
}
func (h *Handle) AddrDel(link Link, addr *Addr) error {
return ErrNotImplemented
}
func (h *Handle) AddrList(link Link, family int) ([]Addr, error) {
return nil, ErrNotImplemented
}
func (h *Handle) ClassDel(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassChange(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassReplace(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassAdd(class Class) error {
return ErrNotImplemented
}
func (h *Handle) ClassList(link Link, parent uint32) ([]Class, error) {
return nil, ErrNotImplemented
}
func (h *Handle) FilterDel(filter Filter) error {
return ErrNotImplemented
}
func (h *Handle) FilterAdd(filter Filter) error {
return ErrNotImplemented
}
func (h *Handle) FilterList(link Link, parent uint32) ([]Filter, error) {
return nil, ErrNotImplemented
}
func (h *Handle) NeighAdd(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighSet(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighAppend(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighDel(neigh *Neigh) error {
return ErrNotImplemented
}
func (h *Handle) NeighList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func (h *Handle) NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteAdd(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RouteDel(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RouteGet(destination net.IP) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteList(link Link, family int) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteListFiltered(family int, filter *Route, filterMask uint64) ([]Route, error) {
return nil, ErrNotImplemented
}
func (h *Handle) RouteReplace(route *Route) error {
return ErrNotImplemented
}
func (h *Handle) RuleAdd(rule *Rule) error {
return ErrNotImplemented
}
func (h *Handle) RuleDel(rule *Rule) error {
return ErrNotImplemented
}
func (h *Handle) RuleList(family int) ([]Rule, error) {
return nil, ErrNotImplemented
}

90
vendor/github.com/vishvananda/netlink/ioctl_linux.go generated vendored Normal file
View File

@@ -0,0 +1,90 @@
package netlink
import (
"syscall"
"unsafe"
"golang.org/x/sys/unix"
)
// ioctl for statistics.
const (
// ETHTOOL_GSSET_INFO gets string set info
ETHTOOL_GSSET_INFO = 0x00000037
// SIOCETHTOOL is Ethtool interface
SIOCETHTOOL = 0x8946
// ETHTOOL_GSTRINGS gets specified string set
ETHTOOL_GSTRINGS = 0x0000001b
// ETHTOOL_GSTATS gets NIC-specific statistics
ETHTOOL_GSTATS = 0x0000001d
)
// string set id.
const (
// ETH_SS_TEST is self-test result names, for use with %ETHTOOL_TEST
ETH_SS_TEST = iota
// ETH_SS_STATS statistic names, for use with %ETHTOOL_GSTATS
ETH_SS_STATS
// ETH_SS_PRIV_FLAGS are driver private flag names
ETH_SS_PRIV_FLAGS
// _ETH_SS_NTUPLE_FILTERS is deprecated
_ETH_SS_NTUPLE_FILTERS
// ETH_SS_FEATURES are device feature names
ETH_SS_FEATURES
// ETH_SS_RSS_HASH_FUNCS is RSS hush function names
ETH_SS_RSS_HASH_FUNCS
)
// IfreqSlave is a struct for ioctl bond manipulation syscalls.
// It is used to assign slave to bond interface with Name.
type IfreqSlave struct {
Name [unix.IFNAMSIZ]byte
Slave [unix.IFNAMSIZ]byte
}
// Ifreq is a struct for ioctl ethernet manipulation syscalls.
type Ifreq struct {
Name [unix.IFNAMSIZ]byte
Data uintptr
}
// ethtoolSset is a string set information
type ethtoolSset struct {
cmd uint32
reserved uint32
mask uint64
data [1]uint32
}
type ethtoolStats struct {
cmd uint32
nStats uint32
// Followed by nStats * []uint64.
}
// newIocltSlaveReq returns filled IfreqSlave with proper interface names
// It is used by ioctl to assign slave to bond master
func newIocltSlaveReq(slave, master string) *IfreqSlave {
ifreq := &IfreqSlave{}
copy(ifreq.Name[:unix.IFNAMSIZ-1], master)
copy(ifreq.Slave[:unix.IFNAMSIZ-1], slave)
return ifreq
}
// newIocltStringSetReq creates request to get interface string set
func newIocltStringSetReq(linkName string) (*Ifreq, *ethtoolSset) {
e := &ethtoolSset{
cmd: ETHTOOL_GSSET_INFO,
mask: 1 << ETH_SS_STATS,
}
ifreq := &Ifreq{Data: uintptr(unsafe.Pointer(e))}
copy(ifreq.Name[:unix.IFNAMSIZ-1], linkName)
return ifreq, e
}
// getSocketUDP returns file descriptor to new UDP socket
// It is used for communication with ioctl interface.
func getSocketUDP() (int, error) {
return syscall.Socket(unix.AF_INET, unix.SOCK_DGRAM, 0)
}

View File

@@ -1,6 +1,11 @@
package netlink
import "net"
import (
"fmt"
"net"
"os"
"strconv"
)
// Link represents a link device from netlink. Shared link attributes
// like name may be retrieved using the Attrs() method. Unique data
@@ -23,9 +28,76 @@ type LinkAttrs struct {
Name string
HardwareAddr net.HardwareAddr
Flags net.Flags
RawFlags uint32
ParentIndex int // index of the parent link device
MasterIndex int // must be the index of a bridge
Namespace interface{} // nil | NsPid | NsFd
Alias string
Statistics *LinkStatistics
Promisc int
Xdp *LinkXdp
EncapType string
Protinfo *Protinfo
OperState LinkOperState
NetNsID int
NumTxQueues int
NumRxQueues int
GSOMaxSize uint32
GSOMaxSegs uint32
Vfs []VfInfo // virtual functions available on link
Group uint32
Slave LinkSlave
}
// LinkSlave represents a slave device.
type LinkSlave interface {
SlaveType() string
}
// VfInfo represents configuration of virtual function
type VfInfo struct {
ID int
Mac net.HardwareAddr
Vlan int
Qos int
TxRate int // IFLA_VF_TX_RATE Max TxRate
Spoofchk bool
LinkState uint32
MaxTxRate uint32 // IFLA_VF_RATE Max TxRate
MinTxRate uint32 // IFLA_VF_RATE Min TxRate
}
// LinkOperState represents the values of the IFLA_OPERSTATE link
// attribute, which contains the RFC2863 state of the interface.
type LinkOperState uint8
const (
OperUnknown = iota // Status can't be determined.
OperNotPresent // Some component is missing.
OperDown // Down.
OperLowerLayerDown // Down due to state of lower layer.
OperTesting // In some test mode.
OperDormant // Not up but pending an external event.
OperUp // Up, ready to send packets.
)
func (s LinkOperState) String() string {
switch s {
case OperNotPresent:
return "not-present"
case OperDown:
return "down"
case OperLowerLayerDown:
return "lower-layer-down"
case OperTesting:
return "testing"
case OperDormant:
return "dormant"
case OperUp:
return "up"
default:
return "unknown"
}
}
// NewLinkAttrs returns LinkAttrs structure filled with default values
@@ -35,6 +107,101 @@ func NewLinkAttrs() LinkAttrs {
}
}
type LinkStatistics LinkStatistics64
/*
Ref: struct rtnl_link_stats {...}
*/
type LinkStatistics32 struct {
RxPackets uint32
TxPackets uint32
RxBytes uint32
TxBytes uint32
RxErrors uint32
TxErrors uint32
RxDropped uint32
TxDropped uint32
Multicast uint32
Collisions uint32
RxLengthErrors uint32
RxOverErrors uint32
RxCrcErrors uint32
RxFrameErrors uint32
RxFifoErrors uint32
RxMissedErrors uint32
TxAbortedErrors uint32
TxCarrierErrors uint32
TxFifoErrors uint32
TxHeartbeatErrors uint32
TxWindowErrors uint32
RxCompressed uint32
TxCompressed uint32
}
func (s32 LinkStatistics32) to64() *LinkStatistics64 {
return &LinkStatistics64{
RxPackets: uint64(s32.RxPackets),
TxPackets: uint64(s32.TxPackets),
RxBytes: uint64(s32.RxBytes),
TxBytes: uint64(s32.TxBytes),
RxErrors: uint64(s32.RxErrors),
TxErrors: uint64(s32.TxErrors),
RxDropped: uint64(s32.RxDropped),
TxDropped: uint64(s32.TxDropped),
Multicast: uint64(s32.Multicast),
Collisions: uint64(s32.Collisions),
RxLengthErrors: uint64(s32.RxLengthErrors),
RxOverErrors: uint64(s32.RxOverErrors),
RxCrcErrors: uint64(s32.RxCrcErrors),
RxFrameErrors: uint64(s32.RxFrameErrors),
RxFifoErrors: uint64(s32.RxFifoErrors),
RxMissedErrors: uint64(s32.RxMissedErrors),
TxAbortedErrors: uint64(s32.TxAbortedErrors),
TxCarrierErrors: uint64(s32.TxCarrierErrors),
TxFifoErrors: uint64(s32.TxFifoErrors),
TxHeartbeatErrors: uint64(s32.TxHeartbeatErrors),
TxWindowErrors: uint64(s32.TxWindowErrors),
RxCompressed: uint64(s32.RxCompressed),
TxCompressed: uint64(s32.TxCompressed),
}
}
/*
Ref: struct rtnl_link_stats64 {...}
*/
type LinkStatistics64 struct {
RxPackets uint64
TxPackets uint64
RxBytes uint64
TxBytes uint64
RxErrors uint64
TxErrors uint64
RxDropped uint64
TxDropped uint64
Multicast uint64
Collisions uint64
RxLengthErrors uint64
RxOverErrors uint64
RxCrcErrors uint64
RxFrameErrors uint64
RxFifoErrors uint64
RxMissedErrors uint64
TxAbortedErrors uint64
TxCarrierErrors uint64
TxFifoErrors uint64
TxHeartbeatErrors uint64
TxWindowErrors uint64
RxCompressed uint64
TxCompressed uint64
}
type LinkXdp struct {
Fd int
Attached bool
Flags uint32
ProgId uint32
}
// Device links cannot be created via netlink. These links
// are links created by udev like 'lo' and 'etho0'
type Device struct {
@@ -78,6 +245,9 @@ func (ifb *Ifb) Type() string {
// Bridge links are simple linux bridges
type Bridge struct {
LinkAttrs
MulticastSnooping *bool
HelloTime *uint32
VlanFiltering *bool
}
func (bridge *Bridge) Attrs() *LinkAttrs {
@@ -91,7 +261,8 @@ func (bridge *Bridge) Type() string {
// Vlan links have ParentIndex set in their Attrs()
type Vlan struct {
LinkAttrs
VlanId int
VlanId int
VlanProtocol VlanProtocol
}
func (vlan *Vlan) Attrs() *LinkAttrs {
@@ -117,6 +288,9 @@ const (
type Macvlan struct {
LinkAttrs
Mode MacvlanMode
// MACAddrs is only populated for Macvlan SOURCE links
MACAddrs []net.HardwareAddr
}
func (macvlan *Macvlan) Attrs() *LinkAttrs {
@@ -136,10 +310,34 @@ func (macvtap Macvtap) Type() string {
return "macvtap"
}
type TuntapMode uint16
type TuntapFlag uint16
// Tuntap links created via /dev/tun/tap, but can be destroyed via netlink
type Tuntap struct {
LinkAttrs
Mode TuntapMode
Flags TuntapFlag
NonPersist bool
Queues int
Fds []*os.File
Owner uint32
Group uint32
}
func (tuntap *Tuntap) Attrs() *LinkAttrs {
return &tuntap.LinkAttrs
}
func (tuntap *Tuntap) Type() string {
return "tuntap"
}
// Veth devices must specify PeerName on create
type Veth struct {
LinkAttrs
PeerName string // veth on create only
PeerName string // veth on create only
PeerHardwareAddr net.HardwareAddr
}
func (veth *Veth) Attrs() *LinkAttrs {
@@ -167,24 +365,28 @@ func (generic *GenericLink) Type() string {
type Vxlan struct {
LinkAttrs
VxlanId int
VtepDevIndex int
SrcAddr net.IP
Group net.IP
TTL int
TOS int
Learning bool
Proxy bool
RSC bool
L2miss bool
L3miss bool
NoAge bool
GBP bool
Age int
Limit int
Port int
PortLow int
PortHigh int
VxlanId int
VtepDevIndex int
SrcAddr net.IP
Group net.IP
TTL int
TOS int
Learning bool
Proxy bool
RSC bool
L2miss bool
L3miss bool
UDPCSum bool
UDP6ZeroCSumTx bool
UDP6ZeroCSumRx bool
NoAge bool
GBP bool
FlowBased bool
Age int
Limit int
Port int
PortLow int
PortHigh int
}
func (vxlan *Vxlan) Attrs() *LinkAttrs {
@@ -200,12 +402,22 @@ type IPVlanMode uint16
const (
IPVLAN_MODE_L2 IPVlanMode = iota
IPVLAN_MODE_L3
IPVLAN_MODE_L3S
IPVLAN_MODE_MAX
)
type IPVlanFlag uint16
const (
IPVLAN_FLAG_BRIDGE IPVlanFlag = iota
IPVLAN_FLAG_PRIVATE
IPVLAN_FLAG_VEPA
)
type IPVlan struct {
LinkAttrs
Mode IPVlanMode
Flag IPVlanFlag
}
func (ipvlan *IPVlan) Attrs() *LinkAttrs {
@@ -216,8 +428,637 @@ func (ipvlan *IPVlan) Type() string {
return "ipvlan"
}
// VlanProtocol type
type VlanProtocol int
func (p VlanProtocol) String() string {
s, ok := VlanProtocolToString[p]
if !ok {
return fmt.Sprintf("VlanProtocol(%d)", p)
}
return s
}
// StringToVlanProtocol returns vlan protocol, or unknown is the s is invalid.
func StringToVlanProtocol(s string) VlanProtocol {
mode, ok := StringToVlanProtocolMap[s]
if !ok {
return VLAN_PROTOCOL_UNKNOWN
}
return mode
}
// VlanProtocol possible values
const (
VLAN_PROTOCOL_UNKNOWN VlanProtocol = 0
VLAN_PROTOCOL_8021Q VlanProtocol = 0x8100
VLAN_PROTOCOL_8021AD VlanProtocol = 0x88A8
)
var VlanProtocolToString = map[VlanProtocol]string{
VLAN_PROTOCOL_8021Q: "802.1q",
VLAN_PROTOCOL_8021AD: "802.1ad",
}
var StringToVlanProtocolMap = map[string]VlanProtocol{
"802.1q": VLAN_PROTOCOL_8021Q,
"802.1ad": VLAN_PROTOCOL_8021AD,
}
// BondMode type
type BondMode int
func (b BondMode) String() string {
s, ok := bondModeToString[b]
if !ok {
return fmt.Sprintf("BondMode(%d)", b)
}
return s
}
// StringToBondMode returns bond mode, or unknown is the s is invalid.
func StringToBondMode(s string) BondMode {
mode, ok := StringToBondModeMap[s]
if !ok {
return BOND_MODE_UNKNOWN
}
return mode
}
// Possible BondMode
const (
BOND_MODE_BALANCE_RR BondMode = iota
BOND_MODE_ACTIVE_BACKUP
BOND_MODE_BALANCE_XOR
BOND_MODE_BROADCAST
BOND_MODE_802_3AD
BOND_MODE_BALANCE_TLB
BOND_MODE_BALANCE_ALB
BOND_MODE_UNKNOWN
)
var bondModeToString = map[BondMode]string{
BOND_MODE_BALANCE_RR: "balance-rr",
BOND_MODE_ACTIVE_BACKUP: "active-backup",
BOND_MODE_BALANCE_XOR: "balance-xor",
BOND_MODE_BROADCAST: "broadcast",
BOND_MODE_802_3AD: "802.3ad",
BOND_MODE_BALANCE_TLB: "balance-tlb",
BOND_MODE_BALANCE_ALB: "balance-alb",
}
var StringToBondModeMap = map[string]BondMode{
"balance-rr": BOND_MODE_BALANCE_RR,
"active-backup": BOND_MODE_ACTIVE_BACKUP,
"balance-xor": BOND_MODE_BALANCE_XOR,
"broadcast": BOND_MODE_BROADCAST,
"802.3ad": BOND_MODE_802_3AD,
"balance-tlb": BOND_MODE_BALANCE_TLB,
"balance-alb": BOND_MODE_BALANCE_ALB,
}
// BondArpValidate type
type BondArpValidate int
// Possible BondArpValidate value
const (
BOND_ARP_VALIDATE_NONE BondArpValidate = iota
BOND_ARP_VALIDATE_ACTIVE
BOND_ARP_VALIDATE_BACKUP
BOND_ARP_VALIDATE_ALL
)
// BondPrimaryReselect type
type BondPrimaryReselect int
// Possible BondPrimaryReselect value
const (
BOND_PRIMARY_RESELECT_ALWAYS BondPrimaryReselect = iota
BOND_PRIMARY_RESELECT_BETTER
BOND_PRIMARY_RESELECT_FAILURE
)
// BondArpAllTargets type
type BondArpAllTargets int
// Possible BondArpAllTargets value
const (
BOND_ARP_ALL_TARGETS_ANY BondArpAllTargets = iota
BOND_ARP_ALL_TARGETS_ALL
)
// BondFailOverMac type
type BondFailOverMac int
// Possible BondFailOverMac value
const (
BOND_FAIL_OVER_MAC_NONE BondFailOverMac = iota
BOND_FAIL_OVER_MAC_ACTIVE
BOND_FAIL_OVER_MAC_FOLLOW
)
// BondXmitHashPolicy type
type BondXmitHashPolicy int
func (b BondXmitHashPolicy) String() string {
s, ok := bondXmitHashPolicyToString[b]
if !ok {
return fmt.Sprintf("XmitHashPolicy(%d)", b)
}
return s
}
// StringToBondXmitHashPolicy returns bond lacp arte, or unknown is the s is invalid.
func StringToBondXmitHashPolicy(s string) BondXmitHashPolicy {
lacp, ok := StringToBondXmitHashPolicyMap[s]
if !ok {
return BOND_XMIT_HASH_POLICY_UNKNOWN
}
return lacp
}
// Possible BondXmitHashPolicy value
const (
BOND_XMIT_HASH_POLICY_LAYER2 BondXmitHashPolicy = iota
BOND_XMIT_HASH_POLICY_LAYER3_4
BOND_XMIT_HASH_POLICY_LAYER2_3
BOND_XMIT_HASH_POLICY_ENCAP2_3
BOND_XMIT_HASH_POLICY_ENCAP3_4
BOND_XMIT_HASH_POLICY_UNKNOWN
)
var bondXmitHashPolicyToString = map[BondXmitHashPolicy]string{
BOND_XMIT_HASH_POLICY_LAYER2: "layer2",
BOND_XMIT_HASH_POLICY_LAYER3_4: "layer3+4",
BOND_XMIT_HASH_POLICY_LAYER2_3: "layer2+3",
BOND_XMIT_HASH_POLICY_ENCAP2_3: "encap2+3",
BOND_XMIT_HASH_POLICY_ENCAP3_4: "encap3+4",
}
var StringToBondXmitHashPolicyMap = map[string]BondXmitHashPolicy{
"layer2": BOND_XMIT_HASH_POLICY_LAYER2,
"layer3+4": BOND_XMIT_HASH_POLICY_LAYER3_4,
"layer2+3": BOND_XMIT_HASH_POLICY_LAYER2_3,
"encap2+3": BOND_XMIT_HASH_POLICY_ENCAP2_3,
"encap3+4": BOND_XMIT_HASH_POLICY_ENCAP3_4,
}
// BondLacpRate type
type BondLacpRate int
func (b BondLacpRate) String() string {
s, ok := bondLacpRateToString[b]
if !ok {
return fmt.Sprintf("LacpRate(%d)", b)
}
return s
}
// StringToBondLacpRate returns bond lacp arte, or unknown is the s is invalid.
func StringToBondLacpRate(s string) BondLacpRate {
lacp, ok := StringToBondLacpRateMap[s]
if !ok {
return BOND_LACP_RATE_UNKNOWN
}
return lacp
}
// Possible BondLacpRate value
const (
BOND_LACP_RATE_SLOW BondLacpRate = iota
BOND_LACP_RATE_FAST
BOND_LACP_RATE_UNKNOWN
)
var bondLacpRateToString = map[BondLacpRate]string{
BOND_LACP_RATE_SLOW: "slow",
BOND_LACP_RATE_FAST: "fast",
}
var StringToBondLacpRateMap = map[string]BondLacpRate{
"slow": BOND_LACP_RATE_SLOW,
"fast": BOND_LACP_RATE_FAST,
}
// BondAdSelect type
type BondAdSelect int
// Possible BondAdSelect value
const (
BOND_AD_SELECT_STABLE BondAdSelect = iota
BOND_AD_SELECT_BANDWIDTH
BOND_AD_SELECT_COUNT
)
// BondAdInfo represents ad info for bond
type BondAdInfo struct {
AggregatorId int
NumPorts int
ActorKey int
PartnerKey int
PartnerMac net.HardwareAddr
}
// Bond representation
type Bond struct {
LinkAttrs
Mode BondMode
ActiveSlave int
Miimon int
UpDelay int
DownDelay int
UseCarrier int
ArpInterval int
ArpIpTargets []net.IP
ArpValidate BondArpValidate
ArpAllTargets BondArpAllTargets
Primary int
PrimaryReselect BondPrimaryReselect
FailOverMac BondFailOverMac
XmitHashPolicy BondXmitHashPolicy
ResendIgmp int
NumPeerNotif int
AllSlavesActive int
MinLinks int
LpInterval int
PackersPerSlave int
LacpRate BondLacpRate
AdSelect BondAdSelect
// looking at iproute tool AdInfo can only be retrived. It can't be set.
AdInfo *BondAdInfo
AdActorSysPrio int
AdUserPortKey int
AdActorSystem net.HardwareAddr
TlbDynamicLb int
}
func NewLinkBond(atr LinkAttrs) *Bond {
return &Bond{
LinkAttrs: atr,
Mode: -1,
ActiveSlave: -1,
Miimon: -1,
UpDelay: -1,
DownDelay: -1,
UseCarrier: -1,
ArpInterval: -1,
ArpIpTargets: nil,
ArpValidate: -1,
ArpAllTargets: -1,
Primary: -1,
PrimaryReselect: -1,
FailOverMac: -1,
XmitHashPolicy: -1,
ResendIgmp: -1,
NumPeerNotif: -1,
AllSlavesActive: -1,
MinLinks: -1,
LpInterval: -1,
PackersPerSlave: -1,
LacpRate: -1,
AdSelect: -1,
AdActorSysPrio: -1,
AdUserPortKey: -1,
AdActorSystem: nil,
TlbDynamicLb: -1,
}
}
// Flag mask for bond options. Bond.Flagmask must be set to on for option to work.
const (
BOND_MODE_MASK uint64 = 1 << (1 + iota)
BOND_ACTIVE_SLAVE_MASK
BOND_MIIMON_MASK
BOND_UPDELAY_MASK
BOND_DOWNDELAY_MASK
BOND_USE_CARRIER_MASK
BOND_ARP_INTERVAL_MASK
BOND_ARP_VALIDATE_MASK
BOND_ARP_ALL_TARGETS_MASK
BOND_PRIMARY_MASK
BOND_PRIMARY_RESELECT_MASK
BOND_FAIL_OVER_MAC_MASK
BOND_XMIT_HASH_POLICY_MASK
BOND_RESEND_IGMP_MASK
BOND_NUM_PEER_NOTIF_MASK
BOND_ALL_SLAVES_ACTIVE_MASK
BOND_MIN_LINKS_MASK
BOND_LP_INTERVAL_MASK
BOND_PACKETS_PER_SLAVE_MASK
BOND_LACP_RATE_MASK
BOND_AD_SELECT_MASK
)
// Attrs implementation.
func (bond *Bond) Attrs() *LinkAttrs {
return &bond.LinkAttrs
}
// Type implementation fro Vxlan.
func (bond *Bond) Type() string {
return "bond"
}
// BondSlaveState represents the values of the IFLA_BOND_SLAVE_STATE bond slave
// attribute, which contains the state of the bond slave.
type BondSlaveState uint8
const (
BondStateActive = iota // Link is active.
BondStateBackup // Link is backup.
)
func (s BondSlaveState) String() string {
switch s {
case BondStateActive:
return "ACTIVE"
case BondStateBackup:
return "BACKUP"
default:
return strconv.Itoa(int(s))
}
}
// BondSlaveState represents the values of the IFLA_BOND_SLAVE_MII_STATUS bond slave
// attribute, which contains the status of MII link monitoring
type BondSlaveMiiStatus uint8
const (
BondLinkUp = iota // link is up and running.
BondLinkFail // link has just gone down.
BondLinkDown // link has been down for too long time.
BondLinkBack // link is going back.
)
func (s BondSlaveMiiStatus) String() string {
switch s {
case BondLinkUp:
return "UP"
case BondLinkFail:
return "GOING_DOWN"
case BondLinkDown:
return "DOWN"
case BondLinkBack:
return "GOING_BACK"
default:
return strconv.Itoa(int(s))
}
}
type BondSlave struct {
State BondSlaveState
MiiStatus BondSlaveMiiStatus
LinkFailureCount uint32
PermHardwareAddr net.HardwareAddr
QueueId uint16
AggregatorId uint16
AdActorOperPortState uint8
AdPartnerOperPortState uint16
}
func (b *BondSlave) SlaveType() string {
return "bond"
}
// Gretap devices must specify LocalIP and RemoteIP on create
type Gretap struct {
LinkAttrs
IKey uint32
OKey uint32
EncapSport uint16
EncapDport uint16
Local net.IP
Remote net.IP
IFlags uint16
OFlags uint16
PMtuDisc uint8
Ttl uint8
Tos uint8
EncapType uint16
EncapFlags uint16
Link uint32
FlowBased bool
}
func (gretap *Gretap) Attrs() *LinkAttrs {
return &gretap.LinkAttrs
}
func (gretap *Gretap) Type() string {
if gretap.Local.To4() == nil {
return "ip6gretap"
}
return "gretap"
}
type Iptun struct {
LinkAttrs
Ttl uint8
Tos uint8
PMtuDisc uint8
Link uint32
Local net.IP
Remote net.IP
EncapSport uint16
EncapDport uint16
EncapType uint16
EncapFlags uint16
FlowBased bool
}
func (iptun *Iptun) Attrs() *LinkAttrs {
return &iptun.LinkAttrs
}
func (iptun *Iptun) Type() string {
return "ipip"
}
type Ip6tnl struct {
LinkAttrs
Link uint32
Local net.IP
Remote net.IP
Ttl uint8
Tos uint8
EncapLimit uint8
Flags uint32
Proto uint8
FlowInfo uint32
}
func (ip6tnl *Ip6tnl) Attrs() *LinkAttrs {
return &ip6tnl.LinkAttrs
}
func (ip6tnl *Ip6tnl) Type() string {
return "ip6tnl"
}
type Sittun struct {
LinkAttrs
Link uint32
Local net.IP
Remote net.IP
Ttl uint8
Tos uint8
PMtuDisc uint8
EncapType uint16
EncapFlags uint16
EncapSport uint16
EncapDport uint16
}
func (sittun *Sittun) Attrs() *LinkAttrs {
return &sittun.LinkAttrs
}
func (sittun *Sittun) Type() string {
return "sit"
}
type Vti struct {
LinkAttrs
IKey uint32
OKey uint32
Link uint32
Local net.IP
Remote net.IP
}
func (vti *Vti) Attrs() *LinkAttrs {
return &vti.LinkAttrs
}
func (vti *Vti) Type() string {
if vti.Local.To4() == nil {
return "vti6"
}
return "vti"
}
type Gretun struct {
LinkAttrs
Link uint32
IFlags uint16
OFlags uint16
IKey uint32
OKey uint32
Local net.IP
Remote net.IP
Ttl uint8
Tos uint8
PMtuDisc uint8
EncapType uint16
EncapFlags uint16
EncapSport uint16
EncapDport uint16
}
func (gretun *Gretun) Attrs() *LinkAttrs {
return &gretun.LinkAttrs
}
func (gretun *Gretun) Type() string {
if gretun.Local.To4() == nil {
return "ip6gre"
}
return "gre"
}
type Vrf struct {
LinkAttrs
Table uint32
}
func (vrf *Vrf) Attrs() *LinkAttrs {
return &vrf.LinkAttrs
}
func (vrf *Vrf) Type() string {
return "vrf"
}
type GTP struct {
LinkAttrs
FD0 int
FD1 int
Role int
PDPHashsize int
}
func (gtp *GTP) Attrs() *LinkAttrs {
return &gtp.LinkAttrs
}
func (gtp *GTP) Type() string {
return "gtp"
}
// Virtual XFRM Interfaces
// Named "xfrmi" to prevent confusion with XFRM objects
type Xfrmi struct {
LinkAttrs
Ifid uint32
}
func (xfrm *Xfrmi) Attrs() *LinkAttrs {
return &xfrm.LinkAttrs
}
func (xfrm *Xfrmi) Type() string {
return "xfrm"
}
// IPoIB interface
type IPoIBMode uint16
func (m *IPoIBMode) String() string {
str, ok := iPoIBModeToString[*m]
if !ok {
return fmt.Sprintf("mode(%d)", *m)
}
return str
}
const (
IPOIB_MODE_DATAGRAM = iota
IPOIB_MODE_CONNECTED
)
var iPoIBModeToString = map[IPoIBMode]string{
IPOIB_MODE_DATAGRAM: "datagram",
IPOIB_MODE_CONNECTED: "connected",
}
var StringToIPoIBMode = map[string]IPoIBMode{
"datagram": IPOIB_MODE_DATAGRAM,
"connected": IPOIB_MODE_CONNECTED,
}
type IPoIB struct {
LinkAttrs
Pkey uint16
Mode IPoIBMode
Umcast uint16
}
func (ipoib *IPoIB) Attrs() *LinkAttrs {
return &ipoib.LinkAttrs
}
func (ipoib *IPoIB) Type() string {
return "ipoib"
}
// iproute2 supported devices;
// vlan | veth | vcan | dummy | ifb | macvlan | macvtap |
// bridge | bond | ipoib | ip6tnl | ipip | sit | vxlan |
// gre | gretap | ip6gre | ip6gretap | vti | nlmon |
// bond_slave | ipvlan
// gre | gretap | ip6gre | ip6gretap | vti | vti6 | nlmon |
// bond_slave | ipvlan | xfrm
// LinkNotFoundError wraps the various not found errors when
// getting/reading links. This is intended for better error
// handling by dependent code so that "not found error" can
// be distinguished from other errors
type LinkNotFoundError struct {
error
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,14 @@
package netlink
// ideally golang.org/x/sys/unix would define IfReq but it only has
// IFNAMSIZ, hence this minimalistic implementation
const (
SizeOfIfReq = 40
IFNAMSIZ = 16
)
type ifReq struct {
Name [IFNAMSIZ]byte
Flags uint16
pad [SizeOfIfReq - IFNAMSIZ - 2]byte
}

View File

@@ -14,9 +14,19 @@ type Neigh struct {
Flags int
IP net.IP
HardwareAddr net.HardwareAddr
LLIPAddr net.IP //Used in the case of NHRP
Vlan int
VNI int
MasterIndex int
}
// String returns $ip/$hwaddr $label
func (neigh *Neigh) String() string {
return fmt.Sprintf("%s %s", neigh.IP, neigh.HardwareAddr)
}
// NeighUpdate is sent when a neighbor changes - type is RTM_NEWNEIGH or RTM_DELNEIGH.
type NeighUpdate struct {
Type uint16
Neigh
}

View File

@@ -1,11 +1,14 @@
package netlink
import (
"fmt"
"net"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
const (
@@ -18,7 +21,10 @@ const (
NDA_PORT
NDA_VNI
NDA_IFINDEX
NDA_MAX = NDA_IFINDEX
NDA_MASTER
NDA_LINK_NETNSID
NDA_SRC_VNI
NDA_MAX = NDA_SRC_VNI
)
// Neighbor Cache Entry States.
@@ -43,6 +49,7 @@ const (
NTF_ROUTER = 0x80
)
// Ndmsg is for adding, removing or receiving information about a neighbor table entry
type Ndmsg struct {
Family uint8
Index uint32
@@ -67,35 +74,68 @@ func (msg *Ndmsg) Len() int {
// NeighAdd will add an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh add ....`
func NeighAdd(neigh *Neigh) error {
return neighAdd(neigh, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL)
return pkgHandle.NeighAdd(neigh)
}
// NeighAdd will add or replace an IP to MAC mapping to the ARP table
// NeighAdd will add an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh add ....`
func (h *Handle) NeighAdd(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_EXCL)
}
// NeighSet will add or replace an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh replace....`
func NeighSet(neigh *Neigh) error {
return neighAdd(neigh, syscall.NLM_F_CREATE)
return pkgHandle.NeighSet(neigh)
}
// NeighSet will add or replace an IP to MAC mapping to the ARP table
// Equivalent to: `ip neigh replace....`
func (h *Handle) NeighSet(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_REPLACE)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func NeighAppend(neigh *Neigh) error {
return neighAdd(neigh, syscall.NLM_F_CREATE|syscall.NLM_F_APPEND)
return pkgHandle.NeighAppend(neigh)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func (h *Handle) NeighAppend(neigh *Neigh) error {
return h.neighAdd(neigh, unix.NLM_F_CREATE|unix.NLM_F_APPEND)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func neighAdd(neigh *Neigh, mode int) error {
req := nl.NewNetlinkRequest(syscall.RTM_NEWNEIGH, mode|syscall.NLM_F_ACK)
return pkgHandle.neighAdd(neigh, mode)
}
// NeighAppend will append an entry to FDB
// Equivalent to: `bridge fdb append...`
func (h *Handle) neighAdd(neigh *Neigh, mode int) error {
req := h.newNetlinkRequest(unix.RTM_NEWNEIGH, mode|unix.NLM_F_ACK)
return neighHandle(neigh, req)
}
// NeighDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func NeighDel(neigh *Neigh) error {
req := nl.NewNetlinkRequest(syscall.RTM_DELNEIGH, syscall.NLM_F_ACK)
return pkgHandle.NeighDel(neigh)
}
// NeighDel will delete an IP address from a link device.
// Equivalent to: `ip addr del $addr dev $link`
func (h *Handle) NeighDel(neigh *Neigh) error {
req := h.newNetlinkRequest(unix.RTM_DELNEIGH, unix.NLM_F_ACK)
return neighHandle(neigh, req)
}
func neighHandle(neigh *Neigh, req *nl.NetlinkRequest) error {
var family int
if neigh.Family > 0 {
family = neigh.Family
} else {
@@ -119,24 +159,79 @@ func neighHandle(neigh *Neigh, req *nl.NetlinkRequest) error {
dstData := nl.NewRtAttr(NDA_DST, ipData)
req.AddData(dstData)
hwData := nl.NewRtAttr(NDA_LLADDR, []byte(neigh.HardwareAddr))
req.AddData(hwData)
if neigh.LLIPAddr != nil {
llIPData := nl.NewRtAttr(NDA_LLADDR, neigh.LLIPAddr.To4())
req.AddData(llIPData)
} else if neigh.Flags != NTF_PROXY || neigh.HardwareAddr != nil {
hwData := nl.NewRtAttr(NDA_LLADDR, []byte(neigh.HardwareAddr))
req.AddData(hwData)
}
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
if neigh.Vlan != 0 {
vlanData := nl.NewRtAttr(NDA_VLAN, nl.Uint16Attr(uint16(neigh.Vlan)))
req.AddData(vlanData)
}
if neigh.VNI != 0 {
vniData := nl.NewRtAttr(NDA_VNI, nl.Uint32Attr(uint32(neigh.VNI)))
req.AddData(vniData)
}
if neigh.MasterIndex != 0 {
masterData := nl.NewRtAttr(NDA_MASTER, nl.Uint32Attr(uint32(neigh.MasterIndex)))
req.AddData(masterData)
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// NeighList gets a list of IP-MAC mappings in the system (ARP table).
// NeighList returns a list of IP-MAC mappings in the system (ARP table).
// Equivalent to: `ip neighbor show`.
// The list can be filtered by link and ip family.
func NeighList(linkIndex, family int) ([]Neigh, error) {
req := nl.NewNetlinkRequest(syscall.RTM_GETNEIGH, syscall.NLM_F_DUMP)
msg := Ndmsg{
return pkgHandle.NeighList(linkIndex, family)
}
// NeighProxyList returns a list of neighbor proxies in the system.
// Equivalent to: `ip neighbor show proxy`.
// The list can be filtered by link and ip family.
func NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return pkgHandle.NeighProxyList(linkIndex, family)
}
// NeighList returns a list of IP-MAC mappings in the system (ARP table).
// Equivalent to: `ip neighbor show`.
// The list can be filtered by link and ip family.
func (h *Handle) NeighList(linkIndex, family int) ([]Neigh, error) {
return h.NeighListExecute(Ndmsg{
Family: uint8(family),
}
Index: uint32(linkIndex),
})
}
// NeighProxyList returns a list of neighbor proxies in the system.
// Equivalent to: `ip neighbor show proxy`.
// The list can be filtered by link, ip family.
func (h *Handle) NeighProxyList(linkIndex, family int) ([]Neigh, error) {
return h.NeighListExecute(Ndmsg{
Family: uint8(family),
Index: uint32(linkIndex),
Flags: NTF_PROXY,
})
}
// NeighListExecute returns a list of neighbour entries filtered by link, ip family, flag and state.
func NeighListExecute(msg Ndmsg) ([]Neigh, error) {
return pkgHandle.NeighListExecute(msg)
}
// NeighListExecute returns a list of neighbour entries filtered by link, ip family, flag and state.
func (h *Handle) NeighListExecute(msg Ndmsg) ([]Neigh, error) {
req := h.newNetlinkRequest(unix.RTM_GETNEIGH, unix.NLM_F_DUMP)
req.AddData(&msg)
msgs, err := req.Execute(syscall.NETLINK_ROUTE, syscall.RTM_NEWNEIGH)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWNEIGH)
if err != nil {
return nil, err
}
@@ -144,7 +239,7 @@ func NeighList(linkIndex, family int) ([]Neigh, error) {
var res []Neigh
for _, m := range msgs {
ndm := deserializeNdmsg(m)
if linkIndex != 0 && int(ndm.Index) != linkIndex {
if msg.Index != 0 && ndm.Index != msg.Index {
// Ignore messages from other interfaces
continue
}
@@ -181,9 +276,147 @@ func NeighDeserialize(m []byte) (*Neigh, error) {
case NDA_DST:
neigh.IP = net.IP(attr.Value)
case NDA_LLADDR:
neigh.HardwareAddr = net.HardwareAddr(attr.Value)
// BUG: Is this a bug in the netlink library?
// #define RTA_LENGTH(len) (RTA_ALIGN(sizeof(struct rtattr)) + (len))
// #define RTA_PAYLOAD(rta) ((int)((rta)->rta_len) - RTA_LENGTH(0))
attrLen := attr.Attr.Len - unix.SizeofRtAttr
if attrLen == 4 {
neigh.LLIPAddr = net.IP(attr.Value)
} else if attrLen == 16 {
// Can be IPv6 or FireWire HWAddr
link, err := LinkByIndex(neigh.LinkIndex)
if err == nil && link.Attrs().EncapType == "tunnel6" {
neigh.IP = net.IP(attr.Value)
} else {
neigh.HardwareAddr = net.HardwareAddr(attr.Value)
}
} else {
neigh.HardwareAddr = net.HardwareAddr(attr.Value)
}
case NDA_VLAN:
neigh.Vlan = int(native.Uint16(attr.Value[0:2]))
case NDA_VNI:
neigh.VNI = int(native.Uint32(attr.Value[0:4]))
case NDA_MASTER:
neigh.MasterIndex = int(native.Uint32(attr.Value[0:4]))
}
}
return &neigh, nil
}
// NeighSubscribe takes a chan down which notifications will be sent
// when neighbors are added or deleted. Close the 'done' chan to stop subscription.
func NeighSubscribe(ch chan<- NeighUpdate, done <-chan struct{}) error {
return neighSubscribeAt(netns.None(), netns.None(), ch, done, nil, false)
}
// NeighSubscribeAt works like NeighSubscribe plus it allows the caller
// to choose the network namespace in which to subscribe (ns).
func NeighSubscribeAt(ns netns.NsHandle, ch chan<- NeighUpdate, done <-chan struct{}) error {
return neighSubscribeAt(ns, netns.None(), ch, done, nil, false)
}
// NeighSubscribeOptions contains a set of options to use with
// NeighSubscribeWithOptions.
type NeighSubscribeOptions struct {
Namespace *netns.NsHandle
ErrorCallback func(error)
ListExisting bool
}
// NeighSubscribeWithOptions work like NeighSubscribe but enable to
// provide additional options to modify the behavior. Currently, the
// namespace can be provided as well as an error callback.
func NeighSubscribeWithOptions(ch chan<- NeighUpdate, done <-chan struct{}, options NeighSubscribeOptions) error {
if options.Namespace == nil {
none := netns.None()
options.Namespace = &none
}
return neighSubscribeAt(*options.Namespace, netns.None(), ch, done, options.ErrorCallback, options.ListExisting)
}
func neighSubscribeAt(newNs, curNs netns.NsHandle, ch chan<- NeighUpdate, done <-chan struct{}, cberr func(error), listExisting bool) error {
s, err := nl.SubscribeAt(newNs, curNs, unix.NETLINK_ROUTE, unix.RTNLGRP_NEIGH)
makeRequest := func(family int) error {
req := pkgHandle.newNetlinkRequest(unix.RTM_GETNEIGH,
unix.NLM_F_DUMP)
infmsg := nl.NewIfInfomsg(family)
req.AddData(infmsg)
if err := s.Send(req); err != nil {
return err
}
return nil
}
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
if listExisting {
if err := makeRequest(unix.AF_UNSPEC); err != nil {
return err
}
// We have to wait for NLMSG_DONE before making AF_BRIDGE request
}
go func() {
defer close(ch)
for {
msgs, from, err := s.Receive()
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
if from.Pid != nl.PidKernel {
if cberr != nil {
cberr(fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel))
}
continue
}
for _, m := range msgs {
if m.Header.Type == unix.NLMSG_DONE {
if listExisting {
// This will be called after handling AF_UNSPEC
// list request, we have to wait for NLMSG_DONE
// before making another request
if err := makeRequest(unix.AF_BRIDGE); err != nil {
if cberr != nil {
cberr(err)
}
return
}
listExisting = false
}
continue
}
if m.Header.Type == unix.NLMSG_ERROR {
native := nl.NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
continue
}
if cberr != nil {
cberr(syscall.Errno(-error))
}
return
}
neigh, err := NeighDeserialize(m.Data)
if err != nil {
if cberr != nil {
cberr(err)
}
return
}
ch <- NeighUpdate{Type: m.Header.Type, Neigh: *neigh}
}
}
}()
return nil
}

View File

@@ -9,16 +9,13 @@
package netlink
import (
"errors"
"net"
"github.com/vishvananda/netlink/nl"
)
const (
// Family type definitions
FAMILY_ALL = nl.FAMILY_ALL
FAMILY_V4 = nl.FAMILY_V4
FAMILY_V6 = nl.FAMILY_V6
var (
// ErrNotImplemented is returned when a requested feature is not implemented.
ErrNotImplemented = errors.New("not implemented")
)
// ParseIPNet parses a string in ip/net format and returns a net.IPNet.
@@ -30,10 +27,14 @@ func ParseIPNet(s string) (*net.IPNet, error) {
if err != nil {
return nil, err
}
return &net.IPNet{IP: ip, Mask: ipNet.Mask}, nil
ipNet.IP = ip
return ipNet, nil
}
// NewIPNet generates an IPNet from an ip address using a netmask of 32.
// NewIPNet generates an IPNet from an ip address using a netmask of 32 or 128.
func NewIPNet(ip net.IP) *net.IPNet {
return &net.IPNet{IP: ip, Mask: net.CIDRMask(32, 32)}
if ip.To4() != nil {
return &net.IPNet{IP: ip, Mask: net.CIDRMask(32, 32)}
}
return &net.IPNet{IP: ip, Mask: net.CIDRMask(128, 128)}
}

11
vendor/github.com/vishvananda/netlink/netlink_linux.go generated vendored Normal file
View File

@@ -0,0 +1,11 @@
package netlink
import "github.com/vishvananda/netlink/nl"
// Family type definitions
const (
FAMILY_ALL = nl.FAMILY_ALL
FAMILY_V4 = nl.FAMILY_V4
FAMILY_V6 = nl.FAMILY_V6
FAMILY_MPLS = nl.FAMILY_MPLS
)

View File

@@ -2,43 +2,129 @@
package netlink
import (
"errors"
)
import "net"
var (
ErrNotImplemented = errors.New("not implemented")
)
func LinkSetUp(link *Link) error {
func LinkSetUp(link Link) error {
return ErrNotImplemented
}
func LinkSetDown(link *Link) error {
func LinkSetDown(link Link) error {
return ErrNotImplemented
}
func LinkSetMTU(link *Link, mtu int) error {
func LinkSetMTU(link Link, mtu int) error {
return ErrNotImplemented
}
func LinkSetMaster(link *Link, master *Link) error {
func LinkSetMaster(link Link, master *Bridge) error {
return ErrNotImplemented
}
func LinkSetNsPid(link *Link, nspid int) error {
func LinkSetNsPid(link Link, nspid int) error {
return ErrNotImplemented
}
func LinkSetNsFd(link *Link, fd int) error {
func LinkSetNsFd(link Link, fd int) error {
return ErrNotImplemented
}
func LinkAdd(link *Link) error {
func LinkSetName(link Link, name string) error {
return ErrNotImplemented
}
func LinkDel(link *Link) error {
func LinkSetAlias(link Link, name string) error {
return ErrNotImplemented
}
func LinkSetHardwareAddr(link Link, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func LinkSetVfHardwareAddr(link Link, vf int, hwaddr net.HardwareAddr) error {
return ErrNotImplemented
}
func LinkSetVfVlan(link Link, vf, vlan int) error {
return ErrNotImplemented
}
func LinkSetVfVlanQos(link Link, vf, vlan, qos int) error {
return ErrNotImplemented
}
func LinkSetVfTxRate(link Link, vf, rate int) error {
return ErrNotImplemented
}
func LinkSetVfRate(link Link, vf, minRate, maxRate int) error {
return ErrNotImplemented
}
func LinkSetNoMaster(link Link) error {
return ErrNotImplemented
}
func LinkSetMasterByIndex(link Link, masterIndex int) error {
return ErrNotImplemented
}
func LinkSetXdpFd(link Link, fd int) error {
return ErrNotImplemented
}
func LinkSetARPOff(link Link) error {
return ErrNotImplemented
}
func LinkSetARPOn(link Link) error {
return ErrNotImplemented
}
func LinkByName(name string) (Link, error) {
return nil, ErrNotImplemented
}
func LinkByAlias(alias string) (Link, error) {
return nil, ErrNotImplemented
}
func LinkByIndex(index int) (Link, error) {
return nil, ErrNotImplemented
}
func LinkSetHairpin(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetGuard(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetFastLeave(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetLearning(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetRootBlock(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetFlood(link Link, mode bool) error {
return ErrNotImplemented
}
func LinkSetTxQLen(link Link, qlen int) error {
return ErrNotImplemented
}
func LinkAdd(link Link) error {
return ErrNotImplemented
}
func LinkDel(link Link) error {
return ErrNotImplemented
}
@@ -70,15 +156,19 @@ func LinkList() ([]Link, error) {
return nil, ErrNotImplemented
}
func AddrAdd(link *Link, addr *Addr) error {
func AddrAdd(link Link, addr *Addr) error {
return ErrNotImplemented
}
func AddrDel(link *Link, addr *Addr) error {
func AddrReplace(link Link, addr *Addr) error {
return ErrNotImplemented
}
func AddrList(link *Link, family int) ([]Addr, error) {
func AddrDel(link Link, addr *Addr) error {
return ErrNotImplemented
}
func AddrList(link Link, family int) ([]Addr, error) {
return nil, ErrNotImplemented
}
@@ -90,7 +180,7 @@ func RouteDel(route *Route) error {
return ErrNotImplemented
}
func RouteList(link *Link, family int) ([]Route, error) {
func RouteList(link Link, family int) ([]Route, error) {
return nil, ErrNotImplemented
}
@@ -138,6 +228,10 @@ func NeighList(linkIndex, family int) ([]Neigh, error) {
return nil, ErrNotImplemented
}
func NeighDeserialize(m []byte) (*Ndmsg, *Neigh, error) {
return nil, nil, ErrNotImplemented
func NeighDeserialize(m []byte) (*Neigh, error) {
return nil, ErrNotImplemented
}
func SocketGet(local, remote net.Addr) (*Socket, error) {
return nil, ErrNotImplemented
}

141
vendor/github.com/vishvananda/netlink/netns_linux.go generated vendored Normal file
View File

@@ -0,0 +1,141 @@
package netlink
// Network namespace ID functions
//
// The kernel has a weird concept called the network namespace ID.
// This is different from the file reference in proc (and any bind-mounted
// namespaces, etc.)
//
// Instead, namespaces can be assigned a numeric ID at any time. Once set,
// the ID is fixed. The ID can either be set manually by the user, or
// automatically, triggered by certain kernel actions. The most common kernel
// action that triggers namespace ID creation is moving one end of a veth pair
// in to that namespace.
import (
"fmt"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// These can be replaced by the values from sys/unix when it is next released.
const (
_ = iota
NETNSA_NSID
NETNSA_PID
NETNSA_FD
)
// GetNetNsIdByPid looks up the network namespace ID for a given pid (really thread id).
// Returns -1 if the namespace does not have an ID set.
func (h *Handle) GetNetNsIdByPid(pid int) (int, error) {
return h.getNetNsId(NETNSA_PID, uint32(pid))
}
// GetNetNsIdByPid looks up the network namespace ID for a given pid (really thread id).
// Returns -1 if the namespace does not have an ID set.
func GetNetNsIdByPid(pid int) (int, error) {
return pkgHandle.GetNetNsIdByPid(pid)
}
// SetNetNSIdByPid sets the ID of the network namespace for a given pid (really thread id).
// The ID can only be set for namespaces without an ID already set.
func (h *Handle) SetNetNsIdByPid(pid, nsid int) error {
return h.setNetNsId(NETNSA_PID, uint32(pid), uint32(nsid))
}
// SetNetNSIdByPid sets the ID of the network namespace for a given pid (really thread id).
// The ID can only be set for namespaces without an ID already set.
func SetNetNsIdByPid(pid, nsid int) error {
return pkgHandle.SetNetNsIdByPid(pid, nsid)
}
// GetNetNsIdByFd looks up the network namespace ID for a given fd.
// fd must be an open file descriptor to a namespace file.
// Returns -1 if the namespace does not have an ID set.
func (h *Handle) GetNetNsIdByFd(fd int) (int, error) {
return h.getNetNsId(NETNSA_FD, uint32(fd))
}
// GetNetNsIdByFd looks up the network namespace ID for a given fd.
// fd must be an open file descriptor to a namespace file.
// Returns -1 if the namespace does not have an ID set.
func GetNetNsIdByFd(fd int) (int, error) {
return pkgHandle.GetNetNsIdByFd(fd)
}
// SetNetNSIdByFd sets the ID of the network namespace for a given fd.
// fd must be an open file descriptor to a namespace file.
// The ID can only be set for namespaces without an ID already set.
func (h *Handle) SetNetNsIdByFd(fd, nsid int) error {
return h.setNetNsId(NETNSA_FD, uint32(fd), uint32(nsid))
}
// SetNetNSIdByFd sets the ID of the network namespace for a given fd.
// fd must be an open file descriptor to a namespace file.
// The ID can only be set for namespaces without an ID already set.
func SetNetNsIdByFd(fd, nsid int) error {
return pkgHandle.SetNetNsIdByFd(fd, nsid)
}
// getNetNsId requests the netnsid for a given type-val pair
// type should be either NETNSA_PID or NETNSA_FD
func (h *Handle) getNetNsId(attrType int, val uint32) (int, error) {
req := h.newNetlinkRequest(unix.RTM_GETNSID, unix.NLM_F_REQUEST)
rtgen := nl.NewRtGenMsg()
req.AddData(rtgen)
b := make([]byte, 4, 4)
native.PutUint32(b, val)
attr := nl.NewRtAttr(attrType, b)
req.AddData(attr)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWNSID)
if err != nil {
return 0, err
}
for _, m := range msgs {
msg := nl.DeserializeRtGenMsg(m)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return 0, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case NETNSA_NSID:
return int(int32(native.Uint32(attr.Value))), nil
}
}
}
return 0, fmt.Errorf("unexpected empty result")
}
// setNetNsId sets the netnsid for a given type-val pair
// type should be either NETNSA_PID or NETNSA_FD
// The ID can only be set for namespaces without an ID already set
func (h *Handle) setNetNsId(attrType int, val uint32, newnsid uint32) error {
req := h.newNetlinkRequest(unix.RTM_NEWNSID, unix.NLM_F_REQUEST|unix.NLM_F_ACK)
rtgen := nl.NewRtGenMsg()
req.AddData(rtgen)
b := make([]byte, 4, 4)
native.PutUint32(b, val)
attr := nl.NewRtAttr(attrType, b)
req.AddData(attr)
b1 := make([]byte, 4, 4)
native.PutUint32(b1, newnsid)
attr1 := nl.NewRtAttr(NETNSA_NSID, b1)
req.AddData(attr1)
_, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWNSID)
return err
}

View File

@@ -0,0 +1,19 @@
// +build !linux
package netlink
func GetNetNsIdByPid(pid int) (int, error) {
return 0, ErrNotImplemented
}
func SetNetNsIdByPid(pid, nsid int) error {
return ErrNotImplemented
}
func GetNetNsIdByFd(fd int) (int, error) {
return 0, ErrNotImplemented
}
func SetNetNsIdByFd(fd, nsid int) error {
return ErrNotImplemented
}

View File

@@ -1,17 +1,18 @@
package nl
import (
"syscall"
"unsafe"
"golang.org/x/sys/unix"
)
type IfAddrmsg struct {
syscall.IfAddrmsg
unix.IfAddrmsg
}
func NewIfAddrmsg(family int) *IfAddrmsg {
return &IfAddrmsg{
IfAddrmsg: syscall.IfAddrmsg{
IfAddrmsg: unix.IfAddrmsg{
Family: uint8(family),
},
}
@@ -35,13 +36,42 @@ func NewIfAddrmsg(family int) *IfAddrmsg {
// SizeofIfAddrmsg = 0x8
func DeserializeIfAddrmsg(b []byte) *IfAddrmsg {
return (*IfAddrmsg)(unsafe.Pointer(&b[0:syscall.SizeofIfAddrmsg][0]))
return (*IfAddrmsg)(unsafe.Pointer(&b[0:unix.SizeofIfAddrmsg][0]))
}
func (msg *IfAddrmsg) Serialize() []byte {
return (*(*[syscall.SizeofIfAddrmsg]byte)(unsafe.Pointer(msg)))[:]
return (*(*[unix.SizeofIfAddrmsg]byte)(unsafe.Pointer(msg)))[:]
}
func (msg *IfAddrmsg) Len() int {
return syscall.SizeofIfAddrmsg
return unix.SizeofIfAddrmsg
}
// struct ifa_cacheinfo {
// __u32 ifa_prefered;
// __u32 ifa_valid;
// __u32 cstamp; /* created timestamp, hundredths of seconds */
// __u32 tstamp; /* updated timestamp, hundredths of seconds */
// };
const IFA_CACHEINFO = 6
const SizeofIfaCacheInfo = 0x10
type IfaCacheInfo struct {
IfaPrefered uint32
IfaValid uint32
Cstamp uint32
Tstamp uint32
}
func (msg *IfaCacheInfo) Len() int {
return SizeofIfaCacheInfo
}
func DeserializeIfaCacheInfo(b []byte) *IfaCacheInfo {
return (*IfaCacheInfo)(unsafe.Pointer(&b[0:SizeofIfaCacheInfo][0]))
}
func (msg *IfaCacheInfo) Serialize() []byte {
return (*(*[SizeofIfaCacheInfo]byte)(unsafe.Pointer(msg)))[:]
}

View File

@@ -0,0 +1,74 @@
package nl
import (
"fmt"
"unsafe"
)
const (
SizeofBridgeVlanInfo = 0x04
)
/* Bridge Flags */
const (
BRIDGE_FLAGS_MASTER = iota + 1 /* Bridge command to/from master */
BRIDGE_FLAGS_SELF /* Bridge command to/from lowerdev */
)
/* Bridge management nested attributes
* [IFLA_AF_SPEC] = {
* [IFLA_BRIDGE_FLAGS]
* [IFLA_BRIDGE_MODE]
* [IFLA_BRIDGE_VLAN_INFO]
* }
*/
const (
IFLA_BRIDGE_FLAGS = iota
IFLA_BRIDGE_MODE
IFLA_BRIDGE_VLAN_INFO
)
const (
BRIDGE_VLAN_INFO_MASTER = 1 << iota
BRIDGE_VLAN_INFO_PVID
BRIDGE_VLAN_INFO_UNTAGGED
BRIDGE_VLAN_INFO_RANGE_BEGIN
BRIDGE_VLAN_INFO_RANGE_END
)
// struct bridge_vlan_info {
// __u16 flags;
// __u16 vid;
// };
type BridgeVlanInfo struct {
Flags uint16
Vid uint16
}
func (b *BridgeVlanInfo) Serialize() []byte {
return (*(*[SizeofBridgeVlanInfo]byte)(unsafe.Pointer(b)))[:]
}
func DeserializeBridgeVlanInfo(b []byte) *BridgeVlanInfo {
return (*BridgeVlanInfo)(unsafe.Pointer(&b[0:SizeofBridgeVlanInfo][0]))
}
func (b *BridgeVlanInfo) PortVID() bool {
return b.Flags&BRIDGE_VLAN_INFO_PVID > 0
}
func (b *BridgeVlanInfo) EngressUntag() bool {
return b.Flags&BRIDGE_VLAN_INFO_UNTAGGED > 0
}
func (b *BridgeVlanInfo) String() string {
return fmt.Sprintf("%+v", *b)
}
/* New extended info filters for IFLA_EXT_MASK */
const (
RTEXT_FILTER_VF = 1 << iota
RTEXT_FILTER_BRVLAN
RTEXT_FILTER_BRVLAN_COMPRESSED
)

View File

@@ -0,0 +1,217 @@
package nl
import "unsafe"
// Track the message sizes for the correct serialization/deserialization
const (
SizeofNfgenmsg = 4
SizeofNfattr = 4
SizeofNfConntrack = 376
SizeofNfctTupleHead = 52
)
var L4ProtoMap = map[uint8]string{
6: "tcp",
17: "udp",
}
// All the following constants are coming from:
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/netfilter/nfnetlink_conntrack.h
// enum cntl_msg_types {
// IPCTNL_MSG_CT_NEW,
// IPCTNL_MSG_CT_GET,
// IPCTNL_MSG_CT_DELETE,
// IPCTNL_MSG_CT_GET_CTRZERO,
// IPCTNL_MSG_CT_GET_STATS_CPU,
// IPCTNL_MSG_CT_GET_STATS,
// IPCTNL_MSG_CT_GET_DYING,
// IPCTNL_MSG_CT_GET_UNCONFIRMED,
//
// IPCTNL_MSG_MAX
// };
const (
IPCTNL_MSG_CT_GET = 1
IPCTNL_MSG_CT_DELETE = 2
)
// #define NFNETLINK_V0 0
const (
NFNETLINK_V0 = 0
)
// #define NLA_F_NESTED (1 << 15)
const (
NLA_F_NESTED = (1 << 15)
)
// enum ctattr_type {
// CTA_UNSPEC,
// CTA_TUPLE_ORIG,
// CTA_TUPLE_REPLY,
// CTA_STATUS,
// CTA_PROTOINFO,
// CTA_HELP,
// CTA_NAT_SRC,
// #define CTA_NAT CTA_NAT_SRC /* backwards compatibility */
// CTA_TIMEOUT,
// CTA_MARK,
// CTA_COUNTERS_ORIG,
// CTA_COUNTERS_REPLY,
// CTA_USE,
// CTA_ID,
// CTA_NAT_DST,
// CTA_TUPLE_MASTER,
// CTA_SEQ_ADJ_ORIG,
// CTA_NAT_SEQ_ADJ_ORIG = CTA_SEQ_ADJ_ORIG,
// CTA_SEQ_ADJ_REPLY,
// CTA_NAT_SEQ_ADJ_REPLY = CTA_SEQ_ADJ_REPLY,
// CTA_SECMARK, /* obsolete */
// CTA_ZONE,
// CTA_SECCTX,
// CTA_TIMESTAMP,
// CTA_MARK_MASK,
// CTA_LABELS,
// CTA_LABELS_MASK,
// __CTA_MAX
// };
const (
CTA_TUPLE_ORIG = 1
CTA_TUPLE_REPLY = 2
CTA_STATUS = 3
CTA_PROTOINFO = 4
CTA_TIMEOUT = 7
CTA_MARK = 8
CTA_COUNTERS_ORIG = 9
CTA_COUNTERS_REPLY = 10
CTA_USE = 11
CTA_ID = 12
CTA_TIMESTAMP = 20
)
// enum ctattr_tuple {
// CTA_TUPLE_UNSPEC,
// CTA_TUPLE_IP,
// CTA_TUPLE_PROTO,
// CTA_TUPLE_ZONE,
// __CTA_TUPLE_MAX
// };
// #define CTA_TUPLE_MAX (__CTA_TUPLE_MAX - 1)
const (
CTA_TUPLE_IP = 1
CTA_TUPLE_PROTO = 2
)
// enum ctattr_ip {
// CTA_IP_UNSPEC,
// CTA_IP_V4_SRC,
// CTA_IP_V4_DST,
// CTA_IP_V6_SRC,
// CTA_IP_V6_DST,
// __CTA_IP_MAX
// };
// #define CTA_IP_MAX (__CTA_IP_MAX - 1)
const (
CTA_IP_V4_SRC = 1
CTA_IP_V4_DST = 2
CTA_IP_V6_SRC = 3
CTA_IP_V6_DST = 4
)
// enum ctattr_l4proto {
// CTA_PROTO_UNSPEC,
// CTA_PROTO_NUM,
// CTA_PROTO_SRC_PORT,
// CTA_PROTO_DST_PORT,
// CTA_PROTO_ICMP_ID,
// CTA_PROTO_ICMP_TYPE,
// CTA_PROTO_ICMP_CODE,
// CTA_PROTO_ICMPV6_ID,
// CTA_PROTO_ICMPV6_TYPE,
// CTA_PROTO_ICMPV6_CODE,
// __CTA_PROTO_MAX
// };
// #define CTA_PROTO_MAX (__CTA_PROTO_MAX - 1)
const (
CTA_PROTO_NUM = 1
CTA_PROTO_SRC_PORT = 2
CTA_PROTO_DST_PORT = 3
)
// enum ctattr_protoinfo {
// CTA_PROTOINFO_UNSPEC,
// CTA_PROTOINFO_TCP,
// CTA_PROTOINFO_DCCP,
// CTA_PROTOINFO_SCTP,
// __CTA_PROTOINFO_MAX
// };
// #define CTA_PROTOINFO_MAX (__CTA_PROTOINFO_MAX - 1)
const (
CTA_PROTOINFO_TCP = 1
)
// enum ctattr_protoinfo_tcp {
// CTA_PROTOINFO_TCP_UNSPEC,
// CTA_PROTOINFO_TCP_STATE,
// CTA_PROTOINFO_TCP_WSCALE_ORIGINAL,
// CTA_PROTOINFO_TCP_WSCALE_REPLY,
// CTA_PROTOINFO_TCP_FLAGS_ORIGINAL,
// CTA_PROTOINFO_TCP_FLAGS_REPLY,
// __CTA_PROTOINFO_TCP_MAX
// };
// #define CTA_PROTOINFO_TCP_MAX (__CTA_PROTOINFO_TCP_MAX - 1)
const (
CTA_PROTOINFO_TCP_STATE = 1
CTA_PROTOINFO_TCP_WSCALE_ORIGINAL = 2
CTA_PROTOINFO_TCP_WSCALE_REPLY = 3
CTA_PROTOINFO_TCP_FLAGS_ORIGINAL = 4
CTA_PROTOINFO_TCP_FLAGS_REPLY = 5
)
// enum ctattr_counters {
// CTA_COUNTERS_UNSPEC,
// CTA_COUNTERS_PACKETS, /* 64bit counters */
// CTA_COUNTERS_BYTES, /* 64bit counters */
// CTA_COUNTERS32_PACKETS, /* old 32bit counters, unused */
// CTA_COUNTERS32_BYTES, /* old 32bit counters, unused */
// CTA_COUNTERS_PAD,
// __CTA_COUNTERS_M
// };
// #define CTA_COUNTERS_MAX (__CTA_COUNTERS_MAX - 1)
const (
CTA_COUNTERS_PACKETS = 1
CTA_COUNTERS_BYTES = 2
)
// enum CTA TIMESTAMP TLVs
// CTA_TIMESTAMP_START /* 64bit value */
// CTA_TIMESTAMP_STOP /* 64bit value */
const (
CTA_TIMESTAMP_START = 1
CTA_TIMESTAMP_STOP = 2
)
// /* General form of address family dependent message.
// */
// struct nfgenmsg {
// __u8 nfgen_family; /* AF_xxx */
// __u8 version; /* nfnetlink version */
// __be16 res_id; /* resource id */
// };
type Nfgenmsg struct {
NfgenFamily uint8
Version uint8
ResId uint16 // big endian
}
func (msg *Nfgenmsg) Len() int {
return SizeofNfgenmsg
}
func DeserializeNfgenmsg(b []byte) *Nfgenmsg {
return (*Nfgenmsg)(unsafe.Pointer(&b[0:SizeofNfgenmsg][0]))
}
func (msg *Nfgenmsg) Serialize() []byte {
return (*(*[SizeofNfgenmsg]byte)(unsafe.Pointer(msg)))[:]
}

View File

@@ -0,0 +1,40 @@
package nl
// All the following constants are coming from:
// https://github.com/torvalds/linux/blob/master/include/uapi/linux/devlink.h
const (
GENL_DEVLINK_VERSION = 1
GENL_DEVLINK_NAME = "devlink"
)
const (
DEVLINK_CMD_GET = 1
DEVLINK_CMD_ESWITCH_GET = 29
DEVLINK_CMD_ESWITCH_SET = 30
)
const (
DEVLINK_ATTR_BUS_NAME = 1
DEVLINK_ATTR_DEV_NAME = 2
DEVLINK_ATTR_ESWITCH_MODE = 25
DEVLINK_ATTR_ESWITCH_INLINE_MODE = 26
DEVLINK_ATTR_ESWITCH_ENCAP_MODE = 62
)
const (
DEVLINK_ESWITCH_MODE_LEGACY = 0
DEVLINK_ESWITCH_MODE_SWITCHDEV = 1
)
const (
DEVLINK_ESWITCH_INLINE_MODE_NONE = 0
DEVLINK_ESWITCH_INLINE_MODE_LINK = 1
DEVLINK_ESWITCH_INLINE_MODE_NETWORK = 2
DEVLINK_ESWITCH_INLINE_MODE_TRANSPORT = 3
)
const (
DEVLINK_ESWITCH_ENCAP_MODE_NONE = 0
DEVLINK_ESWITCH_ENCAP_MODE_BASIC = 1
)

View File

@@ -0,0 +1,89 @@
package nl
import (
"unsafe"
)
const SizeofGenlmsg = 4
const (
GENL_ID_CTRL = 0x10
GENL_CTRL_VERSION = 2
GENL_CTRL_NAME = "nlctrl"
)
const (
GENL_CTRL_CMD_GETFAMILY = 3
)
const (
GENL_CTRL_ATTR_UNSPEC = iota
GENL_CTRL_ATTR_FAMILY_ID
GENL_CTRL_ATTR_FAMILY_NAME
GENL_CTRL_ATTR_VERSION
GENL_CTRL_ATTR_HDRSIZE
GENL_CTRL_ATTR_MAXATTR
GENL_CTRL_ATTR_OPS
GENL_CTRL_ATTR_MCAST_GROUPS
)
const (
GENL_CTRL_ATTR_OP_UNSPEC = iota
GENL_CTRL_ATTR_OP_ID
GENL_CTRL_ATTR_OP_FLAGS
)
const (
GENL_ADMIN_PERM = 1 << iota
GENL_CMD_CAP_DO
GENL_CMD_CAP_DUMP
GENL_CMD_CAP_HASPOL
)
const (
GENL_CTRL_ATTR_MCAST_GRP_UNSPEC = iota
GENL_CTRL_ATTR_MCAST_GRP_NAME
GENL_CTRL_ATTR_MCAST_GRP_ID
)
const (
GENL_GTP_VERSION = 0
GENL_GTP_NAME = "gtp"
)
const (
GENL_GTP_CMD_NEWPDP = iota
GENL_GTP_CMD_DELPDP
GENL_GTP_CMD_GETPDP
)
const (
GENL_GTP_ATTR_UNSPEC = iota
GENL_GTP_ATTR_LINK
GENL_GTP_ATTR_VERSION
GENL_GTP_ATTR_TID
GENL_GTP_ATTR_PEER_ADDRESS
GENL_GTP_ATTR_MS_ADDRESS
GENL_GTP_ATTR_FLOW
GENL_GTP_ATTR_NET_NS_FD
GENL_GTP_ATTR_I_TEI
GENL_GTP_ATTR_O_TEI
GENL_GTP_ATTR_PAD
)
type Genlmsg struct {
Command uint8
Version uint8
}
func (msg *Genlmsg) Len() int {
return SizeofGenlmsg
}
func DeserializeGenlmsg(b []byte) *Genlmsg {
return (*Genlmsg)(unsafe.Pointer(&b[0:SizeofGenlmsg][0]))
}
func (msg *Genlmsg) Serialize() []byte {
return (*(*[SizeofGenlmsg]byte)(unsafe.Pointer(msg)))[:]
}

View File

@@ -1,5 +1,9 @@
package nl
import (
"unsafe"
)
const (
DEFAULT_CHANGE = 0xFFFFFFFF
)
@@ -9,7 +13,9 @@ const (
IFLA_INFO_KIND
IFLA_INFO_DATA
IFLA_INFO_XSTATS
IFLA_INFO_MAX = IFLA_INFO_XSTATS
IFLA_INFO_SLAVE_KIND
IFLA_INFO_SLAVE_DATA
IFLA_INFO_MAX = IFLA_INFO_SLAVE_DATA
)
const (
@@ -74,24 +80,27 @@ const (
IFLA_BRPORT_FAST_LEAVE
IFLA_BRPORT_LEARNING
IFLA_BRPORT_UNICAST_FLOOD
IFLA_BRPORT_MAX = IFLA_BRPORT_UNICAST_FLOOD
IFLA_BRPORT_PROXYARP
IFLA_BRPORT_LEARNING_SYNC
IFLA_BRPORT_PROXYARP_WIFI
IFLA_BRPORT_MAX = IFLA_BRPORT_PROXYARP_WIFI
)
const (
IFLA_IPVLAN_UNSPEC = iota
IFLA_IPVLAN_MODE
IFLA_IPVLAN_MAX = IFLA_IPVLAN_MODE
)
const (
// not defined in syscall
IFLA_NET_NS_FD = 28
IFLA_IPVLAN_FLAG
IFLA_IPVLAN_MAX = IFLA_IPVLAN_FLAG
)
const (
IFLA_MACVLAN_UNSPEC = iota
IFLA_MACVLAN_MODE
IFLA_MACVLAN_FLAGS
IFLA_MACVLAN_MACADDR_MODE
IFLA_MACVLAN_MACADDR
IFLA_MACVLAN_MACADDR_DATA
IFLA_MACVLAN_MACADDR_COUNT
IFLA_MACVLAN_MAX = IFLA_MACVLAN_FLAGS
)
@@ -102,3 +111,500 @@ const (
MACVLAN_MODE_PASSTHRU = 8
MACVLAN_MODE_SOURCE = 16
)
const (
MACVLAN_MACADDR_ADD = iota
MACVLAN_MACADDR_DEL
MACVLAN_MACADDR_FLUSH
MACVLAN_MACADDR_SET
)
const (
IFLA_BOND_UNSPEC = iota
IFLA_BOND_MODE
IFLA_BOND_ACTIVE_SLAVE
IFLA_BOND_MIIMON
IFLA_BOND_UPDELAY
IFLA_BOND_DOWNDELAY
IFLA_BOND_USE_CARRIER
IFLA_BOND_ARP_INTERVAL
IFLA_BOND_ARP_IP_TARGET
IFLA_BOND_ARP_VALIDATE
IFLA_BOND_ARP_ALL_TARGETS
IFLA_BOND_PRIMARY
IFLA_BOND_PRIMARY_RESELECT
IFLA_BOND_FAIL_OVER_MAC
IFLA_BOND_XMIT_HASH_POLICY
IFLA_BOND_RESEND_IGMP
IFLA_BOND_NUM_PEER_NOTIF
IFLA_BOND_ALL_SLAVES_ACTIVE
IFLA_BOND_MIN_LINKS
IFLA_BOND_LP_INTERVAL
IFLA_BOND_PACKETS_PER_SLAVE
IFLA_BOND_AD_LACP_RATE
IFLA_BOND_AD_SELECT
IFLA_BOND_AD_INFO
IFLA_BOND_AD_ACTOR_SYS_PRIO
IFLA_BOND_AD_USER_PORT_KEY
IFLA_BOND_AD_ACTOR_SYSTEM
IFLA_BOND_TLB_DYNAMIC_LB
)
const (
IFLA_BOND_AD_INFO_UNSPEC = iota
IFLA_BOND_AD_INFO_AGGREGATOR
IFLA_BOND_AD_INFO_NUM_PORTS
IFLA_BOND_AD_INFO_ACTOR_KEY
IFLA_BOND_AD_INFO_PARTNER_KEY
IFLA_BOND_AD_INFO_PARTNER_MAC
)
const (
IFLA_BOND_SLAVE_UNSPEC = iota
IFLA_BOND_SLAVE_STATE
IFLA_BOND_SLAVE_MII_STATUS
IFLA_BOND_SLAVE_LINK_FAILURE_COUNT
IFLA_BOND_SLAVE_PERM_HWADDR
IFLA_BOND_SLAVE_QUEUE_ID
IFLA_BOND_SLAVE_AD_AGGREGATOR_ID
IFLA_BOND_SLAVE_AD_ACTOR_OPER_PORT_STATE
IFLA_BOND_SLAVE_AD_PARTNER_OPER_PORT_STATE
)
const (
IFLA_GRE_UNSPEC = iota
IFLA_GRE_LINK
IFLA_GRE_IFLAGS
IFLA_GRE_OFLAGS
IFLA_GRE_IKEY
IFLA_GRE_OKEY
IFLA_GRE_LOCAL
IFLA_GRE_REMOTE
IFLA_GRE_TTL
IFLA_GRE_TOS
IFLA_GRE_PMTUDISC
IFLA_GRE_ENCAP_LIMIT
IFLA_GRE_FLOWINFO
IFLA_GRE_FLAGS
IFLA_GRE_ENCAP_TYPE
IFLA_GRE_ENCAP_FLAGS
IFLA_GRE_ENCAP_SPORT
IFLA_GRE_ENCAP_DPORT
IFLA_GRE_COLLECT_METADATA
IFLA_GRE_MAX = IFLA_GRE_COLLECT_METADATA
)
const (
GRE_CSUM = 0x8000
GRE_ROUTING = 0x4000
GRE_KEY = 0x2000
GRE_SEQ = 0x1000
GRE_STRICT = 0x0800
GRE_REC = 0x0700
GRE_FLAGS = 0x00F8
GRE_VERSION = 0x0007
)
const (
IFLA_VF_INFO_UNSPEC = iota
IFLA_VF_INFO
IFLA_VF_INFO_MAX = IFLA_VF_INFO
)
const (
IFLA_VF_UNSPEC = iota
IFLA_VF_MAC /* Hardware queue specific attributes */
IFLA_VF_VLAN
IFLA_VF_TX_RATE /* Max TX Bandwidth Allocation */
IFLA_VF_SPOOFCHK /* Spoof Checking on/off switch */
IFLA_VF_LINK_STATE /* link state enable/disable/auto switch */
IFLA_VF_RATE /* Min and Max TX Bandwidth Allocation */
IFLA_VF_RSS_QUERY_EN /* RSS Redirection Table and Hash Key query
* on/off switch
*/
IFLA_VF_STATS /* network device statistics */
IFLA_VF_TRUST /* Trust state of VF */
IFLA_VF_IB_NODE_GUID /* VF Infiniband node GUID */
IFLA_VF_IB_PORT_GUID /* VF Infiniband port GUID */
IFLA_VF_MAX = IFLA_VF_IB_PORT_GUID
)
const (
IFLA_VF_LINK_STATE_AUTO = iota /* link state of the uplink */
IFLA_VF_LINK_STATE_ENABLE /* link always up */
IFLA_VF_LINK_STATE_DISABLE /* link always down */
IFLA_VF_LINK_STATE_MAX = IFLA_VF_LINK_STATE_DISABLE
)
const (
IFLA_VF_STATS_RX_PACKETS = iota
IFLA_VF_STATS_TX_PACKETS
IFLA_VF_STATS_RX_BYTES
IFLA_VF_STATS_TX_BYTES
IFLA_VF_STATS_BROADCAST
IFLA_VF_STATS_MULTICAST
IFLA_VF_STATS_MAX = IFLA_VF_STATS_MULTICAST
)
const (
SizeofVfMac = 0x24
SizeofVfVlan = 0x0c
SizeofVfTxRate = 0x08
SizeofVfRate = 0x0c
SizeofVfSpoofchk = 0x08
SizeofVfLinkState = 0x08
SizeofVfRssQueryEn = 0x08
SizeofVfTrust = 0x08
SizeofVfGUID = 0x10
)
// struct ifla_vf_mac {
// __u32 vf;
// __u8 mac[32]; /* MAX_ADDR_LEN */
// };
type VfMac struct {
Vf uint32
Mac [32]byte
}
func (msg *VfMac) Len() int {
return SizeofVfMac
}
func DeserializeVfMac(b []byte) *VfMac {
return (*VfMac)(unsafe.Pointer(&b[0:SizeofVfMac][0]))
}
func (msg *VfMac) Serialize() []byte {
return (*(*[SizeofVfMac]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_vlan {
// __u32 vf;
// __u32 vlan; /* 0 - 4095, 0 disables VLAN filter */
// __u32 qos;
// };
type VfVlan struct {
Vf uint32
Vlan uint32
Qos uint32
}
func (msg *VfVlan) Len() int {
return SizeofVfVlan
}
func DeserializeVfVlan(b []byte) *VfVlan {
return (*VfVlan)(unsafe.Pointer(&b[0:SizeofVfVlan][0]))
}
func (msg *VfVlan) Serialize() []byte {
return (*(*[SizeofVfVlan]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_tx_rate {
// __u32 vf;
// __u32 rate; /* Max TX bandwidth in Mbps, 0 disables throttling */
// };
type VfTxRate struct {
Vf uint32
Rate uint32
}
func (msg *VfTxRate) Len() int {
return SizeofVfTxRate
}
func DeserializeVfTxRate(b []byte) *VfTxRate {
return (*VfTxRate)(unsafe.Pointer(&b[0:SizeofVfTxRate][0]))
}
func (msg *VfTxRate) Serialize() []byte {
return (*(*[SizeofVfTxRate]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_rate {
// __u32 vf;
// __u32 min_tx_rate; /* Min Bandwidth in Mbps */
// __u32 max_tx_rate; /* Max Bandwidth in Mbps */
// };
type VfRate struct {
Vf uint32
MinTxRate uint32
MaxTxRate uint32
}
func (msg *VfRate) Len() int {
return SizeofVfRate
}
func DeserializeVfRate(b []byte) *VfRate {
return (*VfRate)(unsafe.Pointer(&b[0:SizeofVfRate][0]))
}
func (msg *VfRate) Serialize() []byte {
return (*(*[SizeofVfRate]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_spoofchk {
// __u32 vf;
// __u32 setting;
// };
type VfSpoofchk struct {
Vf uint32
Setting uint32
}
func (msg *VfSpoofchk) Len() int {
return SizeofVfSpoofchk
}
func DeserializeVfSpoofchk(b []byte) *VfSpoofchk {
return (*VfSpoofchk)(unsafe.Pointer(&b[0:SizeofVfSpoofchk][0]))
}
func (msg *VfSpoofchk) Serialize() []byte {
return (*(*[SizeofVfSpoofchk]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_link_state {
// __u32 vf;
// __u32 link_state;
// };
type VfLinkState struct {
Vf uint32
LinkState uint32
}
func (msg *VfLinkState) Len() int {
return SizeofVfLinkState
}
func DeserializeVfLinkState(b []byte) *VfLinkState {
return (*VfLinkState)(unsafe.Pointer(&b[0:SizeofVfLinkState][0]))
}
func (msg *VfLinkState) Serialize() []byte {
return (*(*[SizeofVfLinkState]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_rss_query_en {
// __u32 vf;
// __u32 setting;
// };
type VfRssQueryEn struct {
Vf uint32
Setting uint32
}
func (msg *VfRssQueryEn) Len() int {
return SizeofVfRssQueryEn
}
func DeserializeVfRssQueryEn(b []byte) *VfRssQueryEn {
return (*VfRssQueryEn)(unsafe.Pointer(&b[0:SizeofVfRssQueryEn][0]))
}
func (msg *VfRssQueryEn) Serialize() []byte {
return (*(*[SizeofVfRssQueryEn]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_trust {
// __u32 vf;
// __u32 setting;
// };
type VfTrust struct {
Vf uint32
Setting uint32
}
func (msg *VfTrust) Len() int {
return SizeofVfTrust
}
func DeserializeVfTrust(b []byte) *VfTrust {
return (*VfTrust)(unsafe.Pointer(&b[0:SizeofVfTrust][0]))
}
func (msg *VfTrust) Serialize() []byte {
return (*(*[SizeofVfTrust]byte)(unsafe.Pointer(msg)))[:]
}
// struct ifla_vf_guid {
// __u32 vf;
// __u32 rsvd;
// __u64 guid;
// };
type VfGUID struct {
Vf uint32
Rsvd uint32
GUID uint64
}
func (msg *VfGUID) Len() int {
return SizeofVfGUID
}
func DeserializeVfGUID(b []byte) *VfGUID {
return (*VfGUID)(unsafe.Pointer(&b[0:SizeofVfGUID][0]))
}
func (msg *VfGUID) Serialize() []byte {
return (*(*[SizeofVfGUID]byte)(unsafe.Pointer(msg)))[:]
}
const (
XDP_FLAGS_UPDATE_IF_NOEXIST = 1 << iota
XDP_FLAGS_SKB_MODE
XDP_FLAGS_DRV_MODE
XDP_FLAGS_MASK = XDP_FLAGS_UPDATE_IF_NOEXIST | XDP_FLAGS_SKB_MODE | XDP_FLAGS_DRV_MODE
)
const (
IFLA_XDP_UNSPEC = iota
IFLA_XDP_FD /* fd of xdp program to attach, or -1 to remove */
IFLA_XDP_ATTACHED /* read-only bool indicating if prog is attached */
IFLA_XDP_FLAGS /* xdp prog related flags */
IFLA_XDP_PROG_ID /* xdp prog id */
IFLA_XDP_MAX = IFLA_XDP_PROG_ID
)
const (
IFLA_IPTUN_UNSPEC = iota
IFLA_IPTUN_LINK
IFLA_IPTUN_LOCAL
IFLA_IPTUN_REMOTE
IFLA_IPTUN_TTL
IFLA_IPTUN_TOS
IFLA_IPTUN_ENCAP_LIMIT
IFLA_IPTUN_FLOWINFO
IFLA_IPTUN_FLAGS
IFLA_IPTUN_PROTO
IFLA_IPTUN_PMTUDISC
IFLA_IPTUN_6RD_PREFIX
IFLA_IPTUN_6RD_RELAY_PREFIX
IFLA_IPTUN_6RD_PREFIXLEN
IFLA_IPTUN_6RD_RELAY_PREFIXLEN
IFLA_IPTUN_ENCAP_TYPE
IFLA_IPTUN_ENCAP_FLAGS
IFLA_IPTUN_ENCAP_SPORT
IFLA_IPTUN_ENCAP_DPORT
IFLA_IPTUN_COLLECT_METADATA
IFLA_IPTUN_MAX = IFLA_IPTUN_COLLECT_METADATA
)
const (
IFLA_VTI_UNSPEC = iota
IFLA_VTI_LINK
IFLA_VTI_IKEY
IFLA_VTI_OKEY
IFLA_VTI_LOCAL
IFLA_VTI_REMOTE
IFLA_VTI_MAX = IFLA_VTI_REMOTE
)
const (
IFLA_VRF_UNSPEC = iota
IFLA_VRF_TABLE
)
const (
IFLA_BR_UNSPEC = iota
IFLA_BR_FORWARD_DELAY
IFLA_BR_HELLO_TIME
IFLA_BR_MAX_AGE
IFLA_BR_AGEING_TIME
IFLA_BR_STP_STATE
IFLA_BR_PRIORITY
IFLA_BR_VLAN_FILTERING
IFLA_BR_VLAN_PROTOCOL
IFLA_BR_GROUP_FWD_MASK
IFLA_BR_ROOT_ID
IFLA_BR_BRIDGE_ID
IFLA_BR_ROOT_PORT
IFLA_BR_ROOT_PATH_COST
IFLA_BR_TOPOLOGY_CHANGE
IFLA_BR_TOPOLOGY_CHANGE_DETECTED
IFLA_BR_HELLO_TIMER
IFLA_BR_TCN_TIMER
IFLA_BR_TOPOLOGY_CHANGE_TIMER
IFLA_BR_GC_TIMER
IFLA_BR_GROUP_ADDR
IFLA_BR_FDB_FLUSH
IFLA_BR_MCAST_ROUTER
IFLA_BR_MCAST_SNOOPING
IFLA_BR_MCAST_QUERY_USE_IFADDR
IFLA_BR_MCAST_QUERIER
IFLA_BR_MCAST_HASH_ELASTICITY
IFLA_BR_MCAST_HASH_MAX
IFLA_BR_MCAST_LAST_MEMBER_CNT
IFLA_BR_MCAST_STARTUP_QUERY_CNT
IFLA_BR_MCAST_LAST_MEMBER_INTVL
IFLA_BR_MCAST_MEMBERSHIP_INTVL
IFLA_BR_MCAST_QUERIER_INTVL
IFLA_BR_MCAST_QUERY_INTVL
IFLA_BR_MCAST_QUERY_RESPONSE_INTVL
IFLA_BR_MCAST_STARTUP_QUERY_INTVL
IFLA_BR_NF_CALL_IPTABLES
IFLA_BR_NF_CALL_IP6TABLES
IFLA_BR_NF_CALL_ARPTABLES
IFLA_BR_VLAN_DEFAULT_PVID
IFLA_BR_PAD
IFLA_BR_VLAN_STATS_ENABLED
IFLA_BR_MCAST_STATS_ENABLED
IFLA_BR_MCAST_IGMP_VERSION
IFLA_BR_MCAST_MLD_VERSION
IFLA_BR_MAX = IFLA_BR_MCAST_MLD_VERSION
)
const (
IFLA_GTP_UNSPEC = iota
IFLA_GTP_FD0
IFLA_GTP_FD1
IFLA_GTP_PDP_HASHSIZE
IFLA_GTP_ROLE
)
const (
GTP_ROLE_GGSN = iota
GTP_ROLE_SGSN
)
const (
IFLA_XFRM_UNSPEC = iota
IFLA_XFRM_LINK
IFLA_XFRM_IF_ID
IFLA_XFRM_MAX = iota - 1
)
const (
IFLA_TUN_UNSPEC = iota
IFLA_TUN_OWNER
IFLA_TUN_GROUP
IFLA_TUN_TYPE
IFLA_TUN_PI
IFLA_TUN_VNET_HDR
IFLA_TUN_PERSIST
IFLA_TUN_MULTI_QUEUE
IFLA_TUN_NUM_QUEUES
IFLA_TUN_NUM_DISABLED_QUEUES
IFLA_TUN_MAX = IFLA_TUN_NUM_DISABLED_QUEUES
)
const (
IFLA_IPOIB_UNSPEC = iota
IFLA_IPOIB_PKEY
IFLA_IPOIB_MODE
IFLA_IPOIB_UMCAST
IFLA_IPOIB_MAX = IFLA_IPOIB_UMCAST
)

36
vendor/github.com/vishvananda/netlink/nl/mpls_linux.go generated vendored Normal file
View File

@@ -0,0 +1,36 @@
package nl
import "encoding/binary"
const (
MPLS_LS_LABEL_SHIFT = 12
MPLS_LS_S_SHIFT = 8
)
func EncodeMPLSStack(labels ...int) []byte {
b := make([]byte, 4*len(labels))
for idx, label := range labels {
l := label << MPLS_LS_LABEL_SHIFT
if idx == len(labels)-1 {
l |= 1 << MPLS_LS_S_SHIFT
}
binary.BigEndian.PutUint32(b[idx*4:], uint32(l))
}
return b
}
func DecodeMPLSStack(buf []byte) []int {
if len(buf)%4 != 0 {
return nil
}
stack := make([]int, 0, len(buf)/4)
for len(buf) > 0 {
l := binary.BigEndian.Uint32(buf[:4])
buf = buf[4:]
stack = append(stack, int(l)>>MPLS_LS_LABEL_SHIFT)
if (l>>MPLS_LS_S_SHIFT)&1 > 0 {
break
}
}
return stack
}

View File

@@ -6,18 +6,33 @@ import (
"encoding/binary"
"fmt"
"net"
"runtime"
"sync"
"sync/atomic"
"syscall"
"unsafe"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
const (
// Family type definitions
FAMILY_ALL = syscall.AF_UNSPEC
FAMILY_V4 = syscall.AF_INET
FAMILY_V6 = syscall.AF_INET6
FAMILY_ALL = unix.AF_UNSPEC
FAMILY_V4 = unix.AF_INET
FAMILY_V6 = unix.AF_INET6
FAMILY_MPLS = unix.AF_MPLS
// Arbitrary set value (greater than default 4k) to allow receiving
// from kernel more verbose messages e.g. for statistics,
// tc rules or filters, or other more memory requiring data.
RECEIVE_BUFFER_SIZE = 65536
// Kernel netlink pid
PidKernel uint32 = 0
)
// SupportedNlFamilies contains the list of netlink families this netlink package supports
var SupportedNlFamilies = []int{unix.NETLINK_ROUTE, unix.NETLINK_XFRM, unix.NETLINK_NETFILTER}
var nextSeqNr uint32
// GetIPFamily returns the family type of a net.IP.
@@ -33,7 +48,7 @@ func GetIPFamily(ip net.IP) int {
var nativeEndian binary.ByteOrder
// Get native endianness for the system
// NativeEndian gets native endianness for the system
func NativeEndian() binary.ByteOrder {
if nativeEndian == nil {
var x uint32 = 0x01020304
@@ -69,32 +84,173 @@ type NetlinkRequestData interface {
// IfInfomsg is related to links, but it is used for list requests as well
type IfInfomsg struct {
syscall.IfInfomsg
unix.IfInfomsg
}
// Create an IfInfomsg with family specified
func NewIfInfomsg(family int) *IfInfomsg {
return &IfInfomsg{
IfInfomsg: syscall.IfInfomsg{
IfInfomsg: unix.IfInfomsg{
Family: uint8(family),
},
}
}
func DeserializeIfInfomsg(b []byte) *IfInfomsg {
return (*IfInfomsg)(unsafe.Pointer(&b[0:syscall.SizeofIfInfomsg][0]))
return (*IfInfomsg)(unsafe.Pointer(&b[0:unix.SizeofIfInfomsg][0]))
}
func (msg *IfInfomsg) Serialize() []byte {
return (*(*[syscall.SizeofIfInfomsg]byte)(unsafe.Pointer(msg)))[:]
return (*(*[unix.SizeofIfInfomsg]byte)(unsafe.Pointer(msg)))[:]
}
func (msg *IfInfomsg) Len() int {
return syscall.SizeofIfInfomsg
return unix.SizeofIfInfomsg
}
func (msg *IfInfomsg) EncapType() string {
switch msg.Type {
case 0:
return "generic"
case unix.ARPHRD_ETHER:
return "ether"
case unix.ARPHRD_EETHER:
return "eether"
case unix.ARPHRD_AX25:
return "ax25"
case unix.ARPHRD_PRONET:
return "pronet"
case unix.ARPHRD_CHAOS:
return "chaos"
case unix.ARPHRD_IEEE802:
return "ieee802"
case unix.ARPHRD_ARCNET:
return "arcnet"
case unix.ARPHRD_APPLETLK:
return "atalk"
case unix.ARPHRD_DLCI:
return "dlci"
case unix.ARPHRD_ATM:
return "atm"
case unix.ARPHRD_METRICOM:
return "metricom"
case unix.ARPHRD_IEEE1394:
return "ieee1394"
case unix.ARPHRD_INFINIBAND:
return "infiniband"
case unix.ARPHRD_SLIP:
return "slip"
case unix.ARPHRD_CSLIP:
return "cslip"
case unix.ARPHRD_SLIP6:
return "slip6"
case unix.ARPHRD_CSLIP6:
return "cslip6"
case unix.ARPHRD_RSRVD:
return "rsrvd"
case unix.ARPHRD_ADAPT:
return "adapt"
case unix.ARPHRD_ROSE:
return "rose"
case unix.ARPHRD_X25:
return "x25"
case unix.ARPHRD_HWX25:
return "hwx25"
case unix.ARPHRD_PPP:
return "ppp"
case unix.ARPHRD_HDLC:
return "hdlc"
case unix.ARPHRD_LAPB:
return "lapb"
case unix.ARPHRD_DDCMP:
return "ddcmp"
case unix.ARPHRD_RAWHDLC:
return "rawhdlc"
case unix.ARPHRD_TUNNEL:
return "ipip"
case unix.ARPHRD_TUNNEL6:
return "tunnel6"
case unix.ARPHRD_FRAD:
return "frad"
case unix.ARPHRD_SKIP:
return "skip"
case unix.ARPHRD_LOOPBACK:
return "loopback"
case unix.ARPHRD_LOCALTLK:
return "ltalk"
case unix.ARPHRD_FDDI:
return "fddi"
case unix.ARPHRD_BIF:
return "bif"
case unix.ARPHRD_SIT:
return "sit"
case unix.ARPHRD_IPDDP:
return "ip/ddp"
case unix.ARPHRD_IPGRE:
return "gre"
case unix.ARPHRD_PIMREG:
return "pimreg"
case unix.ARPHRD_HIPPI:
return "hippi"
case unix.ARPHRD_ASH:
return "ash"
case unix.ARPHRD_ECONET:
return "econet"
case unix.ARPHRD_IRDA:
return "irda"
case unix.ARPHRD_FCPP:
return "fcpp"
case unix.ARPHRD_FCAL:
return "fcal"
case unix.ARPHRD_FCPL:
return "fcpl"
case unix.ARPHRD_FCFABRIC:
return "fcfb0"
case unix.ARPHRD_FCFABRIC + 1:
return "fcfb1"
case unix.ARPHRD_FCFABRIC + 2:
return "fcfb2"
case unix.ARPHRD_FCFABRIC + 3:
return "fcfb3"
case unix.ARPHRD_FCFABRIC + 4:
return "fcfb4"
case unix.ARPHRD_FCFABRIC + 5:
return "fcfb5"
case unix.ARPHRD_FCFABRIC + 6:
return "fcfb6"
case unix.ARPHRD_FCFABRIC + 7:
return "fcfb7"
case unix.ARPHRD_FCFABRIC + 8:
return "fcfb8"
case unix.ARPHRD_FCFABRIC + 9:
return "fcfb9"
case unix.ARPHRD_FCFABRIC + 10:
return "fcfb10"
case unix.ARPHRD_FCFABRIC + 11:
return "fcfb11"
case unix.ARPHRD_FCFABRIC + 12:
return "fcfb12"
case unix.ARPHRD_IEEE802_TR:
return "tr"
case unix.ARPHRD_IEEE80211:
return "ieee802.11"
case unix.ARPHRD_IEEE80211_PRISM:
return "ieee802.11/prism"
case unix.ARPHRD_IEEE80211_RADIOTAP:
return "ieee802.11/radiotap"
case unix.ARPHRD_IEEE802154:
return "ieee802.15.4"
case 65534:
return "none"
case 65535:
return "void"
}
return fmt.Sprintf("unknown%d", msg.Type)
}
func rtaAlignOf(attrlen int) int {
return (attrlen + syscall.RTA_ALIGNTO - 1) & ^(syscall.RTA_ALIGNTO - 1)
return (attrlen + unix.RTA_ALIGNTO - 1) & ^(unix.RTA_ALIGNTO - 1)
}
func NewIfInfomsgChild(parent *RtAttr, family int) *IfInfomsg {
@@ -105,7 +261,7 @@ func NewIfInfomsgChild(parent *RtAttr, family int) *IfInfomsg {
// Extend RtAttr to handle data and children
type RtAttr struct {
syscall.RtAttr
unix.RtAttr
Data []byte
children []NetlinkRequestData
}
@@ -113,7 +269,7 @@ type RtAttr struct {
// Create a new Extended RtAttr object
func NewRtAttr(attrType int, data []byte) *RtAttr {
return &RtAttr{
RtAttr: syscall.RtAttr{
RtAttr: unix.RtAttr{
Type: uint16(attrType),
},
children: []NetlinkRequestData{},
@@ -121,23 +277,35 @@ func NewRtAttr(attrType int, data []byte) *RtAttr {
}
}
// Create a new RtAttr obj anc add it as a child of an existing object
// NewRtAttrChild adds an RtAttr as a child to the parent and returns the new attribute
//
// Deprecated: Use AddRtAttr() on the parent object
func NewRtAttrChild(parent *RtAttr, attrType int, data []byte) *RtAttr {
return parent.AddRtAttr(attrType, data)
}
// AddRtAttr adds an RtAttr as a child and returns the new attribute
func (a *RtAttr) AddRtAttr(attrType int, data []byte) *RtAttr {
attr := NewRtAttr(attrType, data)
parent.children = append(parent.children, attr)
a.children = append(a.children, attr)
return attr
}
// AddChild adds an existing NetlinkRequestData as a child.
func (a *RtAttr) AddChild(attr NetlinkRequestData) {
a.children = append(a.children, attr)
}
func (a *RtAttr) Len() int {
if len(a.children) == 0 {
return (syscall.SizeofRtAttr + len(a.Data))
return (unix.SizeofRtAttr + len(a.Data))
}
l := 0
for _, child := range a.children {
l += rtaAlignOf(child.Len())
}
l += syscall.SizeofRtAttr
l += unix.SizeofRtAttr
return rtaAlignOf(l + len(a.Data))
}
@@ -149,10 +317,12 @@ func (a *RtAttr) Serialize() []byte {
length := a.Len()
buf := make([]byte, rtaAlignOf(length))
next := 4
if a.Data != nil {
copy(buf[4:], a.Data)
} else {
next := 4
copy(buf[next:], a.Data)
next += rtaAlignOf(len(a.Data))
}
if len(a.children) > 0 {
for _, child := range a.children {
childBuf := child.Serialize()
copy(buf[next:], childBuf)
@@ -168,22 +338,26 @@ func (a *RtAttr) Serialize() []byte {
}
type NetlinkRequest struct {
syscall.NlMsghdr
Data []NetlinkRequestData
unix.NlMsghdr
Data []NetlinkRequestData
RawData []byte
Sockets map[int]*SocketHandle
}
// Serialize the Netlink Request into a byte array
func (req *NetlinkRequest) Serialize() []byte {
length := syscall.SizeofNlMsghdr
length := unix.SizeofNlMsghdr
dataBytes := make([][]byte, len(req.Data))
for i, data := range req.Data {
dataBytes[i] = data.Serialize()
length = length + len(dataBytes[i])
}
length += len(req.RawData)
req.Len = uint32(length)
b := make([]byte, length)
hdr := (*(*[syscall.SizeofNlMsghdr]byte)(unsafe.Pointer(req)))[:]
next := syscall.SizeofNlMsghdr
hdr := (*(*[unix.SizeofNlMsghdr]byte)(unsafe.Pointer(req)))[:]
next := unix.SizeofNlMsghdr
copy(b[0:next], hdr)
for _, data := range dataBytes {
for _, dataByte := range data {
@@ -191,24 +365,49 @@ func (req *NetlinkRequest) Serialize() []byte {
next = next + 1
}
}
// Add the raw data if any
if len(req.RawData) > 0 {
copy(b[next:length], req.RawData)
}
return b
}
func (req *NetlinkRequest) AddData(data NetlinkRequestData) {
if data != nil {
req.Data = append(req.Data, data)
}
req.Data = append(req.Data, data)
}
// AddRawData adds raw bytes to the end of the NetlinkRequest object during serialization
func (req *NetlinkRequest) AddRawData(data []byte) {
req.RawData = append(req.RawData, data...)
}
// Execute the request against a the given sockType.
// Returns a list of netlink messages in seriaized format, optionally filtered
// Returns a list of netlink messages in serialized format, optionally filtered
// by resType.
func (req *NetlinkRequest) Execute(sockType int, resType uint16) ([][]byte, error) {
s, err := getNetlinkSocket(sockType)
if err != nil {
return nil, err
var (
s *NetlinkSocket
err error
)
if req.Sockets != nil {
if sh, ok := req.Sockets[sockType]; ok {
s = sh.Socket
req.Seq = atomic.AddUint32(&sh.Seq, 1)
}
}
sharedSocket := s != nil
if s == nil {
s, err = getNetlinkSocket(sockType)
if err != nil {
return nil, err
}
defer s.Close()
} else {
s.Lock()
defer s.Unlock()
}
defer s.Close()
if err := s.Send(req); err != nil {
return nil, err
@@ -223,21 +422,27 @@ func (req *NetlinkRequest) Execute(sockType int, resType uint16) ([][]byte, erro
done:
for {
msgs, err := s.Receive()
msgs, from, err := s.Receive()
if err != nil {
return nil, err
}
if from.Pid != PidKernel {
return nil, fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, PidKernel)
}
for _, m := range msgs {
if m.Header.Seq != req.Seq {
return nil, fmt.Errorf("Wrong Seq nr %d, expected 1", m.Header.Seq)
if sharedSocket {
continue
}
return nil, fmt.Errorf("Wrong Seq nr %d, expected %d", m.Header.Seq, req.Seq)
}
if m.Header.Pid != pid {
return nil, fmt.Errorf("Wrong pid %d, expected %d", m.Header.Pid, pid)
continue
}
if m.Header.Type == syscall.NLMSG_DONE {
if m.Header.Type == unix.NLMSG_DONE {
break done
}
if m.Header.Type == syscall.NLMSG_ERROR {
if m.Header.Type == unix.NLMSG_ERROR {
native := NativeEndian()
error := int32(native.Uint32(m.Data[0:4]))
if error == 0 {
@@ -249,7 +454,7 @@ done:
continue
}
res = append(res, m.Data)
if m.Header.Flags&syscall.NLM_F_MULTI == 0 {
if m.Header.Flags&unix.NLM_F_MULTI == 0 {
break done
}
}
@@ -262,94 +467,210 @@ done:
// the message is serialized
func NewNetlinkRequest(proto, flags int) *NetlinkRequest {
return &NetlinkRequest{
NlMsghdr: syscall.NlMsghdr{
Len: uint32(syscall.SizeofNlMsghdr),
NlMsghdr: unix.NlMsghdr{
Len: uint32(unix.SizeofNlMsghdr),
Type: uint16(proto),
Flags: syscall.NLM_F_REQUEST | uint16(flags),
Flags: unix.NLM_F_REQUEST | uint16(flags),
Seq: atomic.AddUint32(&nextSeqNr, 1),
},
}
}
type NetlinkSocket struct {
fd int
lsa syscall.SockaddrNetlink
fd int32
lsa unix.SockaddrNetlink
sync.Mutex
}
func getNetlinkSocket(protocol int) (*NetlinkSocket, error) {
fd, err := syscall.Socket(syscall.AF_NETLINK, syscall.SOCK_RAW, protocol)
fd, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW|unix.SOCK_CLOEXEC, protocol)
if err != nil {
return nil, err
}
s := &NetlinkSocket{
fd: fd,
fd: int32(fd),
}
s.lsa.Family = syscall.AF_NETLINK
if err := syscall.Bind(fd, &s.lsa); err != nil {
syscall.Close(fd)
s.lsa.Family = unix.AF_NETLINK
if err := unix.Bind(fd, &s.lsa); err != nil {
unix.Close(fd)
return nil, err
}
return s, nil
}
// GetNetlinkSocketAt opens a netlink socket in the network namespace newNs
// and positions the thread back into the network namespace specified by curNs,
// when done. If curNs is close, the function derives the current namespace and
// moves back into it when done. If newNs is close, the socket will be opened
// in the current network namespace.
func GetNetlinkSocketAt(newNs, curNs netns.NsHandle, protocol int) (*NetlinkSocket, error) {
c, err := executeInNetns(newNs, curNs)
if err != nil {
return nil, err
}
defer c()
return getNetlinkSocket(protocol)
}
// executeInNetns sets execution of the code following this call to the
// network namespace newNs, then moves the thread back to curNs if open,
// otherwise to the current netns at the time the function was invoked
// In case of success, the caller is expected to execute the returned function
// at the end of the code that needs to be executed in the network namespace.
// Example:
// func jobAt(...) error {
// d, err := executeInNetns(...)
// if err != nil { return err}
// defer d()
// < code which needs to be executed in specific netns>
// }
// TODO: his function probably belongs to netns pkg.
func executeInNetns(newNs, curNs netns.NsHandle) (func(), error) {
var (
err error
moveBack func(netns.NsHandle) error
closeNs func() error
unlockThd func()
)
restore := func() {
// order matters
if moveBack != nil {
moveBack(curNs)
}
if closeNs != nil {
closeNs()
}
if unlockThd != nil {
unlockThd()
}
}
if newNs.IsOpen() {
runtime.LockOSThread()
unlockThd = runtime.UnlockOSThread
if !curNs.IsOpen() {
if curNs, err = netns.Get(); err != nil {
restore()
return nil, fmt.Errorf("could not get current namespace while creating netlink socket: %v", err)
}
closeNs = curNs.Close
}
if err := netns.Set(newNs); err != nil {
restore()
return nil, fmt.Errorf("failed to set into network namespace %d while creating netlink socket: %v", newNs, err)
}
moveBack = netns.Set
}
return restore, nil
}
// Create a netlink socket with a given protocol (e.g. NETLINK_ROUTE)
// and subscribe it to multicast groups passed in variable argument list.
// Returns the netlink socket on which Receive() method can be called
// to retrieve the messages from the kernel.
func Subscribe(protocol int, groups ...uint) (*NetlinkSocket, error) {
fd, err := syscall.Socket(syscall.AF_NETLINK, syscall.SOCK_RAW, protocol)
fd, err := unix.Socket(unix.AF_NETLINK, unix.SOCK_RAW, protocol)
if err != nil {
return nil, err
}
s := &NetlinkSocket{
fd: fd,
fd: int32(fd),
}
s.lsa.Family = syscall.AF_NETLINK
s.lsa.Family = unix.AF_NETLINK
for _, g := range groups {
s.lsa.Groups |= (1 << (g - 1))
}
if err := syscall.Bind(fd, &s.lsa); err != nil {
syscall.Close(fd)
if err := unix.Bind(fd, &s.lsa); err != nil {
unix.Close(fd)
return nil, err
}
return s, nil
}
// SubscribeAt works like Subscribe plus let's the caller choose the network
// namespace in which the socket would be opened (newNs). Then control goes back
// to curNs if open, otherwise to the netns at the time this function was called.
func SubscribeAt(newNs, curNs netns.NsHandle, protocol int, groups ...uint) (*NetlinkSocket, error) {
c, err := executeInNetns(newNs, curNs)
if err != nil {
return nil, err
}
defer c()
return Subscribe(protocol, groups...)
}
func (s *NetlinkSocket) Close() {
syscall.Close(s.fd)
fd := int(atomic.SwapInt32(&s.fd, -1))
unix.Close(fd)
}
func (s *NetlinkSocket) GetFd() int {
return int(atomic.LoadInt32(&s.fd))
}
func (s *NetlinkSocket) Send(request *NetlinkRequest) error {
if err := syscall.Sendto(s.fd, request.Serialize(), 0, &s.lsa); err != nil {
fd := int(atomic.LoadInt32(&s.fd))
if fd < 0 {
return fmt.Errorf("Send called on a closed socket")
}
if err := unix.Sendto(fd, request.Serialize(), 0, &s.lsa); err != nil {
return err
}
return nil
}
func (s *NetlinkSocket) Receive() ([]syscall.NetlinkMessage, error) {
rb := make([]byte, syscall.Getpagesize())
nr, _, err := syscall.Recvfrom(s.fd, rb, 0)
func (s *NetlinkSocket) Receive() ([]syscall.NetlinkMessage, *unix.SockaddrNetlink, error) {
fd := int(atomic.LoadInt32(&s.fd))
if fd < 0 {
return nil, nil, fmt.Errorf("Receive called on a closed socket")
}
var fromAddr *unix.SockaddrNetlink
var rb [RECEIVE_BUFFER_SIZE]byte
nr, from, err := unix.Recvfrom(fd, rb[:], 0)
if err != nil {
return nil, err
return nil, nil, err
}
if nr < syscall.NLMSG_HDRLEN {
return nil, fmt.Errorf("Got short response from netlink")
fromAddr, ok := from.(*unix.SockaddrNetlink)
if !ok {
return nil, nil, fmt.Errorf("Error converting to netlink sockaddr")
}
rb = rb[:nr]
return syscall.ParseNetlinkMessage(rb)
if nr < unix.NLMSG_HDRLEN {
return nil, nil, fmt.Errorf("Got short response from netlink")
}
rb2 := make([]byte, nr)
copy(rb2, rb[:nr])
nl, err := syscall.ParseNetlinkMessage(rb2)
if err != nil {
return nil, nil, err
}
return nl, fromAddr, nil
}
// SetSendTimeout allows to set a send timeout on the socket
func (s *NetlinkSocket) SetSendTimeout(timeout *unix.Timeval) error {
// Set a send timeout of SOCKET_SEND_TIMEOUT, this will allow the Send to periodically unblock and avoid that a routine
// remains stuck on a send on a closed fd
return unix.SetsockoptTimeval(int(s.fd), unix.SOL_SOCKET, unix.SO_SNDTIMEO, timeout)
}
// SetReceiveTimeout allows to set a receive timeout on the socket
func (s *NetlinkSocket) SetReceiveTimeout(timeout *unix.Timeval) error {
// Set a read timeout of SOCKET_READ_TIMEOUT, this will allow the Read to periodically unblock and avoid that a routine
// remains stuck on a recvmsg on a closed fd
return unix.SetsockoptTimeval(int(s.fd), unix.SOL_SOCKET, unix.SO_RCVTIMEO, timeout)
}
func (s *NetlinkSocket) GetPid() (uint32, error) {
lsa, err := syscall.Getsockname(s.fd)
fd := int(atomic.LoadInt32(&s.fd))
lsa, err := unix.Getsockname(fd)
if err != nil {
return 0, err
}
switch v := lsa.(type) {
case *syscall.SockaddrNetlink:
case *unix.SockaddrNetlink:
return v.Pid, nil
}
return 0, fmt.Errorf("Wrong socket type")
@@ -395,24 +716,45 @@ func Uint32Attr(v uint32) []byte {
return bytes
}
func Uint64Attr(v uint64) []byte {
native := NativeEndian()
bytes := make([]byte, 8)
native.PutUint64(bytes, v)
return bytes
}
func ParseRouteAttr(b []byte) ([]syscall.NetlinkRouteAttr, error) {
var attrs []syscall.NetlinkRouteAttr
for len(b) >= syscall.SizeofRtAttr {
for len(b) >= unix.SizeofRtAttr {
a, vbuf, alen, err := netlinkRouteAttrAndValue(b)
if err != nil {
return nil, err
}
ra := syscall.NetlinkRouteAttr{Attr: *a, Value: vbuf[:int(a.Len)-syscall.SizeofRtAttr]}
ra := syscall.NetlinkRouteAttr{Attr: syscall.RtAttr(*a), Value: vbuf[:int(a.Len)-unix.SizeofRtAttr]}
attrs = append(attrs, ra)
b = b[alen:]
}
return attrs, nil
}
func netlinkRouteAttrAndValue(b []byte) (*syscall.RtAttr, []byte, int, error) {
a := (*syscall.RtAttr)(unsafe.Pointer(&b[0]))
if int(a.Len) < syscall.SizeofRtAttr || int(a.Len) > len(b) {
return nil, nil, 0, syscall.EINVAL
func netlinkRouteAttrAndValue(b []byte) (*unix.RtAttr, []byte, int, error) {
a := (*unix.RtAttr)(unsafe.Pointer(&b[0]))
if int(a.Len) < unix.SizeofRtAttr || int(a.Len) > len(b) {
return nil, nil, 0, unix.EINVAL
}
return a, b[unix.SizeofRtAttr:], rtaAlignOf(int(a.Len)), nil
}
// SocketHandle contains the netlink socket and the associated
// sequence counter for a specific netlink family
type SocketHandle struct {
Seq uint32
Socket *NetlinkSocket
}
// Close closes the netlink socket
func (sh *SocketHandle) Close() {
if sh.Socket != nil {
sh.Socket.Close()
}
return a, b[syscall.SizeofRtAttr:], rtaAlignOf(int(a.Len)), nil
}

View File

@@ -0,0 +1,11 @@
// +build !linux
package nl
import "encoding/binary"
var SupportedNlFamilies = []int{}
func NativeEndian() binary.ByteOrder {
return nil
}

View File

@@ -0,0 +1,35 @@
package nl
const (
RDMA_NL_GET_CLIENT_SHIFT = 10
)
const (
RDMA_NL_NLDEV = 5
)
const (
RDMA_NLDEV_CMD_GET = 1
RDMA_NLDEV_CMD_SET = 2
RDMA_NLDEV_CMD_SYS_GET = 6
RDMA_NLDEV_CMD_SYS_SET = 7
)
const (
RDMA_NLDEV_ATTR_DEV_INDEX = 1
RDMA_NLDEV_ATTR_DEV_NAME = 2
RDMA_NLDEV_ATTR_PORT_INDEX = 3
RDMA_NLDEV_ATTR_CAP_FLAGS = 4
RDMA_NLDEV_ATTR_FW_VERSION = 5
RDMA_NLDEV_ATTR_NODE_GUID = 6
RDMA_NLDEV_ATTR_SYS_IMAGE_GUID = 7
RDMA_NLDEV_ATTR_SUBNET_PREFIX = 8
RDMA_NLDEV_ATTR_LID = 9
RDMA_NLDEV_ATTR_SM_LID = 10
RDMA_NLDEV_ATTR_LMC = 11
RDMA_NLDEV_ATTR_PORT_STATE = 12
RDMA_NLDEV_ATTR_PORT_PHYS_STATE = 13
RDMA_NLDEV_ATTR_DEV_NODE_TYPE = 14
RDMA_NLDEV_SYS_ATTR_NETNS_MODE = 66
RDMA_NLDEV_NET_NS_FD = 68
)

View File

@@ -1,42 +1,107 @@
package nl
import (
"syscall"
"unsafe"
"golang.org/x/sys/unix"
)
type RtMsg struct {
syscall.RtMsg
unix.RtMsg
}
func NewRtMsg() *RtMsg {
return &RtMsg{
RtMsg: syscall.RtMsg{
Table: syscall.RT_TABLE_MAIN,
Scope: syscall.RT_SCOPE_UNIVERSE,
Protocol: syscall.RTPROT_BOOT,
Type: syscall.RTN_UNICAST,
RtMsg: unix.RtMsg{
Table: unix.RT_TABLE_MAIN,
Scope: unix.RT_SCOPE_UNIVERSE,
Protocol: unix.RTPROT_BOOT,
Type: unix.RTN_UNICAST,
},
}
}
func NewRtDelMsg() *RtMsg {
return &RtMsg{
RtMsg: syscall.RtMsg{
Table: syscall.RT_TABLE_MAIN,
Scope: syscall.RT_SCOPE_NOWHERE,
RtMsg: unix.RtMsg{
Table: unix.RT_TABLE_MAIN,
Scope: unix.RT_SCOPE_NOWHERE,
},
}
}
func (msg *RtMsg) Len() int {
return syscall.SizeofRtMsg
return unix.SizeofRtMsg
}
func DeserializeRtMsg(b []byte) *RtMsg {
return (*RtMsg)(unsafe.Pointer(&b[0:syscall.SizeofRtMsg][0]))
return (*RtMsg)(unsafe.Pointer(&b[0:unix.SizeofRtMsg][0]))
}
func (msg *RtMsg) Serialize() []byte {
return (*(*[syscall.SizeofRtMsg]byte)(unsafe.Pointer(msg)))[:]
return (*(*[unix.SizeofRtMsg]byte)(unsafe.Pointer(msg)))[:]
}
type RtNexthop struct {
unix.RtNexthop
Children []NetlinkRequestData
}
func DeserializeRtNexthop(b []byte) *RtNexthop {
return (*RtNexthop)(unsafe.Pointer(&b[0:unix.SizeofRtNexthop][0]))
}
func (msg *RtNexthop) Len() int {
if len(msg.Children) == 0 {
return unix.SizeofRtNexthop
}
l := 0
for _, child := range msg.Children {
l += rtaAlignOf(child.Len())
}
l += unix.SizeofRtNexthop
return rtaAlignOf(l)
}
func (msg *RtNexthop) Serialize() []byte {
length := msg.Len()
msg.RtNexthop.Len = uint16(length)
buf := make([]byte, length)
copy(buf, (*(*[unix.SizeofRtNexthop]byte)(unsafe.Pointer(msg)))[:])
next := rtaAlignOf(unix.SizeofRtNexthop)
if len(msg.Children) > 0 {
for _, child := range msg.Children {
childBuf := child.Serialize()
copy(buf[next:], childBuf)
next += rtaAlignOf(len(childBuf))
}
}
return buf
}
type RtGenMsg struct {
unix.RtGenmsg
}
func NewRtGenMsg() *RtGenMsg {
return &RtGenMsg{
RtGenmsg: unix.RtGenmsg{
Family: unix.AF_UNSPEC,
},
}
}
func (msg *RtGenMsg) Len() int {
return rtaAlignOf(unix.SizeofRtGenmsg)
}
func DeserializeRtGenMsg(b []byte) *RtGenMsg {
return &RtGenMsg{RtGenmsg: unix.RtGenmsg{Family: b[0]}}
}
func (msg *RtGenMsg) Serialize() []byte {
out := make([]byte, msg.Len())
out[0] = msg.Family
return out
}

154
vendor/github.com/vishvananda/netlink/nl/seg6_linux.go generated vendored Normal file
View File

@@ -0,0 +1,154 @@
package nl
import (
"errors"
"fmt"
"net"
)
type IPv6SrHdr struct {
nextHdr uint8
hdrLen uint8
routingType uint8
segmentsLeft uint8
firstSegment uint8
flags uint8
reserved uint16
Segments []net.IP
}
func (s1 *IPv6SrHdr) Equal(s2 IPv6SrHdr) bool {
if len(s1.Segments) != len(s2.Segments) {
return false
}
for i := range s1.Segments {
if s1.Segments[i].Equal(s2.Segments[i]) != true {
return false
}
}
return s1.nextHdr == s2.nextHdr &&
s1.hdrLen == s2.hdrLen &&
s1.routingType == s2.routingType &&
s1.segmentsLeft == s2.segmentsLeft &&
s1.firstSegment == s2.firstSegment &&
s1.flags == s2.flags
// reserved doesn't need to be identical.
}
// seg6 encap mode
const (
SEG6_IPTUN_MODE_INLINE = iota
SEG6_IPTUN_MODE_ENCAP
)
// number of nested RTATTR
// from include/uapi/linux/seg6_iptunnel.h
const (
SEG6_IPTUNNEL_UNSPEC = iota
SEG6_IPTUNNEL_SRH
__SEG6_IPTUNNEL_MAX
)
const (
SEG6_IPTUNNEL_MAX = __SEG6_IPTUNNEL_MAX - 1
)
func EncodeSEG6Encap(mode int, segments []net.IP) ([]byte, error) {
nsegs := len(segments) // nsegs: number of segments
if nsegs == 0 {
return nil, errors.New("EncodeSEG6Encap: No Segment in srh")
}
b := make([]byte, 12, 12+len(segments)*16)
native := NativeEndian()
native.PutUint32(b, uint32(mode))
b[4] = 0 // srh.nextHdr (0 when calling netlink)
b[5] = uint8(16 * nsegs >> 3) // srh.hdrLen (in 8-octets unit)
b[6] = IPV6_SRCRT_TYPE_4 // srh.routingType (assigned by IANA)
b[7] = uint8(nsegs - 1) // srh.segmentsLeft
b[8] = uint8(nsegs - 1) // srh.firstSegment
b[9] = 0 // srh.flags (SR6_FLAG1_HMAC for srh_hmac)
// srh.reserved: Defined as "Tag" in draft-ietf-6man-segment-routing-header-07
native.PutUint16(b[10:], 0) // srh.reserved
for _, netIP := range segments {
b = append(b, netIP...) // srh.Segments
}
return b, nil
}
func DecodeSEG6Encap(buf []byte) (int, []net.IP, error) {
native := NativeEndian()
mode := int(native.Uint32(buf))
srh := IPv6SrHdr{
nextHdr: buf[4],
hdrLen: buf[5],
routingType: buf[6],
segmentsLeft: buf[7],
firstSegment: buf[8],
flags: buf[9],
reserved: native.Uint16(buf[10:12]),
}
buf = buf[12:]
if len(buf)%16 != 0 {
err := fmt.Errorf("DecodeSEG6Encap: error parsing Segment List (buf len: %d)\n", len(buf))
return mode, nil, err
}
for len(buf) > 0 {
srh.Segments = append(srh.Segments, net.IP(buf[:16]))
buf = buf[16:]
}
return mode, srh.Segments, nil
}
func DecodeSEG6Srh(buf []byte) ([]net.IP, error) {
native := NativeEndian()
srh := IPv6SrHdr{
nextHdr: buf[0],
hdrLen: buf[1],
routingType: buf[2],
segmentsLeft: buf[3],
firstSegment: buf[4],
flags: buf[5],
reserved: native.Uint16(buf[6:8]),
}
buf = buf[8:]
if len(buf)%16 != 0 {
err := fmt.Errorf("DecodeSEG6Srh: error parsing Segment List (buf len: %d)", len(buf))
return nil, err
}
for len(buf) > 0 {
srh.Segments = append(srh.Segments, net.IP(buf[:16]))
buf = buf[16:]
}
return srh.Segments, nil
}
func EncodeSEG6Srh(segments []net.IP) ([]byte, error) {
nsegs := len(segments) // nsegs: number of segments
if nsegs == 0 {
return nil, errors.New("EncodeSEG6Srh: No Segments")
}
b := make([]byte, 8, 8+len(segments)*16)
native := NativeEndian()
b[0] = 0 // srh.nextHdr (0 when calling netlink)
b[1] = uint8(16 * nsegs >> 3) // srh.hdrLen (in 8-octets unit)
b[2] = IPV6_SRCRT_TYPE_4 // srh.routingType (assigned by IANA)
b[3] = uint8(nsegs - 1) // srh.segmentsLeft
b[4] = uint8(nsegs - 1) // srh.firstSegment
b[5] = 0 // srh.flags (SR6_FLAG1_HMAC for srh_hmac)
// srh.reserved: Defined as "Tag" in draft-ietf-6man-segment-routing-header-07
native.PutUint16(b[6:], 0) // srh.reserved
for _, netIP := range segments {
b = append(b, netIP...) // srh.Segments
}
return b, nil
}
// Helper functions
func SEG6EncapModeString(mode int) string {
switch mode {
case SEG6_IPTUN_MODE_INLINE:
return "inline"
case SEG6_IPTUN_MODE_ENCAP:
return "encap"
}
return "unknown"
}

View File

@@ -0,0 +1,76 @@
package nl
import ()
// seg6local parameters
const (
SEG6_LOCAL_UNSPEC = iota
SEG6_LOCAL_ACTION
SEG6_LOCAL_SRH
SEG6_LOCAL_TABLE
SEG6_LOCAL_NH4
SEG6_LOCAL_NH6
SEG6_LOCAL_IIF
SEG6_LOCAL_OIF
__SEG6_LOCAL_MAX
)
const (
SEG6_LOCAL_MAX = __SEG6_LOCAL_MAX
)
// seg6local actions
const (
SEG6_LOCAL_ACTION_END = iota + 1 // 1
SEG6_LOCAL_ACTION_END_X // 2
SEG6_LOCAL_ACTION_END_T // 3
SEG6_LOCAL_ACTION_END_DX2 // 4
SEG6_LOCAL_ACTION_END_DX6 // 5
SEG6_LOCAL_ACTION_END_DX4 // 6
SEG6_LOCAL_ACTION_END_DT6 // 7
SEG6_LOCAL_ACTION_END_DT4 // 8
SEG6_LOCAL_ACTION_END_B6 // 9
SEG6_LOCAL_ACTION_END_B6_ENCAPS // 10
SEG6_LOCAL_ACTION_END_BM // 11
SEG6_LOCAL_ACTION_END_S // 12
SEG6_LOCAL_ACTION_END_AS // 13
SEG6_LOCAL_ACTION_END_AM // 14
__SEG6_LOCAL_ACTION_MAX
)
const (
SEG6_LOCAL_ACTION_MAX = __SEG6_LOCAL_ACTION_MAX - 1
)
// Helper functions
func SEG6LocalActionString(action int) string {
switch action {
case SEG6_LOCAL_ACTION_END:
return "End"
case SEG6_LOCAL_ACTION_END_X:
return "End.X"
case SEG6_LOCAL_ACTION_END_T:
return "End.T"
case SEG6_LOCAL_ACTION_END_DX2:
return "End.DX2"
case SEG6_LOCAL_ACTION_END_DX6:
return "End.DX6"
case SEG6_LOCAL_ACTION_END_DX4:
return "End.DX4"
case SEG6_LOCAL_ACTION_END_DT6:
return "End.DT6"
case SEG6_LOCAL_ACTION_END_DT4:
return "End.DT4"
case SEG6_LOCAL_ACTION_END_B6:
return "End.B6"
case SEG6_LOCAL_ACTION_END_B6_ENCAPS:
return "End.B6.Encaps"
case SEG6_LOCAL_ACTION_END_BM:
return "End.BM"
case SEG6_LOCAL_ACTION_END_S:
return "End.S"
case SEG6_LOCAL_ACTION_END_AS:
return "End.AS"
case SEG6_LOCAL_ACTION_END_AM:
return "End.AM"
}
return "unknown"
}

69
vendor/github.com/vishvananda/netlink/nl/syscall.go generated vendored Normal file
View File

@@ -0,0 +1,69 @@
package nl
// syscall package lack of rule atributes type.
// Thus there are defined below
const (
FRA_UNSPEC = iota
FRA_DST /* destination address */
FRA_SRC /* source address */
FRA_IIFNAME /* interface name */
FRA_GOTO /* target to jump to (FR_ACT_GOTO) */
FRA_UNUSED2
FRA_PRIORITY /* priority/preference */
FRA_UNUSED3
FRA_UNUSED4
FRA_UNUSED5
FRA_FWMARK /* mark */
FRA_FLOW /* flow/class id */
FRA_TUN_ID
FRA_SUPPRESS_IFGROUP
FRA_SUPPRESS_PREFIXLEN
FRA_TABLE /* Extended table id */
FRA_FWMASK /* mask for netfilter mark */
FRA_OIFNAME
)
// ip rule netlink request types
const (
FR_ACT_UNSPEC = iota
FR_ACT_TO_TBL /* Pass to fixed table */
FR_ACT_GOTO /* Jump to another rule */
FR_ACT_NOP /* No operation */
FR_ACT_RES3
FR_ACT_RES4
FR_ACT_BLACKHOLE /* Drop without notification */
FR_ACT_UNREACHABLE /* Drop with ENETUNREACH */
FR_ACT_PROHIBIT /* Drop with EACCES */
)
// socket diags related
const (
SOCK_DIAG_BY_FAMILY = 20 /* linux.sock_diag.h */
TCPDIAG_NOCOOKIE = 0xFFFFFFFF /* TCPDIAG_NOCOOKIE in net/ipv4/tcp_diag.h*/
)
// RTA_ENCAP subtype
const (
MPLS_IPTUNNEL_UNSPEC = iota
MPLS_IPTUNNEL_DST
)
// light weight tunnel encap types
const (
LWTUNNEL_ENCAP_NONE = iota
LWTUNNEL_ENCAP_MPLS
LWTUNNEL_ENCAP_IP
LWTUNNEL_ENCAP_ILA
LWTUNNEL_ENCAP_IP6
LWTUNNEL_ENCAP_SEG6
LWTUNNEL_ENCAP_BPF
LWTUNNEL_ENCAP_SEG6_LOCAL
)
// routing header types
const (
IPV6_SRCRT_STRICT = 0x01 // Deprecated; will be removed
IPV6_SRCRT_TYPE_0 = 0 // Deprecated; will be removed
IPV6_SRCRT_TYPE_2 = 2 // IPv6 type 2 Routing Header
IPV6_SRCRT_TYPE_4 = 4 // Segment Routing with IPv6
)

View File

@@ -1,9 +1,36 @@
package nl
import (
"encoding/binary"
"unsafe"
)
// LinkLayer
const (
LINKLAYER_UNSPEC = iota
LINKLAYER_ETHERNET
LINKLAYER_ATM
)
// ATM
const (
ATM_CELL_PAYLOAD = 48
ATM_CELL_SIZE = 53
)
const TC_LINKLAYER_MASK = 0x0F
// Police
const (
TCA_POLICE_UNSPEC = iota
TCA_POLICE_TBF
TCA_POLICE_RATE
TCA_POLICE_PEAKRATE
TCA_POLICE_AVRATE
TCA_POLICE_RESULT
TCA_POLICE_MAX = TCA_POLICE_RESULT
)
// Message types
const (
TCA_UNSPEC = iota
@@ -23,6 +50,15 @@ const (
TCAA_MAX = 1
)
const (
TCA_ACT_UNSPEC = iota
TCA_ACT_KIND
TCA_ACT_OPTIONS
TCA_ACT_INDEX
TCA_ACT_STATS
TCA_ACT_MAX
)
const (
TCA_PRIO_UNSPEC = iota
TCA_PRIO_MQ
@@ -30,14 +66,34 @@ const (
)
const (
SizeofTcMsg = 0x14
SizeofTcActionMsg = 0x04
SizeofTcPrioMap = 0x14
SizeofTcRateSpec = 0x0c
SizeofTcTbfQopt = 2*SizeofTcRateSpec + 0x0c
SizeofTcU32Key = 0x10
SizeofTcU32Sel = 0x10 // without keys
SizeofTcMirred = 0x1c
TCA_STATS_UNSPEC = iota
TCA_STATS_BASIC
TCA_STATS_RATE_EST
TCA_STATS_QUEUE
TCA_STATS_APP
TCA_STATS_MAX = TCA_STATS_APP
)
const (
SizeofTcMsg = 0x14
SizeofTcActionMsg = 0x04
SizeofTcPrioMap = 0x14
SizeofTcRateSpec = 0x0c
SizeofTcNetemQopt = 0x18
SizeofTcNetemCorr = 0x0c
SizeofTcNetemReorder = 0x08
SizeofTcNetemCorrupt = 0x08
SizeofTcTbfQopt = 2*SizeofTcRateSpec + 0x0c
SizeofTcHtbCopt = 2*SizeofTcRateSpec + 0x14
SizeofTcHtbGlob = 0x14
SizeofTcU32Key = 0x10
SizeofTcU32Sel = 0x10 // without keys
SizeofTcGen = 0x14
SizeofTcConnmark = SizeofTcGen + 0x04
SizeofTcMirred = SizeofTcGen + 0x08
SizeofTcTunnelKey = SizeofTcGen + 0x04
SizeofTcSkbEdit = SizeofTcGen
SizeofTcPolice = 2*SizeofTcRateSpec + 0x20
)
// struct tcmsg {
@@ -162,6 +218,121 @@ func (x *TcRateSpec) Serialize() []byte {
return (*(*[SizeofTcRateSpec]byte)(unsafe.Pointer(x)))[:]
}
/**
* NETEM
*/
const (
TCA_NETEM_UNSPEC = iota
TCA_NETEM_CORR
TCA_NETEM_DELAY_DIST
TCA_NETEM_REORDER
TCA_NETEM_CORRUPT
TCA_NETEM_LOSS
TCA_NETEM_RATE
TCA_NETEM_ECN
TCA_NETEM_RATE64
TCA_NETEM_MAX = TCA_NETEM_RATE64
)
// struct tc_netem_qopt {
// __u32 latency; /* added delay (us) */
// __u32 limit; /* fifo limit (packets) */
// __u32 loss; /* random packet loss (0=none ~0=100%) */
// __u32 gap; /* re-ordering gap (0 for none) */
// __u32 duplicate; /* random packet dup (0=none ~0=100%) */
// __u32 jitter; /* random jitter in latency (us) */
// };
type TcNetemQopt struct {
Latency uint32
Limit uint32
Loss uint32
Gap uint32
Duplicate uint32
Jitter uint32
}
func (msg *TcNetemQopt) Len() int {
return SizeofTcNetemQopt
}
func DeserializeTcNetemQopt(b []byte) *TcNetemQopt {
return (*TcNetemQopt)(unsafe.Pointer(&b[0:SizeofTcNetemQopt][0]))
}
func (x *TcNetemQopt) Serialize() []byte {
return (*(*[SizeofTcNetemQopt]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_corr {
// __u32 delay_corr; /* delay correlation */
// __u32 loss_corr; /* packet loss correlation */
// __u32 dup_corr; /* duplicate correlation */
// };
type TcNetemCorr struct {
DelayCorr uint32
LossCorr uint32
DupCorr uint32
}
func (msg *TcNetemCorr) Len() int {
return SizeofTcNetemCorr
}
func DeserializeTcNetemCorr(b []byte) *TcNetemCorr {
return (*TcNetemCorr)(unsafe.Pointer(&b[0:SizeofTcNetemCorr][0]))
}
func (x *TcNetemCorr) Serialize() []byte {
return (*(*[SizeofTcNetemCorr]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_reorder {
// __u32 probability;
// __u32 correlation;
// };
type TcNetemReorder struct {
Probability uint32
Correlation uint32
}
func (msg *TcNetemReorder) Len() int {
return SizeofTcNetemReorder
}
func DeserializeTcNetemReorder(b []byte) *TcNetemReorder {
return (*TcNetemReorder)(unsafe.Pointer(&b[0:SizeofTcNetemReorder][0]))
}
func (x *TcNetemReorder) Serialize() []byte {
return (*(*[SizeofTcNetemReorder]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_netem_corrupt {
// __u32 probability;
// __u32 correlation;
// };
type TcNetemCorrupt struct {
Probability uint32
Correlation uint32
}
func (msg *TcNetemCorrupt) Len() int {
return SizeofTcNetemCorrupt
}
func DeserializeTcNetemCorrupt(b []byte) *TcNetemCorrupt {
return (*TcNetemCorrupt)(unsafe.Pointer(&b[0:SizeofTcNetemCorrupt][0]))
}
func (x *TcNetemCorrupt) Serialize() []byte {
return (*(*[SizeofTcNetemCorrupt]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_tbf_qopt {
// struct tc_ratespec rate;
// struct tc_ratespec peakrate;
@@ -190,6 +361,121 @@ func (x *TcTbfQopt) Serialize() []byte {
return (*(*[SizeofTcTbfQopt]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_HTB_UNSPEC = iota
TCA_HTB_PARMS
TCA_HTB_INIT
TCA_HTB_CTAB
TCA_HTB_RTAB
TCA_HTB_DIRECT_QLEN
TCA_HTB_RATE64
TCA_HTB_CEIL64
TCA_HTB_MAX = TCA_HTB_CEIL64
)
//struct tc_htb_opt {
// struct tc_ratespec rate;
// struct tc_ratespec ceil;
// __u32 buffer;
// __u32 cbuffer;
// __u32 quantum;
// __u32 level; /* out only */
// __u32 prio;
//};
type TcHtbCopt struct {
Rate TcRateSpec
Ceil TcRateSpec
Buffer uint32
Cbuffer uint32
Quantum uint32
Level uint32
Prio uint32
}
func (msg *TcHtbCopt) Len() int {
return SizeofTcHtbCopt
}
func DeserializeTcHtbCopt(b []byte) *TcHtbCopt {
return (*TcHtbCopt)(unsafe.Pointer(&b[0:SizeofTcHtbCopt][0]))
}
func (x *TcHtbCopt) Serialize() []byte {
return (*(*[SizeofTcHtbCopt]byte)(unsafe.Pointer(x)))[:]
}
type TcHtbGlob struct {
Version uint32
Rate2Quantum uint32
Defcls uint32
Debug uint32
DirectPkts uint32
}
func (msg *TcHtbGlob) Len() int {
return SizeofTcHtbGlob
}
func DeserializeTcHtbGlob(b []byte) *TcHtbGlob {
return (*TcHtbGlob)(unsafe.Pointer(&b[0:SizeofTcHtbGlob][0]))
}
func (x *TcHtbGlob) Serialize() []byte {
return (*(*[SizeofTcHtbGlob]byte)(unsafe.Pointer(x)))[:]
}
// HFSC
type Curve struct {
m1 uint32
d uint32
m2 uint32
}
type HfscCopt struct {
Rsc Curve
Fsc Curve
Usc Curve
}
func (c *Curve) Attrs() (uint32, uint32, uint32) {
return c.m1, c.d, c.m2
}
func (c *Curve) Set(m1 uint32, d uint32, m2 uint32) {
c.m1 = m1
c.d = d
c.m2 = m2
}
func DeserializeHfscCurve(b []byte) *Curve {
return &Curve{
m1: binary.LittleEndian.Uint32(b[0:4]),
d: binary.LittleEndian.Uint32(b[4:8]),
m2: binary.LittleEndian.Uint32(b[8:12]),
}
}
func SerializeHfscCurve(c *Curve) (b []byte) {
t := make([]byte, binary.MaxVarintLen32)
binary.LittleEndian.PutUint32(t, c.m1)
b = append(b, t[:4]...)
binary.LittleEndian.PutUint32(t, c.d)
b = append(b, t[:4]...)
binary.LittleEndian.PutUint32(t, c.m2)
b = append(b, t[:4]...)
return b
}
type TcHfscOpt struct {
Defcls uint16
}
func (x *TcHfscOpt) Serialize() []byte {
return (*(*[2]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_U32_UNSPEC = iota
TCA_U32_CLASSID
@@ -294,6 +580,117 @@ func (x *TcU32Sel) Serialize() []byte {
return buf
}
type TcGen struct {
Index uint32
Capab uint32
Action int32
Refcnt int32
Bindcnt int32
}
func (msg *TcGen) Len() int {
return SizeofTcGen
}
func DeserializeTcGen(b []byte) *TcGen {
return (*TcGen)(unsafe.Pointer(&b[0:SizeofTcGen][0]))
}
func (x *TcGen) Serialize() []byte {
return (*(*[SizeofTcGen]byte)(unsafe.Pointer(x)))[:]
}
// #define tc_gen \
// __u32 index; \
// __u32 capab; \
// int action; \
// int refcnt; \
// int bindcnt
const (
TCA_ACT_GACT = 5
)
const (
TCA_GACT_UNSPEC = iota
TCA_GACT_TM
TCA_GACT_PARMS
TCA_GACT_PROB
TCA_GACT_MAX = TCA_GACT_PROB
)
type TcGact TcGen
const (
TCA_ACT_BPF = 13
)
const (
TCA_ACT_BPF_UNSPEC = iota
TCA_ACT_BPF_TM
TCA_ACT_BPF_PARMS
TCA_ACT_BPF_OPS_LEN
TCA_ACT_BPF_OPS
TCA_ACT_BPF_FD
TCA_ACT_BPF_NAME
TCA_ACT_BPF_MAX = TCA_ACT_BPF_NAME
)
const (
TCA_BPF_FLAG_ACT_DIRECT uint32 = 1 << iota
)
const (
TCA_BPF_UNSPEC = iota
TCA_BPF_ACT
TCA_BPF_POLICE
TCA_BPF_CLASSID
TCA_BPF_OPS_LEN
TCA_BPF_OPS
TCA_BPF_FD
TCA_BPF_NAME
TCA_BPF_FLAGS
TCA_BPF_FLAGS_GEN
TCA_BPF_TAG
TCA_BPF_ID
TCA_BPF_MAX = TCA_BPF_ID
)
type TcBpf TcGen
const (
TCA_ACT_CONNMARK = 14
)
const (
TCA_CONNMARK_UNSPEC = iota
TCA_CONNMARK_PARMS
TCA_CONNMARK_TM
TCA_CONNMARK_MAX = TCA_CONNMARK_TM
)
// struct tc_connmark {
// tc_gen;
// __u16 zone;
// };
type TcConnmark struct {
TcGen
Zone uint16
}
func (msg *TcConnmark) Len() int {
return SizeofTcConnmark
}
func DeserializeTcConnmark(b []byte) *TcConnmark {
return (*TcConnmark)(unsafe.Pointer(&b[0:SizeofTcConnmark][0]))
}
func (x *TcConnmark) Serialize() []byte {
return (*(*[SizeofTcConnmark]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_ACT_MIRRED = 8
)
@@ -305,31 +702,6 @@ const (
TCA_MIRRED_MAX = TCA_MIRRED_PARMS
)
const (
TCA_EGRESS_REDIR = 1 /* packet redirect to EGRESS*/
TCA_EGRESS_MIRROR = 2 /* mirror packet to EGRESS */
TCA_INGRESS_REDIR = 3 /* packet redirect to INGRESS*/
TCA_INGRESS_MIRROR = 4 /* mirror packet to INGRESS */
)
const (
TC_ACT_UNSPEC = int32(-1)
TC_ACT_OK = 0
TC_ACT_RECLASSIFY = 1
TC_ACT_SHOT = 2
TC_ACT_PIPE = 3
TC_ACT_STOLEN = 4
TC_ACT_QUEUED = 5
TC_ACT_REPEAT = 6
TC_ACT_JUMP = 0x10000000
)
// #define tc_gen \
// __u32 index; \
// __u32 capab; \
// int action; \
// int refcnt; \
// int bindcnt
// struct tc_mirred {
// tc_gen;
// int eaction; /* one of IN/EGRESS_MIRROR/REDIR */
@@ -337,11 +709,7 @@ const (
// };
type TcMirred struct {
Index uint32
Capab uint32
Action int32
Refcnt int32
Bindcnt int32
TcGen
Eaction int32
Ifindex uint32
}
@@ -357,3 +725,150 @@ func DeserializeTcMirred(b []byte) *TcMirred {
func (x *TcMirred) Serialize() []byte {
return (*(*[SizeofTcMirred]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_TUNNEL_KEY_UNSPEC = iota
TCA_TUNNEL_KEY_TM
TCA_TUNNEL_KEY_PARMS
TCA_TUNNEL_KEY_ENC_IPV4_SRC
TCA_TUNNEL_KEY_ENC_IPV4_DST
TCA_TUNNEL_KEY_ENC_IPV6_SRC
TCA_TUNNEL_KEY_ENC_IPV6_DST
TCA_TUNNEL_KEY_ENC_KEY_ID
TCA_TUNNEL_KEY_MAX = TCA_TUNNEL_KEY_ENC_KEY_ID
)
type TcTunnelKey struct {
TcGen
Action int32
}
func (x *TcTunnelKey) Len() int {
return SizeofTcTunnelKey
}
func DeserializeTunnelKey(b []byte) *TcTunnelKey {
return (*TcTunnelKey)(unsafe.Pointer(&b[0:SizeofTcTunnelKey][0]))
}
func (x *TcTunnelKey) Serialize() []byte {
return (*(*[SizeofTcTunnelKey]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_SKBEDIT_UNSPEC = iota
TCA_SKBEDIT_TM
TCA_SKBEDIT_PARMS
TCA_SKBEDIT_PRIORITY
TCA_SKBEDIT_QUEUE_MAPPING
TCA_SKBEDIT_MARK
TCA_SKBEDIT_PAD
TCA_SKBEDIT_PTYPE
TCA_SKBEDIT_MAX = TCA_SKBEDIT_MARK
)
type TcSkbEdit struct {
TcGen
}
func (x *TcSkbEdit) Len() int {
return SizeofTcSkbEdit
}
func DeserializeSkbEdit(b []byte) *TcSkbEdit {
return (*TcSkbEdit)(unsafe.Pointer(&b[0:SizeofTcSkbEdit][0]))
}
func (x *TcSkbEdit) Serialize() []byte {
return (*(*[SizeofTcSkbEdit]byte)(unsafe.Pointer(x)))[:]
}
// struct tc_police {
// __u32 index;
// int action;
// __u32 limit;
// __u32 burst;
// __u32 mtu;
// struct tc_ratespec rate;
// struct tc_ratespec peakrate;
// int refcnt;
// int bindcnt;
// __u32 capab;
// };
type TcPolice struct {
Index uint32
Action int32
Limit uint32
Burst uint32
Mtu uint32
Rate TcRateSpec
PeakRate TcRateSpec
Refcnt int32
Bindcnt int32
Capab uint32
}
func (msg *TcPolice) Len() int {
return SizeofTcPolice
}
func DeserializeTcPolice(b []byte) *TcPolice {
return (*TcPolice)(unsafe.Pointer(&b[0:SizeofTcPolice][0]))
}
func (x *TcPolice) Serialize() []byte {
return (*(*[SizeofTcPolice]byte)(unsafe.Pointer(x)))[:]
}
const (
TCA_FW_UNSPEC = iota
TCA_FW_CLASSID
TCA_FW_POLICE
TCA_FW_INDEV
TCA_FW_ACT
TCA_FW_MASK
TCA_FW_MAX = TCA_FW_MASK
)
const (
TCA_MATCHALL_UNSPEC = iota
TCA_MATCHALL_CLASSID
TCA_MATCHALL_ACT
TCA_MATCHALL_FLAGS
)
const (
TCA_FQ_UNSPEC = iota
TCA_FQ_PLIMIT // limit of total number of packets in queue
TCA_FQ_FLOW_PLIMIT // limit of packets per flow
TCA_FQ_QUANTUM // RR quantum
TCA_FQ_INITIAL_QUANTUM // RR quantum for new flow
TCA_FQ_RATE_ENABLE // enable/disable rate limiting
TCA_FQ_FLOW_DEFAULT_RATE // obsolete do not use
TCA_FQ_FLOW_MAX_RATE // per flow max rate
TCA_FQ_BUCKETS_LOG // log2(number of buckets)
TCA_FQ_FLOW_REFILL_DELAY // flow credit refill delay in usec
TCA_FQ_ORPHAN_MASK // mask applied to orphaned skb hashes
TCA_FQ_LOW_RATE_THRESHOLD // per packet delay under this rate
)
const (
TCA_FQ_CODEL_UNSPEC = iota
TCA_FQ_CODEL_TARGET
TCA_FQ_CODEL_LIMIT
TCA_FQ_CODEL_INTERVAL
TCA_FQ_CODEL_ECN
TCA_FQ_CODEL_FLOWS
TCA_FQ_CODEL_QUANTUM
TCA_FQ_CODEL_CE_THRESHOLD
TCA_FQ_CODEL_DROP_BATCH_SIZE
TCA_FQ_CODEL_MEMORY_LIMIT
)
const (
TCA_HFSC_UNSPEC = iota
TCA_HFSC_RSC
TCA_HFSC_FSC
TCA_HFSC_USC
)

View File

@@ -11,73 +11,104 @@ const (
XFRM_INF = ^uint64(0)
)
type XfrmMsgType uint8
type XfrmMsg interface {
Type() XfrmMsgType
}
// Message Types
const (
XFRM_MSG_BASE = 0x10
XFRM_MSG_NEWSA = 0x10
XFRM_MSG_DELSA = 0x11
XFRM_MSG_GETSA = 0x12
XFRM_MSG_NEWPOLICY = 0x13
XFRM_MSG_DELPOLICY = 0x14
XFRM_MSG_GETPOLICY = 0x15
XFRM_MSG_ALLOCSPI = 0x16
XFRM_MSG_ACQUIRE = 0x17
XFRM_MSG_EXPIRE = 0x18
XFRM_MSG_UPDPOLICY = 0x19
XFRM_MSG_UPDSA = 0x1a
XFRM_MSG_POLEXPIRE = 0x1b
XFRM_MSG_FLUSHSA = 0x1c
XFRM_MSG_FLUSHPOLICY = 0x1d
XFRM_MSG_NEWAE = 0x1e
XFRM_MSG_GETAE = 0x1f
XFRM_MSG_REPORT = 0x20
XFRM_MSG_MIGRATE = 0x21
XFRM_MSG_NEWSADINFO = 0x22
XFRM_MSG_GETSADINFO = 0x23
XFRM_MSG_NEWSPDINFO = 0x24
XFRM_MSG_GETSPDINFO = 0x25
XFRM_MSG_MAPPING = 0x26
XFRM_MSG_MAX = 0x26
XFRM_NR_MSGTYPES = 0x17
XFRM_MSG_BASE XfrmMsgType = 0x10
XFRM_MSG_NEWSA = 0x10
XFRM_MSG_DELSA = 0x11
XFRM_MSG_GETSA = 0x12
XFRM_MSG_NEWPOLICY = 0x13
XFRM_MSG_DELPOLICY = 0x14
XFRM_MSG_GETPOLICY = 0x15
XFRM_MSG_ALLOCSPI = 0x16
XFRM_MSG_ACQUIRE = 0x17
XFRM_MSG_EXPIRE = 0x18
XFRM_MSG_UPDPOLICY = 0x19
XFRM_MSG_UPDSA = 0x1a
XFRM_MSG_POLEXPIRE = 0x1b
XFRM_MSG_FLUSHSA = 0x1c
XFRM_MSG_FLUSHPOLICY = 0x1d
XFRM_MSG_NEWAE = 0x1e
XFRM_MSG_GETAE = 0x1f
XFRM_MSG_REPORT = 0x20
XFRM_MSG_MIGRATE = 0x21
XFRM_MSG_NEWSADINFO = 0x22
XFRM_MSG_GETSADINFO = 0x23
XFRM_MSG_NEWSPDINFO = 0x24
XFRM_MSG_GETSPDINFO = 0x25
XFRM_MSG_MAPPING = 0x26
XFRM_MSG_MAX = 0x26
XFRM_NR_MSGTYPES = 0x17
)
// Attribute types
const (
/* Netlink message attributes. */
XFRMA_UNSPEC = 0x00
XFRMA_ALG_AUTH = 0x01 /* struct xfrm_algo */
XFRMA_ALG_CRYPT = 0x02 /* struct xfrm_algo */
XFRMA_ALG_COMP = 0x03 /* struct xfrm_algo */
XFRMA_ENCAP = 0x04 /* struct xfrm_algo + struct xfrm_encap_tmpl */
XFRMA_TMPL = 0x05 /* 1 or more struct xfrm_user_tmpl */
XFRMA_SA = 0x06 /* struct xfrm_usersa_info */
XFRMA_POLICY = 0x07 /* struct xfrm_userpolicy_info */
XFRMA_SEC_CTX = 0x08 /* struct xfrm_sec_ctx */
XFRMA_LTIME_VAL = 0x09
XFRMA_REPLAY_VAL = 0x0a
XFRMA_REPLAY_THRESH = 0x0b
XFRMA_ETIMER_THRESH = 0x0c
XFRMA_SRCADDR = 0x0d /* xfrm_address_t */
XFRMA_COADDR = 0x0e /* xfrm_address_t */
XFRMA_LASTUSED = 0x0f /* unsigned long */
XFRMA_POLICY_TYPE = 0x10 /* struct xfrm_userpolicy_type */
XFRMA_MIGRATE = 0x11
XFRMA_ALG_AEAD = 0x12 /* struct xfrm_algo_aead */
XFRMA_KMADDRESS = 0x13 /* struct xfrm_user_kmaddress */
XFRMA_ALG_AUTH_TRUNC = 0x14 /* struct xfrm_algo_auth */
XFRMA_MARK = 0x15 /* struct xfrm_mark */
XFRMA_TFCPAD = 0x16 /* __u32 */
XFRMA_REPLAY_ESN_VAL = 0x17 /* struct xfrm_replay_esn */
XFRMA_SA_EXTRA_FLAGS = 0x18 /* __u32 */
XFRMA_MAX = 0x18
XFRMA_UNSPEC = iota
XFRMA_ALG_AUTH /* struct xfrm_algo */
XFRMA_ALG_CRYPT /* struct xfrm_algo */
XFRMA_ALG_COMP /* struct xfrm_algo */
XFRMA_ENCAP /* struct xfrm_algo + struct xfrm_encap_tmpl */
XFRMA_TMPL /* 1 or more struct xfrm_user_tmpl */
XFRMA_SA /* struct xfrm_usersa_info */
XFRMA_POLICY /* struct xfrm_userpolicy_info */
XFRMA_SEC_CTX /* struct xfrm_sec_ctx */
XFRMA_LTIME_VAL
XFRMA_REPLAY_VAL
XFRMA_REPLAY_THRESH
XFRMA_ETIMER_THRESH
XFRMA_SRCADDR /* xfrm_address_t */
XFRMA_COADDR /* xfrm_address_t */
XFRMA_LASTUSED /* unsigned long */
XFRMA_POLICY_TYPE /* struct xfrm_userpolicy_type */
XFRMA_MIGRATE
XFRMA_ALG_AEAD /* struct xfrm_algo_aead */
XFRMA_KMADDRESS /* struct xfrm_user_kmaddress */
XFRMA_ALG_AUTH_TRUNC /* struct xfrm_algo_auth */
XFRMA_MARK /* struct xfrm_mark */
XFRMA_TFCPAD /* __u32 */
XFRMA_REPLAY_ESN_VAL /* struct xfrm_replay_esn */
XFRMA_SA_EXTRA_FLAGS /* __u32 */
XFRMA_PROTO /* __u8 */
XFRMA_ADDRESS_FILTER /* struct xfrm_address_filter */
XFRMA_PAD
XFRMA_OFFLOAD_DEV /* struct xfrm_state_offload */
XFRMA_SET_MARK /* __u32 */
XFRMA_SET_MARK_MASK /* __u32 */
XFRMA_IF_ID /* __u32 */
XFRMA_MAX = iota - 1
)
const XFRMA_OUTPUT_MARK = XFRMA_SET_MARK
const (
SizeofXfrmAddress = 0x10
SizeofXfrmSelector = 0x38
SizeofXfrmLifetimeCfg = 0x40
SizeofXfrmLifetimeCur = 0x20
SizeofXfrmId = 0x18
SizeofXfrmMark = 0x08
)
// Netlink groups
const (
XFRMNLGRP_NONE = 0x0
XFRMNLGRP_ACQUIRE = 0x1
XFRMNLGRP_EXPIRE = 0x2
XFRMNLGRP_SA = 0x3
XFRMNLGRP_POLICY = 0x4
XFRMNLGRP_AEVENTS = 0x5
XFRMNLGRP_REPORT = 0x6
XFRMNLGRP_MIGRATE = 0x7
XFRMNLGRP_MAPPING = 0x8
__XFRMNLGRP_MAX = 0x9
)
// typedef union {
@@ -256,3 +287,20 @@ func DeserializeXfrmId(b []byte) *XfrmId {
func (msg *XfrmId) Serialize() []byte {
return (*(*[SizeofXfrmId]byte)(unsafe.Pointer(msg)))[:]
}
type XfrmMark struct {
Value uint32
Mask uint32
}
func (msg *XfrmMark) Len() int {
return SizeofXfrmMark
}
func DeserializeXfrmMark(b []byte) *XfrmMark {
return (*XfrmMark)(unsafe.Pointer(&b[0:SizeofXfrmMark][0]))
}
func (msg *XfrmMark) Serialize() []byte {
return (*(*[SizeofXfrmMark]byte)(unsafe.Pointer(msg)))[:]
}

View File

@@ -0,0 +1,32 @@
package nl
import (
"unsafe"
)
const (
SizeofXfrmUserExpire = 0xe8
)
// struct xfrm_user_expire {
// struct xfrm_usersa_info state;
// __u8 hard;
// };
type XfrmUserExpire struct {
XfrmUsersaInfo XfrmUsersaInfo
Hard uint8
Pad [7]byte
}
func (msg *XfrmUserExpire) Len() int {
return SizeofXfrmUserExpire
}
func DeserializeXfrmUserExpire(b []byte) *XfrmUserExpire {
return (*XfrmUserExpire)(unsafe.Pointer(&b[0:SizeofXfrmUserExpire][0]))
}
func (msg *XfrmUserExpire) Serialize() []byte {
return (*(*[SizeofXfrmUserExpire]byte)(unsafe.Pointer(msg)))[:]
}

View File

@@ -5,12 +5,27 @@ import (
)
const (
SizeofXfrmUsersaId = 0x18
SizeofXfrmStats = 0x0c
SizeofXfrmUsersaInfo = 0xe0
SizeofXfrmAlgo = 0x44
SizeofXfrmAlgoAuth = 0x48
SizeofXfrmEncapTmpl = 0x18
SizeofXfrmUsersaId = 0x18
SizeofXfrmStats = 0x0c
SizeofXfrmUsersaInfo = 0xe0
SizeofXfrmUserSpiInfo = 0xe8
SizeofXfrmAlgo = 0x44
SizeofXfrmAlgoAuth = 0x48
SizeofXfrmAlgoAEAD = 0x48
SizeofXfrmEncapTmpl = 0x18
SizeofXfrmUsersaFlush = 0x8
SizeofXfrmReplayStateEsn = 0x18
)
const (
XFRM_STATE_NOECN = 1
XFRM_STATE_DECAP_DSCP = 2
XFRM_STATE_NOPMTUDISC = 4
XFRM_STATE_WILDRECV = 8
XFRM_STATE_ICMP = 16
XFRM_STATE_AF_UNSPEC = 32
XFRM_STATE_ALIGN4 = 64
XFRM_STATE_ESN = 128
)
// struct xfrm_usersa_id {
@@ -118,6 +133,30 @@ func (msg *XfrmUsersaInfo) Serialize() []byte {
return (*(*[SizeofXfrmUsersaInfo]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_userspi_info {
// struct xfrm_usersa_info info;
// __u32 min;
// __u32 max;
// };
type XfrmUserSpiInfo struct {
XfrmUsersaInfo XfrmUsersaInfo
Min uint32
Max uint32
}
func (msg *XfrmUserSpiInfo) Len() int {
return SizeofXfrmUserSpiInfo
}
func DeserializeXfrmUserSpiInfo(b []byte) *XfrmUserSpiInfo {
return (*XfrmUserSpiInfo)(unsafe.Pointer(&b[0:SizeofXfrmUserSpiInfo][0]))
}
func (msg *XfrmUserSpiInfo) Serialize() []byte {
return (*(*[SizeofXfrmUserSpiInfo]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_algo {
// char alg_name[64];
// unsigned int alg_key_len; /* in bits */
@@ -193,6 +232,35 @@ func (msg *XfrmAlgoAuth) Serialize() []byte {
// char alg_key[0];
// }
type XfrmAlgoAEAD struct {
AlgName [64]byte
AlgKeyLen uint32
AlgICVLen uint32
AlgKey []byte
}
func (msg *XfrmAlgoAEAD) Len() int {
return SizeofXfrmAlgoAEAD + int(msg.AlgKeyLen/8)
}
func DeserializeXfrmAlgoAEAD(b []byte) *XfrmAlgoAEAD {
ret := XfrmAlgoAEAD{}
copy(ret.AlgName[:], b[0:64])
ret.AlgKeyLen = *(*uint32)(unsafe.Pointer(&b[64]))
ret.AlgICVLen = *(*uint32)(unsafe.Pointer(&b[68]))
ret.AlgKey = b[72:ret.Len()]
return &ret
}
func (msg *XfrmAlgoAEAD) Serialize() []byte {
b := make([]byte, msg.Len())
copy(b[0:64], msg.AlgName[:])
copy(b[64:68], (*(*[4]byte)(unsafe.Pointer(&msg.AlgKeyLen)))[:])
copy(b[68:72], (*(*[4]byte)(unsafe.Pointer(&msg.AlgICVLen)))[:])
copy(b[72:msg.Len()], msg.AlgKey[:])
return b
}
// struct xfrm_encap_tmpl {
// __u16 encap_type;
// __be16 encap_sport;
@@ -219,3 +287,48 @@ func DeserializeXfrmEncapTmpl(b []byte) *XfrmEncapTmpl {
func (msg *XfrmEncapTmpl) Serialize() []byte {
return (*(*[SizeofXfrmEncapTmpl]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_usersa_flush {
// __u8 proto;
// };
type XfrmUsersaFlush struct {
Proto uint8
}
func (msg *XfrmUsersaFlush) Len() int {
return SizeofXfrmUsersaFlush
}
func DeserializeXfrmUsersaFlush(b []byte) *XfrmUsersaFlush {
return (*XfrmUsersaFlush)(unsafe.Pointer(&b[0:SizeofXfrmUsersaFlush][0]))
}
func (msg *XfrmUsersaFlush) Serialize() []byte {
return (*(*[SizeofXfrmUsersaFlush]byte)(unsafe.Pointer(msg)))[:]
}
// struct xfrm_replay_state_esn {
// unsigned int bmp_len;
// __u32 oseq;
// __u32 seq;
// __u32 oseq_hi;
// __u32 seq_hi;
// __u32 replay_window;
// __u32 bmp[0];
// };
type XfrmReplayStateEsn struct {
BmpLen uint32
OSeq uint32
Seq uint32
OSeqHi uint32
SeqHi uint32
ReplayWindow uint32
Bmp []uint32
}
func (msg *XfrmReplayStateEsn) Serialize() []byte {
// We deliberately do not pass Bmp, as it gets set by the kernel.
return (*(*[SizeofXfrmReplayStateEsn]byte)(unsafe.Pointer(msg)))[:]
}

32
vendor/github.com/vishvananda/netlink/order.go generated vendored Normal file
View File

@@ -0,0 +1,32 @@
package netlink
import (
"encoding/binary"
"github.com/vishvananda/netlink/nl"
)
var (
native = nl.NativeEndian()
networkOrder = binary.BigEndian
)
func htonl(val uint32) []byte {
bytes := make([]byte, 4)
binary.BigEndian.PutUint32(bytes, val)
return bytes
}
func htons(val uint16) []byte {
bytes := make([]byte, 2)
binary.BigEndian.PutUint16(bytes, val)
return bytes
}
func ntohl(buf []byte) uint32 {
return binary.BigEndian.Uint32(buf)
}
func ntohs(buf []byte) uint16 {
return binary.BigEndian.Uint16(buf)
}

View File

@@ -6,16 +6,22 @@ import (
// Protinfo represents bridge flags from netlink.
type Protinfo struct {
Hairpin bool
Guard bool
FastLeave bool
RootBlock bool
Learning bool
Flood bool
Hairpin bool
Guard bool
FastLeave bool
RootBlock bool
Learning bool
Flood bool
ProxyArp bool
ProxyArpWiFi bool
}
// String returns a list of enabled flags
func (prot *Protinfo) String() string {
if prot == nil {
return "<nil>"
}
var boolStrings []string
if prot.Hairpin {
boolStrings = append(boolStrings, "Hairpin")
@@ -35,6 +41,12 @@ func (prot *Protinfo) String() string {
if prot.Flood {
boolStrings = append(boolStrings, "Flood")
}
if prot.ProxyArp {
boolStrings = append(boolStrings, "ProxyArp")
}
if prot.ProxyArpWiFi {
boolStrings = append(boolStrings, "ProxyArpWiFi")
}
return strings.Join(boolStrings, " ")
}
@@ -46,8 +58,5 @@ func boolToByte(x bool) []byte {
}
func byteToBool(x byte) bool {
if uint8(x) != 0 {
return true
}
return false
return uint8(x) != 0
}

View File

@@ -5,16 +5,21 @@ import (
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func LinkGetProtinfo(link Link) (Protinfo, error) {
return pkgHandle.LinkGetProtinfo(link)
}
func (h *Handle) LinkGetProtinfo(link Link) (Protinfo, error) {
base := link.Attrs()
ensureIndex(base)
h.ensureIndex(base)
var pi Protinfo
req := nl.NewNetlinkRequest(syscall.RTM_GETLINK, syscall.NLM_F_DUMP)
msg := nl.NewIfInfomsg(syscall.AF_BRIDGE)
req := h.newNetlinkRequest(unix.RTM_GETLINK, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(unix.AF_BRIDGE)
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_ROUTE, 0)
msgs, err := req.Execute(unix.NETLINK_ROUTE, 0)
if err != nil {
return pi, err
}
@@ -29,32 +34,41 @@ func LinkGetProtinfo(link Link) (Protinfo, error) {
return pi, err
}
for _, attr := range attrs {
if attr.Attr.Type != syscall.IFLA_PROTINFO|syscall.NLA_F_NESTED {
if attr.Attr.Type != unix.IFLA_PROTINFO|unix.NLA_F_NESTED {
continue
}
infos, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return pi, err
}
var pi Protinfo
for _, info := range infos {
switch info.Attr.Type {
case nl.IFLA_BRPORT_MODE:
pi.Hairpin = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_GUARD:
pi.Guard = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_FAST_LEAVE:
pi.FastLeave = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROTECT:
pi.RootBlock = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_LEARNING:
pi.Learning = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_UNICAST_FLOOD:
pi.Flood = byteToBool(info.Value[0])
}
}
pi = parseProtinfo(infos)
return pi, nil
}
}
return pi, fmt.Errorf("Device with index %d not found", base.Index)
}
func parseProtinfo(infos []syscall.NetlinkRouteAttr) (pi Protinfo) {
for _, info := range infos {
switch info.Attr.Type {
case nl.IFLA_BRPORT_MODE:
pi.Hairpin = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_GUARD:
pi.Guard = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_FAST_LEAVE:
pi.FastLeave = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROTECT:
pi.RootBlock = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_LEARNING:
pi.Learning = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_UNICAST_FLOOD:
pi.Flood = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROXYARP:
pi.ProxyArp = byteToBool(info.Value[0])
case nl.IFLA_BRPORT_PROXYARP_WIFI:
pi.ProxyArpWiFi = byteToBool(info.Value[0])
}
}
return
}

View File

@@ -2,21 +2,27 @@ package netlink
import (
"fmt"
"math"
)
const (
HANDLE_NONE = 0
HANDLE_INGRESS = 0xFFFFFFF1
HANDLE_CLSACT = HANDLE_INGRESS
HANDLE_ROOT = 0xFFFFFFFF
PRIORITY_MAP_LEN = 16
)
const (
HANDLE_MIN_INGRESS = 0xFFFFFFF2
HANDLE_MIN_EGRESS = 0xFFFFFFF3
)
type Qdisc interface {
Attrs() *QdiscAttrs
Type() string
}
// Qdisc represents a netlink qdisc. A qdisc is associated with a link,
// QdiscAttrs represents a netlink qdisc. A qdisc is associated with a link,
// has a handle, a parent and a refcnt. The root qdisc of a device should
// have parent == HANDLE_ROOT.
type QdiscAttrs struct {
@@ -27,7 +33,7 @@ type QdiscAttrs struct {
}
func (q QdiscAttrs) String() string {
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Refcnt: %s}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Refcnt)
return fmt.Sprintf("{LinkIndex: %d, Handle: %s, Parent: %s, Refcnt: %d}", q.LinkIndex, HandleStr(q.Handle), HandleStr(q.Parent), q.Refcnt)
}
func MakeHandle(major, minor uint16) uint32 {
@@ -52,6 +58,14 @@ func HandleStr(handle uint32) string {
}
}
func Percentage2u32(percentage float32) uint32 {
// FIXME this is most likely not the best way to convert from % to uint32
if percentage == 100 {
return math.MaxUint32
}
return uint32(math.MaxUint32 * (percentage / 100))
}
// PfifoFast is the default qdisc created by the kernel if one has not
// been defined for the interface
type PfifoFast struct {
@@ -91,13 +105,100 @@ func (qdisc *Prio) Type() string {
return "prio"
}
// Tbf is a classful qdisc that rate limits based on tokens
// Htb is a classful qdisc that rate limits based on tokens
type Htb struct {
QdiscAttrs
Version uint32
Rate2Quantum uint32
Defcls uint32
Debug uint32
DirectPkts uint32
}
func NewHtb(attrs QdiscAttrs) *Htb {
return &Htb{
QdiscAttrs: attrs,
Version: 3,
Defcls: 0,
Rate2Quantum: 10,
Debug: 0,
DirectPkts: 0,
}
}
func (qdisc *Htb) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Htb) Type() string {
return "htb"
}
// Netem is a classless qdisc that rate limits based on tokens
type NetemQdiscAttrs struct {
Latency uint32 // in us
DelayCorr float32 // in %
Limit uint32
Loss float32 // in %
LossCorr float32 // in %
Gap uint32
Duplicate float32 // in %
DuplicateCorr float32 // in %
Jitter uint32 // in us
ReorderProb float32 // in %
ReorderCorr float32 // in %
CorruptProb float32 // in %
CorruptCorr float32 // in %
}
func (q NetemQdiscAttrs) String() string {
return fmt.Sprintf(
"{Latency: %d, Limit: %d, Loss: %f, Gap: %d, Duplicate: %f, Jitter: %d}",
q.Latency, q.Limit, q.Loss, q.Gap, q.Duplicate, q.Jitter,
)
}
type Netem struct {
QdiscAttrs
Latency uint32
DelayCorr uint32
Limit uint32
Loss uint32
LossCorr uint32
Gap uint32
Duplicate uint32
DuplicateCorr uint32
Jitter uint32
ReorderProb uint32
ReorderCorr uint32
CorruptProb uint32
CorruptCorr uint32
}
func (netem *Netem) String() string {
return fmt.Sprintf(
"{Latency: %v, Limit: %v, Loss: %v, Gap: %v, Duplicate: %v, Jitter: %v}",
netem.Latency, netem.Limit, netem.Loss, netem.Gap, netem.Duplicate, netem.Jitter,
)
}
func (qdisc *Netem) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Netem) Type() string {
return "netem"
}
// Tbf is a classless qdisc that rate limits based on tokens
type Tbf struct {
QdiscAttrs
// TODO: handle 64bit rate properly
Rate uint64
Limit uint32
Buffer uint32
Rate uint64
Limit uint32
Buffer uint32
Peakrate uint64
Minburst uint32
// TODO: handle other settings
}
@@ -136,3 +237,104 @@ func (qdisc *GenericQdisc) Attrs() *QdiscAttrs {
func (qdisc *GenericQdisc) Type() string {
return qdisc.QdiscType
}
type Hfsc struct {
QdiscAttrs
Defcls uint16
}
func NewHfsc(attrs QdiscAttrs) *Hfsc {
return &Hfsc{
QdiscAttrs: attrs,
Defcls: 1,
}
}
func (hfsc *Hfsc) Attrs() *QdiscAttrs {
return &hfsc.QdiscAttrs
}
func (hfsc *Hfsc) Type() string {
return "hfsc"
}
func (hfsc *Hfsc) String() string {
return fmt.Sprintf(
"{%v -- default: %d}",
hfsc.Attrs(), hfsc.Defcls,
)
}
// Fq is a classless packet scheduler meant to be mostly used for locally generated traffic.
type Fq struct {
QdiscAttrs
PacketLimit uint32
FlowPacketLimit uint32
// In bytes
Quantum uint32
InitialQuantum uint32
// called RateEnable under the hood
Pacing uint32
FlowDefaultRate uint32
FlowMaxRate uint32
// called BucketsLog under the hood
Buckets uint32
FlowRefillDelay uint32
LowRateThreshold uint32
}
func (fq *Fq) String() string {
return fmt.Sprintf(
"{PacketLimit: %v, FlowPacketLimit: %v, Quantum: %v, InitialQuantum: %v, Pacing: %v, FlowDefaultRate: %v, FlowMaxRate: %v, Buckets: %v, FlowRefillDelay: %v, LowRateThreshold: %v}",
fq.PacketLimit, fq.FlowPacketLimit, fq.Quantum, fq.InitialQuantum, fq.Pacing, fq.FlowDefaultRate, fq.FlowMaxRate, fq.Buckets, fq.FlowRefillDelay, fq.LowRateThreshold,
)
}
func NewFq(attrs QdiscAttrs) *Fq {
return &Fq{
QdiscAttrs: attrs,
Pacing: 1,
}
}
func (qdisc *Fq) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *Fq) Type() string {
return "fq"
}
// FQ_Codel (Fair Queuing Controlled Delay) is queuing discipline that combines Fair Queuing with the CoDel AQM scheme.
type FqCodel struct {
QdiscAttrs
Target uint32
Limit uint32
Interval uint32
ECN uint32
Flows uint32
Quantum uint32
// There are some more attributes here, but support for them seems not ubiquitous
}
func (fqcodel *FqCodel) String() string {
return fmt.Sprintf(
"{%v -- Target: %v, Limit: %v, Interval: %v, ECM: %v, Flows: %v, Quantum: %v}",
fqcodel.Attrs(), fqcodel.Target, fqcodel.Limit, fqcodel.Interval, fqcodel.ECN, fqcodel.Flows, fqcodel.Quantum,
)
}
func NewFqCodel(attrs QdiscAttrs) *FqCodel {
return &FqCodel{
QdiscAttrs: attrs,
ECN: 1,
}
}
func (qdisc *FqCodel) Attrs() *QdiscAttrs {
return &qdisc.QdiscAttrs
}
func (qdisc *FqCodel) Type() string {
return "fq_codel"
}

View File

@@ -8,29 +8,134 @@ import (
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// NOTE function is here because it uses other linux functions
func NewNetem(attrs QdiscAttrs, nattrs NetemQdiscAttrs) *Netem {
var limit uint32 = 1000
var lossCorr, delayCorr, duplicateCorr uint32
var reorderProb, reorderCorr uint32
var corruptProb, corruptCorr uint32
latency := nattrs.Latency
loss := Percentage2u32(nattrs.Loss)
gap := nattrs.Gap
duplicate := Percentage2u32(nattrs.Duplicate)
jitter := nattrs.Jitter
// Correlation
if latency > 0 && jitter > 0 {
delayCorr = Percentage2u32(nattrs.DelayCorr)
}
if loss > 0 {
lossCorr = Percentage2u32(nattrs.LossCorr)
}
if duplicate > 0 {
duplicateCorr = Percentage2u32(nattrs.DuplicateCorr)
}
// FIXME should validate values(like loss/duplicate are percentages...)
latency = time2Tick(latency)
if nattrs.Limit != 0 {
limit = nattrs.Limit
}
// Jitter is only value if latency is > 0
if latency > 0 {
jitter = time2Tick(jitter)
}
reorderProb = Percentage2u32(nattrs.ReorderProb)
reorderCorr = Percentage2u32(nattrs.ReorderCorr)
if reorderProb > 0 {
// ERROR if lantency == 0
if gap == 0 {
gap = 1
}
}
corruptProb = Percentage2u32(nattrs.CorruptProb)
corruptCorr = Percentage2u32(nattrs.CorruptCorr)
return &Netem{
QdiscAttrs: attrs,
Latency: latency,
DelayCorr: delayCorr,
Limit: limit,
Loss: loss,
LossCorr: lossCorr,
Gap: gap,
Duplicate: duplicate,
DuplicateCorr: duplicateCorr,
Jitter: jitter,
ReorderProb: reorderProb,
ReorderCorr: reorderCorr,
CorruptProb: corruptProb,
CorruptCorr: corruptCorr,
}
}
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func QdiscDel(qdisc Qdisc) error {
req := nl.NewNetlinkRequest(syscall.RTM_DELQDISC, syscall.NLM_F_ACK)
base := qdisc.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
Ifindex: int32(base.LinkIndex),
Handle: base.Handle,
Parent: base.Parent,
}
req.AddData(msg)
return pkgHandle.QdiscDel(qdisc)
}
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
return err
// QdiscDel will delete a qdisc from the system.
// Equivalent to: `tc qdisc del $qdisc`
func (h *Handle) QdiscDel(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_DELQDISC, 0, qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func QdiscChange(qdisc Qdisc) error {
return pkgHandle.QdiscChange(qdisc)
}
// QdiscChange will change a qdisc in place
// Equivalent to: `tc qdisc change $qdisc`
// The parent and handle MUST NOT be changed.
func (h *Handle) QdiscChange(qdisc Qdisc) error {
return h.qdiscModify(unix.RTM_NEWQDISC, 0, qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func QdiscReplace(qdisc Qdisc) error {
return pkgHandle.QdiscReplace(qdisc)
}
// QdiscReplace will replace a qdisc to the system.
// Equivalent to: `tc qdisc replace $qdisc`
// The handle MUST change.
func (h *Handle) QdiscReplace(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_REPLACE,
qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func QdiscAdd(qdisc Qdisc) error {
req := nl.NewNetlinkRequest(syscall.RTM_NEWQDISC, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
return pkgHandle.QdiscAdd(qdisc)
}
// QdiscAdd will add a qdisc to the system.
// Equivalent to: `tc qdisc add $qdisc`
func (h *Handle) QdiscAdd(qdisc Qdisc) error {
return h.qdiscModify(
unix.RTM_NEWQDISC,
unix.NLM_F_CREATE|unix.NLM_F_EXCL,
qdisc)
}
func (h *Handle) qdiscModify(cmd, flags int, qdisc Qdisc) error {
req := h.newNetlinkRequest(cmd, flags|unix.NLM_F_ACK)
base := qdisc.Attrs()
msg := &nl.TcMsg{
Family: nl.FAMILY_ALL,
@@ -39,42 +144,166 @@ func QdiscAdd(qdisc Qdisc) error {
Parent: base.Parent,
}
req.AddData(msg)
// When deleting don't bother building the rest of the netlink payload
if cmd != unix.RTM_DELQDISC {
if err := qdiscPayload(req, qdisc); err != nil {
return err
}
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
func qdiscPayload(req *nl.NetlinkRequest, qdisc Qdisc) error {
req.AddData(nl.NewRtAttr(nl.TCA_KIND, nl.ZeroTerminated(qdisc.Type())))
options := nl.NewRtAttr(nl.TCA_OPTIONS, nil)
if prio, ok := qdisc.(*Prio); ok {
switch qdisc := qdisc.(type) {
case *Prio:
tcmap := nl.TcPrioMap{
Bands: int32(prio.Bands),
Priomap: prio.PriorityMap,
Bands: int32(qdisc.Bands),
Priomap: qdisc.PriorityMap,
}
options = nl.NewRtAttr(nl.TCA_OPTIONS, tcmap.Serialize())
} else if tbf, ok := qdisc.(*Tbf); ok {
case *Tbf:
opt := nl.TcTbfQopt{}
// TODO: handle rate > uint32
opt.Rate.Rate = uint32(tbf.Rate)
opt.Limit = tbf.Limit
opt.Buffer = tbf.Buffer
nl.NewRtAttrChild(options, nl.TCA_TBF_PARMS, opt.Serialize())
} else if _, ok := qdisc.(*Ingress); ok {
opt.Rate.Rate = uint32(qdisc.Rate)
opt.Peakrate.Rate = uint32(qdisc.Peakrate)
opt.Limit = qdisc.Limit
opt.Buffer = qdisc.Buffer
options.AddRtAttr(nl.TCA_TBF_PARMS, opt.Serialize())
if qdisc.Rate >= uint64(1<<32) {
options.AddRtAttr(nl.TCA_TBF_RATE64, nl.Uint64Attr(qdisc.Rate))
}
if qdisc.Peakrate >= uint64(1<<32) {
options.AddRtAttr(nl.TCA_TBF_PRATE64, nl.Uint64Attr(qdisc.Peakrate))
}
if qdisc.Peakrate > 0 {
options.AddRtAttr(nl.TCA_TBF_PBURST, nl.Uint32Attr(qdisc.Minburst))
}
case *Htb:
opt := nl.TcHtbGlob{}
opt.Version = qdisc.Version
opt.Rate2Quantum = qdisc.Rate2Quantum
opt.Defcls = qdisc.Defcls
// TODO: Handle Debug properly. For now default to 0
opt.Debug = qdisc.Debug
opt.DirectPkts = qdisc.DirectPkts
options.AddRtAttr(nl.TCA_HTB_INIT, opt.Serialize())
// options.AddRtAttr(nl.TCA_HTB_DIRECT_QLEN, opt.Serialize())
case *Hfsc:
opt := nl.TcHfscOpt{}
opt.Defcls = qdisc.Defcls
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
case *Netem:
opt := nl.TcNetemQopt{}
opt.Latency = qdisc.Latency
opt.Limit = qdisc.Limit
opt.Loss = qdisc.Loss
opt.Gap = qdisc.Gap
opt.Duplicate = qdisc.Duplicate
opt.Jitter = qdisc.Jitter
options = nl.NewRtAttr(nl.TCA_OPTIONS, opt.Serialize())
// Correlation
corr := nl.TcNetemCorr{}
corr.DelayCorr = qdisc.DelayCorr
corr.LossCorr = qdisc.LossCorr
corr.DupCorr = qdisc.DuplicateCorr
if corr.DelayCorr > 0 || corr.LossCorr > 0 || corr.DupCorr > 0 {
options.AddRtAttr(nl.TCA_NETEM_CORR, corr.Serialize())
}
// Corruption
corruption := nl.TcNetemCorrupt{}
corruption.Probability = qdisc.CorruptProb
corruption.Correlation = qdisc.CorruptCorr
if corruption.Probability > 0 {
options.AddRtAttr(nl.TCA_NETEM_CORRUPT, corruption.Serialize())
}
// Reorder
reorder := nl.TcNetemReorder{}
reorder.Probability = qdisc.ReorderProb
reorder.Correlation = qdisc.ReorderCorr
if reorder.Probability > 0 {
options.AddRtAttr(nl.TCA_NETEM_REORDER, reorder.Serialize())
}
case *Ingress:
// ingress filters must use the proper handle
if msg.Parent != HANDLE_INGRESS {
if qdisc.Attrs().Parent != HANDLE_INGRESS {
return fmt.Errorf("Ingress filters must set Parent to HANDLE_INGRESS")
}
case *FqCodel:
options.AddRtAttr(nl.TCA_FQ_CODEL_ECN, nl.Uint32Attr((uint32(qdisc.ECN))))
if qdisc.Limit > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_LIMIT, nl.Uint32Attr((uint32(qdisc.Limit))))
}
if qdisc.Interval > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_INTERVAL, nl.Uint32Attr((uint32(qdisc.Interval))))
}
if qdisc.Flows > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_FLOWS, nl.Uint32Attr((uint32(qdisc.Flows))))
}
if qdisc.Quantum > 0 {
options.AddRtAttr(nl.TCA_FQ_CODEL_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
case *Fq:
options.AddRtAttr(nl.TCA_FQ_RATE_ENABLE, nl.Uint32Attr((uint32(qdisc.Pacing))))
if qdisc.Buckets > 0 {
options.AddRtAttr(nl.TCA_FQ_BUCKETS_LOG, nl.Uint32Attr((uint32(qdisc.Buckets))))
}
if qdisc.LowRateThreshold > 0 {
options.AddRtAttr(nl.TCA_FQ_LOW_RATE_THRESHOLD, nl.Uint32Attr((uint32(qdisc.LowRateThreshold))))
}
if qdisc.Quantum > 0 {
options.AddRtAttr(nl.TCA_FQ_QUANTUM, nl.Uint32Attr((uint32(qdisc.Quantum))))
}
if qdisc.InitialQuantum > 0 {
options.AddRtAttr(nl.TCA_FQ_INITIAL_QUANTUM, nl.Uint32Attr((uint32(qdisc.InitialQuantum))))
}
if qdisc.FlowRefillDelay > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_REFILL_DELAY, nl.Uint32Attr((uint32(qdisc.FlowRefillDelay))))
}
if qdisc.FlowPacketLimit > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_PLIMIT, nl.Uint32Attr((uint32(qdisc.FlowPacketLimit))))
}
if qdisc.FlowMaxRate > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_MAX_RATE, nl.Uint32Attr((uint32(qdisc.FlowMaxRate))))
}
if qdisc.FlowDefaultRate > 0 {
options.AddRtAttr(nl.TCA_FQ_FLOW_DEFAULT_RATE, nl.Uint32Attr((uint32(qdisc.FlowDefaultRate))))
}
default:
options = nil
}
req.AddData(options)
_, err := req.Execute(syscall.NETLINK_ROUTE, 0)
return err
if options != nil {
req.AddData(options)
}
return nil
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
func QdiscList(link Link) ([]Qdisc, error) {
req := nl.NewNetlinkRequest(syscall.RTM_GETQDISC, syscall.NLM_F_DUMP)
return pkgHandle.QdiscList(link)
}
// QdiscList gets a list of qdiscs in the system.
// Equivalent to: `tc qdisc show`.
// The list can be filtered by link.
func (h *Handle) QdiscList(link Link) ([]Qdisc, error) {
req := h.newNetlinkRequest(unix.RTM_GETQDISC, unix.NLM_F_DUMP)
index := int32(0)
if link != nil {
base := link.Attrs()
ensureIndex(base)
h.ensureIndex(base)
index = int32(base.Index)
}
msg := &nl.TcMsg{
@@ -83,7 +312,7 @@ func QdiscList(link Link) ([]Qdisc, error) {
}
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_ROUTE, syscall.RTM_NEWQDISC)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWQDISC)
if err != nil {
return nil, err
}
@@ -123,6 +352,16 @@ func QdiscList(link Link) ([]Qdisc, error) {
qdisc = &Tbf{}
case "ingress":
qdisc = &Ingress{}
case "htb":
qdisc = &Htb{}
case "fq":
qdisc = &Fq{}
case "hfsc":
qdisc = &Hfsc{}
case "fq_codel":
qdisc = &FqCodel{}
case "netem":
qdisc = &Netem{}
default:
qdisc = &GenericQdisc{QdiscType: qdiscType}
}
@@ -146,6 +385,39 @@ func QdiscList(link Link) ([]Qdisc, error) {
if err := parseTbfData(qdisc, data); err != nil {
return nil, err
}
case "hfsc":
if err := parseHfscData(qdisc, attr.Value); err != nil {
return nil, err
}
case "htb":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseHtbData(qdisc, data); err != nil {
return nil, err
}
case "fq":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqData(qdisc, data); err != nil {
return nil, err
}
case "fq_codel":
data, err := nl.ParseRouteAttr(attr.Value)
if err != nil {
return nil, err
}
if err := parseFqCodelData(qdisc, data); err != nil {
return nil, err
}
case "netem":
if err := parseNetemData(qdisc, attr.Value); err != nil {
return nil, err
}
// no options for ingress
}
}
@@ -173,6 +445,121 @@ func parsePrioData(qdisc Qdisc, value []byte) error {
return nil
}
func parseHtbData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
htb := qdisc.(*Htb)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_HTB_INIT:
opt := nl.DeserializeTcHtbGlob(datum.Value)
htb.Version = opt.Version
htb.Rate2Quantum = opt.Rate2Quantum
htb.Defcls = opt.Defcls
htb.Debug = opt.Debug
htb.DirectPkts = opt.DirectPkts
case nl.TCA_HTB_DIRECT_QLEN:
// TODO
//htb.DirectQlen = native.uint32(datum.Value)
}
}
return nil
}
func parseFqCodelData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
fqCodel := qdisc.(*FqCodel)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_CODEL_TARGET:
fqCodel.Target = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_LIMIT:
fqCodel.Limit = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_INTERVAL:
fqCodel.Interval = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_ECN:
fqCodel.ECN = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_FLOWS:
fqCodel.Flows = native.Uint32(datum.Value)
case nl.TCA_FQ_CODEL_QUANTUM:
fqCodel.Quantum = native.Uint32(datum.Value)
}
}
return nil
}
func parseHfscData(qdisc Qdisc, data []byte) error {
Hfsc := qdisc.(*Hfsc)
native = nl.NativeEndian()
Hfsc.Defcls = native.Uint16(data)
return nil
}
func parseFqData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
fq := qdisc.(*Fq)
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_FQ_BUCKETS_LOG:
fq.Buckets = native.Uint32(datum.Value)
case nl.TCA_FQ_LOW_RATE_THRESHOLD:
fq.LowRateThreshold = native.Uint32(datum.Value)
case nl.TCA_FQ_QUANTUM:
fq.Quantum = native.Uint32(datum.Value)
case nl.TCA_FQ_RATE_ENABLE:
fq.Pacing = native.Uint32(datum.Value)
case nl.TCA_FQ_INITIAL_QUANTUM:
fq.InitialQuantum = native.Uint32(datum.Value)
case nl.TCA_FQ_ORPHAN_MASK:
// TODO
case nl.TCA_FQ_FLOW_REFILL_DELAY:
fq.FlowRefillDelay = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_PLIMIT:
fq.FlowPacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_PLIMIT:
fq.PacketLimit = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_MAX_RATE:
fq.FlowMaxRate = native.Uint32(datum.Value)
case nl.TCA_FQ_FLOW_DEFAULT_RATE:
fq.FlowDefaultRate = native.Uint32(datum.Value)
}
}
return nil
}
func parseNetemData(qdisc Qdisc, value []byte) error {
netem := qdisc.(*Netem)
opt := nl.DeserializeTcNetemQopt(value)
netem.Latency = opt.Latency
netem.Limit = opt.Limit
netem.Loss = opt.Loss
netem.Gap = opt.Gap
netem.Duplicate = opt.Duplicate
netem.Jitter = opt.Jitter
data, err := nl.ParseRouteAttr(value[nl.SizeofTcNetemQopt:])
if err != nil {
return err
}
for _, datum := range data {
switch datum.Attr.Type {
case nl.TCA_NETEM_CORR:
opt := nl.DeserializeTcNetemCorr(datum.Value)
netem.DelayCorr = opt.DelayCorr
netem.LossCorr = opt.LossCorr
netem.DuplicateCorr = opt.DupCorr
case nl.TCA_NETEM_CORRUPT:
opt := nl.DeserializeTcNetemCorrupt(datum.Value)
netem.CorruptProb = opt.Probability
netem.CorruptCorr = opt.Correlation
case nl.TCA_NETEM_REORDER:
opt := nl.DeserializeTcNetemReorder(datum.Value)
netem.ReorderProb = opt.Probability
netem.ReorderCorr = opt.Correlation
}
}
return nil
}
func parseTbfData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
native = nl.NativeEndian()
tbf := qdisc.(*Tbf)
@@ -181,10 +568,15 @@ func parseTbfData(qdisc Qdisc, data []syscall.NetlinkRouteAttr) error {
case nl.TCA_TBF_PARMS:
opt := nl.DeserializeTcTbfQopt(datum.Value)
tbf.Rate = uint64(opt.Rate.Rate)
tbf.Peakrate = uint64(opt.Peakrate.Rate)
tbf.Limit = opt.Limit
tbf.Buffer = opt.Buffer
case nl.TCA_TBF_RATE64:
tbf.Rate = native.Uint64(datum.Value[0:4])
tbf.Rate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PRATE64:
tbf.Peakrate = native.Uint64(datum.Value[0:8])
case nl.TCA_TBF_PBURST:
tbf.Minburst = native.Uint32(datum.Value[0:4])
}
}
return nil
@@ -195,8 +587,9 @@ const (
)
var (
tickInUsec float64 = 0.0
clockFactor float64 = 0.0
tickInUsec float64
clockFactor float64
hz float64
)
func initClock() {
@@ -222,6 +615,7 @@ func initClock() {
}
clockFactor = float64(vals[2]) / TIME_UNITS_PER_SEC
tickInUsec = float64(vals[0]) / float64(vals[1]) * clockFactor
hz = float64(vals[0])
}
func TickInUsec() float64 {
@@ -238,6 +632,13 @@ func ClockFactor() float64 {
return clockFactor
}
func Hz() float64 {
if hz == 0.0 {
initClock()
}
return hz
}
func time2Tick(time uint32) uint32 {
return uint32(float64(time) * TickInUsec())
}
@@ -261,3 +662,7 @@ func burst(rate uint64, buffer uint32) uint32 {
func latency(rate uint64, limit, buffer uint32) float64 {
return TIME_UNITS_PER_SEC*(float64(limit)/float64(rate)) - float64(tick2Time(buffer))
}
func Xmittime(rate uint64, size uint32) float64 {
return TickInUsec() * TIME_UNITS_PER_SEC * (float64(size) / float64(rate))
}

View File

@@ -0,0 +1,264 @@
package netlink
import (
"bytes"
"encoding/binary"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
// LinkAttrs represents data shared by most link types
type RdmaLinkAttrs struct {
Index uint32
Name string
FirmwareVersion string
NodeGuid string
SysImageGuid string
}
// Link represents a rdma device from netlink.
type RdmaLink struct {
Attrs RdmaLinkAttrs
}
func getProtoField(clientType int, op int) int {
return ((clientType << nl.RDMA_NL_GET_CLIENT_SHIFT) | op)
}
func uint64ToGuidString(guid uint64) string {
//Convert to byte array
sysGuidBytes := new(bytes.Buffer)
binary.Write(sysGuidBytes, binary.LittleEndian, guid)
//Convert to HardwareAddr
sysGuidNet := net.HardwareAddr(sysGuidBytes.Bytes())
//Get the String
return sysGuidNet.String()
}
func executeOneGetRdmaLink(data []byte) (*RdmaLink, error) {
link := RdmaLink{}
reader := bytes.NewReader(data)
for reader.Len() >= 4 {
_, attrType, len, value := parseNfAttrTLV(reader)
switch attrType {
case nl.RDMA_NLDEV_ATTR_DEV_INDEX:
var Index uint32
r := bytes.NewReader(value)
binary.Read(r, nl.NativeEndian(), &Index)
link.Attrs.Index = Index
case nl.RDMA_NLDEV_ATTR_DEV_NAME:
link.Attrs.Name = string(value[0 : len-1])
case nl.RDMA_NLDEV_ATTR_FW_VERSION:
link.Attrs.FirmwareVersion = string(value[0 : len-1])
case nl.RDMA_NLDEV_ATTR_NODE_GUID:
var guid uint64
r := bytes.NewReader(value)
binary.Read(r, nl.NativeEndian(), &guid)
link.Attrs.NodeGuid = uint64ToGuidString(guid)
case nl.RDMA_NLDEV_ATTR_SYS_IMAGE_GUID:
var sysGuid uint64
r := bytes.NewReader(value)
binary.Read(r, nl.NativeEndian(), &sysGuid)
link.Attrs.SysImageGuid = uint64ToGuidString(sysGuid)
}
if (len % 4) != 0 {
// Skip pad bytes
reader.Seek(int64(4-(len%4)), seekCurrent)
}
}
return &link, nil
}
func execRdmaGetLink(req *nl.NetlinkRequest, name string) (*RdmaLink, error) {
msgs, err := req.Execute(unix.NETLINK_RDMA, 0)
if err != nil {
return nil, err
}
for _, m := range msgs {
link, err := executeOneGetRdmaLink(m)
if err != nil {
return nil, err
}
if link.Attrs.Name == name {
return link, nil
}
}
return nil, fmt.Errorf("Rdma device %v not found", name)
}
func execRdmaSetLink(req *nl.NetlinkRequest) error {
_, err := req.Execute(unix.NETLINK_RDMA, 0)
return err
}
// RdmaLinkByName finds a link by name and returns a pointer to the object if
// found and nil error, otherwise returns error code.
func RdmaLinkByName(name string) (*RdmaLink, error) {
return pkgHandle.RdmaLinkByName(name)
}
// RdmaLinkByName finds a link by name and returns a pointer to the object if
// found and nil error, otherwise returns error code.
func (h *Handle) RdmaLinkByName(name string) (*RdmaLink, error) {
proto := getProtoField(nl.RDMA_NL_NLDEV, nl.RDMA_NLDEV_CMD_GET)
req := h.newNetlinkRequest(proto, unix.NLM_F_ACK|unix.NLM_F_DUMP)
return execRdmaGetLink(req, name)
}
// RdmaLinkSetName sets the name of the rdma link device. Return nil on success
// or error otherwise.
// Equivalent to: `rdma dev set $old_devname name $name`
func RdmaLinkSetName(link *RdmaLink, name string) error {
return pkgHandle.RdmaLinkSetName(link, name)
}
// RdmaLinkSetName sets the name of the rdma link device. Return nil on success
// or error otherwise.
// Equivalent to: `rdma dev set $old_devname name $name`
func (h *Handle) RdmaLinkSetName(link *RdmaLink, name string) error {
proto := getProtoField(nl.RDMA_NL_NLDEV, nl.RDMA_NLDEV_CMD_SET)
req := h.newNetlinkRequest(proto, unix.NLM_F_ACK)
b := make([]byte, 4)
native.PutUint32(b, uint32(link.Attrs.Index))
data := nl.NewRtAttr(nl.RDMA_NLDEV_ATTR_DEV_INDEX, b)
req.AddData(data)
b = make([]byte, len(name)+1)
copy(b, name)
data = nl.NewRtAttr(nl.RDMA_NLDEV_ATTR_DEV_NAME, b)
req.AddData(data)
return execRdmaSetLink(req)
}
func netnsModeToString(mode uint8) string {
switch mode {
case 0:
return "exclusive"
case 1:
return "shared"
default:
return "unknown"
}
}
func executeOneGetRdmaNetnsMode(data []byte) (string, error) {
reader := bytes.NewReader(data)
for reader.Len() >= 4 {
_, attrType, len, value := parseNfAttrTLV(reader)
switch attrType {
case nl.RDMA_NLDEV_SYS_ATTR_NETNS_MODE:
var mode uint8
r := bytes.NewReader(value)
binary.Read(r, nl.NativeEndian(), &mode)
return netnsModeToString(mode), nil
}
if (len % 4) != 0 {
// Skip pad bytes
reader.Seek(int64(4-(len%4)), seekCurrent)
}
}
return "", fmt.Errorf("Invalid netns mode")
}
// RdmaSystemGetNetnsMode gets the net namespace mode for RDMA subsystem
// Returns mode string and error status as nil on success or returns error
// otherwise.
// Equivalent to: `rdma system show netns'
func RdmaSystemGetNetnsMode() (string, error) {
return pkgHandle.RdmaSystemGetNetnsMode()
}
// RdmaSystemGetNetnsMode gets the net namespace mode for RDMA subsystem
// Returns mode string and error status as nil on success or returns error
// otherwise.
// Equivalent to: `rdma system show netns'
func (h *Handle) RdmaSystemGetNetnsMode() (string, error) {
proto := getProtoField(nl.RDMA_NL_NLDEV, nl.RDMA_NLDEV_CMD_SYS_GET)
req := h.newNetlinkRequest(proto, unix.NLM_F_ACK)
msgs, err := req.Execute(unix.NETLINK_RDMA, 0)
if err != nil {
return "", err
}
if len(msgs) == 0 {
return "", fmt.Errorf("No valid response from kernel")
}
return executeOneGetRdmaNetnsMode(msgs[0])
}
func netnsModeStringToUint8(mode string) (uint8, error) {
switch mode {
case "exclusive":
return 0, nil
case "shared":
return 1, nil
default:
return 0, fmt.Errorf("Invalid mode; %q", mode)
}
}
// RdmaSystemSetNetnsMode sets the net namespace mode for RDMA subsystem
// Returns nil on success or appropriate error code.
// Equivalent to: `rdma system set netns { shared | exclusive }'
func RdmaSystemSetNetnsMode(NewMode string) error {
return pkgHandle.RdmaSystemSetNetnsMode(NewMode)
}
// RdmaSystemSetNetnsMode sets the net namespace mode for RDMA subsystem
// Returns nil on success or appropriate error code.
// Equivalent to: `rdma system set netns { shared | exclusive }'
func (h *Handle) RdmaSystemSetNetnsMode(NewMode string) error {
value, err := netnsModeStringToUint8(NewMode)
if err != nil {
return err
}
proto := getProtoField(nl.RDMA_NL_NLDEV, nl.RDMA_NLDEV_CMD_SYS_SET)
req := h.newNetlinkRequest(proto, unix.NLM_F_ACK)
data := nl.NewRtAttr(nl.RDMA_NLDEV_SYS_ATTR_NETNS_MODE, []byte{value})
req.AddData(data)
_, err = req.Execute(unix.NETLINK_RDMA, 0)
return err
}
// RdmaLinkSetNsFd puts the RDMA device into a new network namespace. The
// fd must be an open file descriptor to a network namespace.
// Similar to: `rdma dev set $dev netns $ns`
func RdmaLinkSetNsFd(link *RdmaLink, fd uint32) error {
return pkgHandle.RdmaLinkSetNsFd(link, fd)
}
// RdmaLinkSetNsFd puts the RDMA device into a new network namespace. The
// fd must be an open file descriptor to a network namespace.
// Similar to: `rdma dev set $dev netns $ns`
func (h *Handle) RdmaLinkSetNsFd(link *RdmaLink, fd uint32) error {
proto := getProtoField(nl.RDMA_NL_NLDEV, nl.RDMA_NLDEV_CMD_SET)
req := h.newNetlinkRequest(proto, unix.NLM_F_ACK)
data := nl.NewRtAttr(nl.RDMA_NLDEV_ATTR_DEV_INDEX,
nl.Uint32Attr(link.Attrs.Index))
req.AddData(data)
data = nl.NewRtAttr(nl.RDMA_NLDEV_NET_NS_FD, nl.Uint32Attr(fd))
req.AddData(data)
return execRdmaSetLink(req)
}

View File

@@ -3,33 +3,178 @@ package netlink
import (
"fmt"
"net"
"syscall"
"strings"
)
// Scope is an enum representing a route scope.
type Scope uint8
const (
SCOPE_UNIVERSE Scope = syscall.RT_SCOPE_UNIVERSE
SCOPE_SITE Scope = syscall.RT_SCOPE_SITE
SCOPE_LINK Scope = syscall.RT_SCOPE_LINK
SCOPE_HOST Scope = syscall.RT_SCOPE_HOST
SCOPE_NOWHERE Scope = syscall.RT_SCOPE_NOWHERE
)
type NextHopFlag int
// Route represents a netlink route. A route is associated with a link,
// has a destination network, an optional source ip, and optional
// gateway. Advanced route parameters and non-main routing tables are
// currently not supported.
type Destination interface {
Family() int
Decode([]byte) error
Encode() ([]byte, error)
String() string
Equal(Destination) bool
}
type Encap interface {
Type() int
Decode([]byte) error
Encode() ([]byte, error)
String() string
Equal(Encap) bool
}
// Route represents a netlink route.
type Route struct {
LinkIndex int
Scope Scope
Dst *net.IPNet
Src net.IP
Gw net.IP
LinkIndex int
ILinkIndex int
Scope Scope
Dst *net.IPNet
Src net.IP
Gw net.IP
MultiPath []*NexthopInfo
Protocol int
Priority int
Table int
Type int
Tos int
Flags int
MPLSDst *int
NewDst Destination
Encap Encap
MTU int
AdvMSS int
Hoplimit int
}
func (r Route) String() string {
return fmt.Sprintf("{Ifindex: %d Dst: %s Src: %s Gw: %s}", r.LinkIndex, r.Dst,
r.Src, r.Gw)
elems := []string{}
if len(r.MultiPath) == 0 {
elems = append(elems, fmt.Sprintf("Ifindex: %d", r.LinkIndex))
}
if r.MPLSDst != nil {
elems = append(elems, fmt.Sprintf("Dst: %d", r.MPLSDst))
} else {
elems = append(elems, fmt.Sprintf("Dst: %s", r.Dst))
}
if r.NewDst != nil {
elems = append(elems, fmt.Sprintf("NewDst: %s", r.NewDst))
}
if r.Encap != nil {
elems = append(elems, fmt.Sprintf("Encap: %s", r.Encap))
}
elems = append(elems, fmt.Sprintf("Src: %s", r.Src))
if len(r.MultiPath) > 0 {
elems = append(elems, fmt.Sprintf("Gw: %s", r.MultiPath))
} else {
elems = append(elems, fmt.Sprintf("Gw: %s", r.Gw))
}
elems = append(elems, fmt.Sprintf("Flags: %s", r.ListFlags()))
elems = append(elems, fmt.Sprintf("Table: %d", r.Table))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (r Route) Equal(x Route) bool {
return r.LinkIndex == x.LinkIndex &&
r.ILinkIndex == x.ILinkIndex &&
r.Scope == x.Scope &&
ipNetEqual(r.Dst, x.Dst) &&
r.Src.Equal(x.Src) &&
r.Gw.Equal(x.Gw) &&
nexthopInfoSlice(r.MultiPath).Equal(x.MultiPath) &&
r.Protocol == x.Protocol &&
r.Priority == x.Priority &&
r.Table == x.Table &&
r.Type == x.Type &&
r.Tos == x.Tos &&
r.Hoplimit == x.Hoplimit &&
r.Flags == x.Flags &&
(r.MPLSDst == x.MPLSDst || (r.MPLSDst != nil && x.MPLSDst != nil && *r.MPLSDst == *x.MPLSDst)) &&
(r.NewDst == x.NewDst || (r.NewDst != nil && r.NewDst.Equal(x.NewDst))) &&
(r.Encap == x.Encap || (r.Encap != nil && r.Encap.Equal(x.Encap)))
}
func (r *Route) SetFlag(flag NextHopFlag) {
r.Flags |= int(flag)
}
func (r *Route) ClearFlag(flag NextHopFlag) {
r.Flags &^= int(flag)
}
type flagString struct {
f NextHopFlag
s string
}
// RouteUpdate is sent when a route changes - type is RTM_NEWROUTE or RTM_DELROUTE
type RouteUpdate struct {
Type uint16
Route
}
type NexthopInfo struct {
LinkIndex int
Hops int
Gw net.IP
Flags int
NewDst Destination
Encap Encap
}
func (n *NexthopInfo) String() string {
elems := []string{}
elems = append(elems, fmt.Sprintf("Ifindex: %d", n.LinkIndex))
if n.NewDst != nil {
elems = append(elems, fmt.Sprintf("NewDst: %s", n.NewDst))
}
if n.Encap != nil {
elems = append(elems, fmt.Sprintf("Encap: %s", n.Encap))
}
elems = append(elems, fmt.Sprintf("Weight: %d", n.Hops+1))
elems = append(elems, fmt.Sprintf("Gw: %s", n.Gw))
elems = append(elems, fmt.Sprintf("Flags: %s", n.ListFlags()))
return fmt.Sprintf("{%s}", strings.Join(elems, " "))
}
func (n NexthopInfo) Equal(x NexthopInfo) bool {
return n.LinkIndex == x.LinkIndex &&
n.Hops == x.Hops &&
n.Gw.Equal(x.Gw) &&
n.Flags == x.Flags &&
(n.NewDst == x.NewDst || (n.NewDst != nil && n.NewDst.Equal(x.NewDst))) &&
(n.Encap == x.Encap || (n.Encap != nil && n.Encap.Equal(x.Encap)))
}
type nexthopInfoSlice []*NexthopInfo
func (n nexthopInfoSlice) Equal(x []*NexthopInfo) bool {
if len(n) != len(x) {
return false
}
for i := range n {
if n[i] == nil || x[i] == nil {
return false
}
if !n[i].Equal(*x[i]) {
return false
}
}
return true
}
// ipNetEqual returns true iff both IPNet are equal
func ipNetEqual(ipn1 *net.IPNet, ipn2 *net.IPNet) bool {
if ipn1 == ipn2 {
return true
}
if ipn1 == nil || ipn2 == nil {
return false
}
m1, _ := ipn1.Mask.Size()
m2, _ := ipn2.Mask.Size()
return m1 == m2 && ipn1.IP.Equal(ipn2.IP)
}

File diff suppressed because it is too large Load Diff

View File

@@ -0,0 +1,11 @@
// +build !linux
package netlink
func (r *Route) ListFlags() []string {
return []string{}
}
func (n *NexthopInfo) ListFlags() []string {
return []string{}
}

42
vendor/github.com/vishvananda/netlink/rule.go generated vendored Normal file
View File

@@ -0,0 +1,42 @@
package netlink
import (
"fmt"
"net"
)
// Rule represents a netlink rule.
type Rule struct {
Priority int
Family int
Table int
Mark int
Mask int
TunID uint
Goto int
Src *net.IPNet
Dst *net.IPNet
Flow int
IifName string
OifName string
SuppressIfgroup int
SuppressPrefixlen int
Invert bool
}
func (r Rule) String() string {
return fmt.Sprintf("ip rule %d: from %s table %d", r.Priority, r.Src, r.Table)
}
// NewRule return empty rules.
func NewRule() *Rule {
return &Rule{
SuppressIfgroup: -1,
SuppressPrefixlen: -1,
Priority: -1,
Mark: -1,
Mask: -1,
Goto: -1,
Flow: -1,
}
}

234
vendor/github.com/vishvananda/netlink/rule_linux.go generated vendored Normal file
View File

@@ -0,0 +1,234 @@
package netlink
import (
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const FibRuleInvert = 0x2
// RuleAdd adds a rule to the system.
// Equivalent to: ip rule add
func RuleAdd(rule *Rule) error {
return pkgHandle.RuleAdd(rule)
}
// RuleAdd adds a rule to the system.
// Equivalent to: ip rule add
func (h *Handle) RuleAdd(rule *Rule) error {
req := h.newNetlinkRequest(unix.RTM_NEWRULE, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
return ruleHandle(rule, req)
}
// RuleDel deletes a rule from the system.
// Equivalent to: ip rule del
func RuleDel(rule *Rule) error {
return pkgHandle.RuleDel(rule)
}
// RuleDel deletes a rule from the system.
// Equivalent to: ip rule del
func (h *Handle) RuleDel(rule *Rule) error {
req := h.newNetlinkRequest(unix.RTM_DELRULE, unix.NLM_F_ACK)
return ruleHandle(rule, req)
}
func ruleHandle(rule *Rule, req *nl.NetlinkRequest) error {
msg := nl.NewRtMsg()
msg.Family = unix.AF_INET
msg.Protocol = unix.RTPROT_BOOT
msg.Scope = unix.RT_SCOPE_UNIVERSE
msg.Table = unix.RT_TABLE_UNSPEC
msg.Type = unix.RTN_UNSPEC
if req.NlMsghdr.Flags&unix.NLM_F_CREATE > 0 {
msg.Type = unix.RTN_UNICAST
}
if rule.Invert {
msg.Flags |= FibRuleInvert
}
if rule.Family != 0 {
msg.Family = uint8(rule.Family)
}
if rule.Table >= 0 && rule.Table < 256 {
msg.Table = uint8(rule.Table)
}
var dstFamily uint8
var rtAttrs []*nl.RtAttr
if rule.Dst != nil && rule.Dst.IP != nil {
dstLen, _ := rule.Dst.Mask.Size()
msg.Dst_len = uint8(dstLen)
msg.Family = uint8(nl.GetIPFamily(rule.Dst.IP))
dstFamily = msg.Family
var dstData []byte
if msg.Family == unix.AF_INET {
dstData = rule.Dst.IP.To4()
} else {
dstData = rule.Dst.IP.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_DST, dstData))
}
if rule.Src != nil && rule.Src.IP != nil {
msg.Family = uint8(nl.GetIPFamily(rule.Src.IP))
if dstFamily != 0 && dstFamily != msg.Family {
return fmt.Errorf("source and destination ip are not the same IP family")
}
srcLen, _ := rule.Src.Mask.Size()
msg.Src_len = uint8(srcLen)
var srcData []byte
if msg.Family == unix.AF_INET {
srcData = rule.Src.IP.To4()
} else {
srcData = rule.Src.IP.To16()
}
rtAttrs = append(rtAttrs, nl.NewRtAttr(unix.RTA_SRC, srcData))
}
req.AddData(msg)
for i := range rtAttrs {
req.AddData(rtAttrs[i])
}
native := nl.NativeEndian()
if rule.Priority >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Priority))
req.AddData(nl.NewRtAttr(nl.FRA_PRIORITY, b))
}
if rule.Mark >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Mark))
req.AddData(nl.NewRtAttr(nl.FRA_FWMARK, b))
}
if rule.Mask >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Mask))
req.AddData(nl.NewRtAttr(nl.FRA_FWMASK, b))
}
if rule.Flow >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Flow))
req.AddData(nl.NewRtAttr(nl.FRA_FLOW, b))
}
if rule.TunID > 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.TunID))
req.AddData(nl.NewRtAttr(nl.FRA_TUN_ID, b))
}
if rule.Table >= 256 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Table))
req.AddData(nl.NewRtAttr(nl.FRA_TABLE, b))
}
if msg.Table > 0 {
if rule.SuppressPrefixlen >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.SuppressPrefixlen))
req.AddData(nl.NewRtAttr(nl.FRA_SUPPRESS_PREFIXLEN, b))
}
if rule.SuppressIfgroup >= 0 {
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.SuppressIfgroup))
req.AddData(nl.NewRtAttr(nl.FRA_SUPPRESS_IFGROUP, b))
}
}
if rule.IifName != "" {
req.AddData(nl.NewRtAttr(nl.FRA_IIFNAME, []byte(rule.IifName)))
}
if rule.OifName != "" {
req.AddData(nl.NewRtAttr(nl.FRA_OIFNAME, []byte(rule.OifName)))
}
if rule.Goto >= 0 {
msg.Type = nl.FR_ACT_GOTO
b := make([]byte, 4)
native.PutUint32(b, uint32(rule.Goto))
req.AddData(nl.NewRtAttr(nl.FRA_GOTO, b))
}
_, err := req.Execute(unix.NETLINK_ROUTE, 0)
return err
}
// RuleList lists rules in the system.
// Equivalent to: ip rule list
func RuleList(family int) ([]Rule, error) {
return pkgHandle.RuleList(family)
}
// RuleList lists rules in the system.
// Equivalent to: ip rule list
func (h *Handle) RuleList(family int) ([]Rule, error) {
req := h.newNetlinkRequest(unix.RTM_GETRULE, unix.NLM_F_DUMP|unix.NLM_F_REQUEST)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(unix.NETLINK_ROUTE, unix.RTM_NEWRULE)
if err != nil {
return nil, err
}
native := nl.NativeEndian()
var res = make([]Rule, 0)
for i := range msgs {
msg := nl.DeserializeRtMsg(msgs[i])
attrs, err := nl.ParseRouteAttr(msgs[i][msg.Len():])
if err != nil {
return nil, err
}
rule := NewRule()
rule.Invert = msg.Flags&FibRuleInvert > 0
for j := range attrs {
switch attrs[j].Attr.Type {
case unix.RTA_TABLE:
rule.Table = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_SRC:
rule.Src = &net.IPNet{
IP: attrs[j].Value,
Mask: net.CIDRMask(int(msg.Src_len), 8*len(attrs[j].Value)),
}
case nl.FRA_DST:
rule.Dst = &net.IPNet{
IP: attrs[j].Value,
Mask: net.CIDRMask(int(msg.Dst_len), 8*len(attrs[j].Value)),
}
case nl.FRA_FWMARK:
rule.Mark = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_FWMASK:
rule.Mask = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_TUN_ID:
rule.TunID = uint(native.Uint64(attrs[j].Value[0:4]))
case nl.FRA_IIFNAME:
rule.IifName = string(attrs[j].Value[:len(attrs[j].Value)-1])
case nl.FRA_OIFNAME:
rule.OifName = string(attrs[j].Value[:len(attrs[j].Value)-1])
case nl.FRA_SUPPRESS_PREFIXLEN:
i := native.Uint32(attrs[j].Value[0:4])
if i != 0xffffffff {
rule.SuppressPrefixlen = int(i)
}
case nl.FRA_SUPPRESS_IFGROUP:
i := native.Uint32(attrs[j].Value[0:4])
if i != 0xffffffff {
rule.SuppressIfgroup = int(i)
}
case nl.FRA_FLOW:
rule.Flow = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_GOTO:
rule.Goto = int(native.Uint32(attrs[j].Value[0:4]))
case nl.FRA_PRIORITY:
rule.Priority = int(native.Uint32(attrs[j].Value[0:4]))
}
}
res = append(res, *rule)
}
return res, nil
}

27
vendor/github.com/vishvananda/netlink/socket.go generated vendored Normal file
View File

@@ -0,0 +1,27 @@
package netlink
import "net"
// SocketID identifies a single socket.
type SocketID struct {
SourcePort uint16
DestinationPort uint16
Source net.IP
Destination net.IP
Interface uint32
Cookie [2]uint32
}
// Socket represents a netlink socket.
type Socket struct {
Family uint8
State uint8
Timer uint8
Retrans uint8
ID SocketID
Expires uint32
RQueue uint32
WQueue uint32
UID uint32
INode uint32
}

162
vendor/github.com/vishvananda/netlink/socket_linux.go generated vendored Normal file
View File

@@ -0,0 +1,162 @@
package netlink
import (
"errors"
"fmt"
"net"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
const (
sizeofSocketID = 0x30
sizeofSocketRequest = sizeofSocketID + 0x8
sizeofSocket = sizeofSocketID + 0x18
)
type socketRequest struct {
Family uint8
Protocol uint8
Ext uint8
pad uint8
States uint32
ID SocketID
}
type writeBuffer struct {
Bytes []byte
pos int
}
func (b *writeBuffer) Write(c byte) {
b.Bytes[b.pos] = c
b.pos++
}
func (b *writeBuffer) Next(n int) []byte {
s := b.Bytes[b.pos : b.pos+n]
b.pos += n
return s
}
func (r *socketRequest) Serialize() []byte {
b := writeBuffer{Bytes: make([]byte, sizeofSocketRequest)}
b.Write(r.Family)
b.Write(r.Protocol)
b.Write(r.Ext)
b.Write(r.pad)
native.PutUint32(b.Next(4), r.States)
networkOrder.PutUint16(b.Next(2), r.ID.SourcePort)
networkOrder.PutUint16(b.Next(2), r.ID.DestinationPort)
copy(b.Next(4), r.ID.Source.To4())
b.Next(12)
copy(b.Next(4), r.ID.Destination.To4())
b.Next(12)
native.PutUint32(b.Next(4), r.ID.Interface)
native.PutUint32(b.Next(4), r.ID.Cookie[0])
native.PutUint32(b.Next(4), r.ID.Cookie[1])
return b.Bytes
}
func (r *socketRequest) Len() int { return sizeofSocketRequest }
type readBuffer struct {
Bytes []byte
pos int
}
func (b *readBuffer) Read() byte {
c := b.Bytes[b.pos]
b.pos++
return c
}
func (b *readBuffer) Next(n int) []byte {
s := b.Bytes[b.pos : b.pos+n]
b.pos += n
return s
}
func (s *Socket) deserialize(b []byte) error {
if len(b) < sizeofSocket {
return fmt.Errorf("socket data short read (%d); want %d", len(b), sizeofSocket)
}
rb := readBuffer{Bytes: b}
s.Family = rb.Read()
s.State = rb.Read()
s.Timer = rb.Read()
s.Retrans = rb.Read()
s.ID.SourcePort = networkOrder.Uint16(rb.Next(2))
s.ID.DestinationPort = networkOrder.Uint16(rb.Next(2))
s.ID.Source = net.IPv4(rb.Read(), rb.Read(), rb.Read(), rb.Read())
rb.Next(12)
s.ID.Destination = net.IPv4(rb.Read(), rb.Read(), rb.Read(), rb.Read())
rb.Next(12)
s.ID.Interface = native.Uint32(rb.Next(4))
s.ID.Cookie[0] = native.Uint32(rb.Next(4))
s.ID.Cookie[1] = native.Uint32(rb.Next(4))
s.Expires = native.Uint32(rb.Next(4))
s.RQueue = native.Uint32(rb.Next(4))
s.WQueue = native.Uint32(rb.Next(4))
s.UID = native.Uint32(rb.Next(4))
s.INode = native.Uint32(rb.Next(4))
return nil
}
// SocketGet returns the Socket identified by its local and remote addresses.
func SocketGet(local, remote net.Addr) (*Socket, error) {
localTCP, ok := local.(*net.TCPAddr)
if !ok {
return nil, ErrNotImplemented
}
remoteTCP, ok := remote.(*net.TCPAddr)
if !ok {
return nil, ErrNotImplemented
}
localIP := localTCP.IP.To4()
if localIP == nil {
return nil, ErrNotImplemented
}
remoteIP := remoteTCP.IP.To4()
if remoteIP == nil {
return nil, ErrNotImplemented
}
s, err := nl.Subscribe(unix.NETLINK_INET_DIAG)
if err != nil {
return nil, err
}
defer s.Close()
req := nl.NewNetlinkRequest(nl.SOCK_DIAG_BY_FAMILY, 0)
req.AddData(&socketRequest{
Family: unix.AF_INET,
Protocol: unix.IPPROTO_TCP,
ID: SocketID{
SourcePort: uint16(localTCP.Port),
DestinationPort: uint16(remoteTCP.Port),
Source: localIP,
Destination: remoteIP,
Cookie: [2]uint32{nl.TCPDIAG_NOCOOKIE, nl.TCPDIAG_NOCOOKIE},
},
})
s.Send(req)
msgs, from, err := s.Receive()
if err != nil {
return nil, err
}
if from.Pid != nl.PidKernel {
return nil, fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel)
}
if len(msgs) == 0 {
return nil, errors.New("no message nor error from netlink")
}
if len(msgs) > 2 {
return nil, fmt.Errorf("multiple (%d) matching sockets", len(msgs))
}
sock := &Socket{}
if err := sock.deserialize(msgs[0].Data); err != nil {
return nil, err
}
return sock, nil
}

View File

@@ -2,19 +2,20 @@ package netlink
import (
"fmt"
"syscall"
"golang.org/x/sys/unix"
)
// Proto is an enum representing an ipsec protocol.
type Proto uint8
const (
XFRM_PROTO_ROUTE2 Proto = syscall.IPPROTO_ROUTING
XFRM_PROTO_ESP Proto = syscall.IPPROTO_ESP
XFRM_PROTO_AH Proto = syscall.IPPROTO_AH
XFRM_PROTO_HAO Proto = syscall.IPPROTO_DSTOPTS
XFRM_PROTO_COMP Proto = syscall.IPPROTO_COMP
XFRM_PROTO_IPSEC_ANY Proto = syscall.IPPROTO_RAW
XFRM_PROTO_ROUTE2 Proto = unix.IPPROTO_ROUTING
XFRM_PROTO_ESP Proto = unix.IPPROTO_ESP
XFRM_PROTO_AH Proto = unix.IPPROTO_AH
XFRM_PROTO_HAO Proto = unix.IPPROTO_DSTOPTS
XFRM_PROTO_COMP Proto = 0x6c // NOTE not defined on darwin
XFRM_PROTO_IPSEC_ANY Proto = unix.IPPROTO_RAW
)
func (p Proto) String() string {
@@ -62,3 +63,13 @@ func (m Mode) String() string {
}
return fmt.Sprintf("%d", m)
}
// XfrmMark represents the mark associated to the state or policy
type XfrmMark struct {
Value uint32
Mask uint32
}
func (m *XfrmMark) String() string {
return fmt.Sprintf("(0x%x,0x%x)", m.Value, m.Mask)
}

View File

@@ -0,0 +1,101 @@
package netlink
import (
"fmt"
"github.com/vishvananda/netlink/nl"
"github.com/vishvananda/netns"
"golang.org/x/sys/unix"
)
type XfrmMsg interface {
Type() nl.XfrmMsgType
}
type XfrmMsgExpire struct {
XfrmState *XfrmState
Hard bool
}
func (ue *XfrmMsgExpire) Type() nl.XfrmMsgType {
return nl.XFRM_MSG_EXPIRE
}
func parseXfrmMsgExpire(b []byte) *XfrmMsgExpire {
var e XfrmMsgExpire
msg := nl.DeserializeXfrmUserExpire(b)
e.XfrmState = xfrmStateFromXfrmUsersaInfo(&msg.XfrmUsersaInfo)
e.Hard = msg.Hard == 1
return &e
}
func XfrmMonitor(ch chan<- XfrmMsg, done <-chan struct{}, errorChan chan<- error,
types ...nl.XfrmMsgType) error {
groups, err := xfrmMcastGroups(types)
if err != nil {
return nil
}
s, err := nl.SubscribeAt(netns.None(), netns.None(), unix.NETLINK_XFRM, groups...)
if err != nil {
return err
}
if done != nil {
go func() {
<-done
s.Close()
}()
}
go func() {
defer close(ch)
for {
msgs, from, err := s.Receive()
if err != nil {
errorChan <- err
return
}
if from.Pid != nl.PidKernel {
errorChan <- fmt.Errorf("Wrong sender portid %d, expected %d", from.Pid, nl.PidKernel)
return
}
for _, m := range msgs {
switch m.Header.Type {
case nl.XFRM_MSG_EXPIRE:
ch <- parseXfrmMsgExpire(m.Data)
default:
errorChan <- fmt.Errorf("unsupported msg type: %x", m.Header.Type)
}
}
}
}()
return nil
}
func xfrmMcastGroups(types []nl.XfrmMsgType) ([]uint, error) {
groups := make([]uint, 0)
if len(types) == 0 {
return nil, fmt.Errorf("no xfrm msg type specified")
}
for _, t := range types {
var group uint
switch t {
case nl.XFRM_MSG_EXPIRE:
group = nl.XFRMNLGRP_EXPIRE
default:
return nil, fmt.Errorf("unsupported group: %x", t)
}
groups = append(groups, group)
}
return groups, nil
}

View File

@@ -35,6 +35,25 @@ func (d Dir) String() string {
return fmt.Sprintf("socket %d", d-XFRM_SOCKET_IN)
}
// PolicyAction is an enum representing an ipsec policy action.
type PolicyAction uint8
const (
XFRM_POLICY_ALLOW PolicyAction = 0
XFRM_POLICY_BLOCK PolicyAction = 1
)
func (a PolicyAction) String() string {
switch a {
case XFRM_POLICY_ALLOW:
return "allow"
case XFRM_POLICY_BLOCK:
return "block"
default:
return fmt.Sprintf("action %d", a)
}
}
// XfrmPolicyTmpl encapsulates a rule for the base addresses of an ipsec
// policy. These rules are matched with XfrmState to determine encryption
// and authentication algorithms.
@@ -43,17 +62,35 @@ type XfrmPolicyTmpl struct {
Src net.IP
Proto Proto
Mode Mode
Spi int
Reqid int
}
func (t XfrmPolicyTmpl) String() string {
return fmt.Sprintf("{Dst: %v, Src: %v, Proto: %s, Mode: %s, Spi: 0x%x, Reqid: 0x%x}",
t.Dst, t.Src, t.Proto, t.Mode, t.Spi, t.Reqid)
}
// XfrmPolicy represents an ipsec policy. It represents the overlay network
// and has a list of XfrmPolicyTmpls representing the base addresses of
// the policy.
type XfrmPolicy struct {
Dst *net.IPNet
Src *net.IPNet
Proto Proto
DstPort int
SrcPort int
Dir Dir
Priority int
Index int
Action PolicyAction
Ifindex int
Ifid int
Mark *XfrmMark
Tmpls []XfrmPolicyTmpl
}
func (p XfrmPolicy) String() string {
return fmt.Sprintf("{Dst: %v, Src: %v, Proto: %s, DstPort: %d, SrcPort: %d, Dir: %s, Priority: %d, Index: %d, Action: %s, Ifindex: %d, Ifid: %d, Mark: %s, Tmpls: %s}",
p.Dst, p.Src, p.Proto, p.DstPort, p.SrcPort, p.Dir, p.Priority, p.Index, p.Action, p.Ifindex, p.Ifid, p.Mark, p.Tmpls)
}

View File

@@ -1,31 +1,68 @@
package netlink
import (
"syscall"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func selFromPolicy(sel *nl.XfrmSelector, policy *XfrmPolicy) {
sel.Family = uint16(nl.GetIPFamily(policy.Dst.IP))
sel.Daddr.FromIP(policy.Dst.IP)
sel.Saddr.FromIP(policy.Src.IP)
prefixlenD, _ := policy.Dst.Mask.Size()
sel.PrefixlenD = uint8(prefixlenD)
prefixlenS, _ := policy.Src.Mask.Size()
sel.PrefixlenS = uint8(prefixlenS)
sel.Family = uint16(nl.FAMILY_V4)
if policy.Dst != nil {
sel.Family = uint16(nl.GetIPFamily(policy.Dst.IP))
sel.Daddr.FromIP(policy.Dst.IP)
prefixlenD, _ := policy.Dst.Mask.Size()
sel.PrefixlenD = uint8(prefixlenD)
}
if policy.Src != nil {
sel.Saddr.FromIP(policy.Src.IP)
prefixlenS, _ := policy.Src.Mask.Size()
sel.PrefixlenS = uint8(prefixlenS)
}
sel.Proto = uint8(policy.Proto)
sel.Dport = nl.Swap16(uint16(policy.DstPort))
sel.Sport = nl.Swap16(uint16(policy.SrcPort))
if sel.Dport != 0 {
sel.DportMask = ^uint16(0)
}
if sel.Sport != 0 {
sel.SportMask = ^uint16(0)
}
sel.Ifindex = int32(policy.Ifindex)
}
// XfrmPolicyAdd will add an xfrm policy to the system.
// Equivalent to: `ip xfrm policy add $policy`
func XfrmPolicyAdd(policy *XfrmPolicy) error {
req := nl.NewNetlinkRequest(nl.XFRM_MSG_NEWPOLICY, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
return pkgHandle.XfrmPolicyAdd(policy)
}
// XfrmPolicyAdd will add an xfrm policy to the system.
// Equivalent to: `ip xfrm policy add $policy`
func (h *Handle) XfrmPolicyAdd(policy *XfrmPolicy) error {
return h.xfrmPolicyAddOrUpdate(policy, nl.XFRM_MSG_NEWPOLICY)
}
// XfrmPolicyUpdate will update an xfrm policy to the system.
// Equivalent to: `ip xfrm policy update $policy`
func XfrmPolicyUpdate(policy *XfrmPolicy) error {
return pkgHandle.XfrmPolicyUpdate(policy)
}
// XfrmPolicyUpdate will update an xfrm policy to the system.
// Equivalent to: `ip xfrm policy update $policy`
func (h *Handle) XfrmPolicyUpdate(policy *XfrmPolicy) error {
return h.xfrmPolicyAddOrUpdate(policy, nl.XFRM_MSG_UPDPOLICY)
}
func (h *Handle) xfrmPolicyAddOrUpdate(policy *XfrmPolicy, nlProto int) error {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUserpolicyInfo{}
selFromPolicy(&msg.Sel, policy)
msg.Priority = uint32(policy.Priority)
msg.Index = uint32(policy.Index)
msg.Dir = uint8(policy.Dir)
msg.Action = uint8(policy.Action)
msg.Lft.SoftByteLimit = nl.XFRM_INF
msg.Lft.HardByteLimit = nl.XFRM_INF
msg.Lft.SoftPacketLimit = nl.XFRM_INF
@@ -39,6 +76,7 @@ func XfrmPolicyAdd(policy *XfrmPolicy) error {
userTmpl.XfrmId.Daddr.FromIP(tmpl.Dst)
userTmpl.Saddr.FromIP(tmpl.Src)
userTmpl.XfrmId.Proto = uint8(tmpl.Proto)
userTmpl.XfrmId.Spi = nl.Swap32(uint32(tmpl.Spi))
userTmpl.Mode = uint8(tmpl.Mode)
userTmpl.Reqid = uint32(tmpl.Reqid)
userTmpl.Aalgos = ^uint32(0)
@@ -49,8 +87,15 @@ func XfrmPolicyAdd(policy *XfrmPolicy) error {
tmpls := nl.NewRtAttr(nl.XFRMA_TMPL, tmplData)
req.AddData(tmpls)
}
if policy.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(policy.Mark))
req.AddData(out)
}
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(policy.Ifid)))
req.AddData(ifId)
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
@@ -58,15 +103,14 @@ func XfrmPolicyAdd(policy *XfrmPolicy) error {
// the Tmpls are ignored when matching the policy to delete.
// Equivalent to: `ip xfrm policy del $policy`
func XfrmPolicyDel(policy *XfrmPolicy) error {
req := nl.NewNetlinkRequest(nl.XFRM_MSG_DELPOLICY, syscall.NLM_F_ACK)
return pkgHandle.XfrmPolicyDel(policy)
}
msg := &nl.XfrmUserpolicyId{}
selFromPolicy(&msg.Sel, policy)
msg.Index = uint32(policy.Index)
msg.Dir = uint8(policy.Dir)
req.AddData(msg)
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
// XfrmPolicyDel will delete an xfrm policy from the system. Note that
// the Tmpls are ignored when matching the policy to delete.
// Equivalent to: `ip xfrm policy del $policy`
func (h *Handle) XfrmPolicyDel(policy *XfrmPolicy) error {
_, err := h.xfrmPolicyGetOrDelete(policy, nl.XFRM_MSG_DELPOLICY)
return err
}
@@ -74,54 +118,146 @@ func XfrmPolicyDel(policy *XfrmPolicy) error {
// Equivalent to: `ip xfrm policy show`.
// The list can be filtered by ip family.
func XfrmPolicyList(family int) ([]XfrmPolicy, error) {
req := nl.NewNetlinkRequest(nl.XFRM_MSG_GETPOLICY, syscall.NLM_F_DUMP)
return pkgHandle.XfrmPolicyList(family)
}
// XfrmPolicyList gets a list of xfrm policies in the system.
// Equivalent to: `ip xfrm policy show`.
// The list can be filtered by ip family.
func (h *Handle) XfrmPolicyList(family int) ([]XfrmPolicy, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETPOLICY, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_XFRM, nl.XFRM_MSG_NEWPOLICY)
msgs, err := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWPOLICY)
if err != nil {
return nil, err
}
var res []XfrmPolicy
for _, m := range msgs {
msg := nl.DeserializeXfrmUserpolicyInfo(m)
if family != FAMILY_ALL && family != int(msg.Sel.Family) {
if policy, err := parseXfrmPolicy(m, family); err == nil {
res = append(res, *policy)
} else if err == familyError {
continue
}
var policy XfrmPolicy
policy.Dst = msg.Sel.Daddr.ToIPNet(msg.Sel.PrefixlenD)
policy.Src = msg.Sel.Saddr.ToIPNet(msg.Sel.PrefixlenS)
policy.Priority = int(msg.Priority)
policy.Index = int(msg.Index)
policy.Dir = Dir(msg.Dir)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
} else {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_TMPL:
max := len(attr.Value)
for i := 0; i < max; i += nl.SizeofXfrmUserTmpl {
var resTmpl XfrmPolicyTmpl
tmpl := nl.DeserializeXfrmUserTmpl(attr.Value[i : i+nl.SizeofXfrmUserTmpl])
resTmpl.Dst = tmpl.XfrmId.Daddr.ToIP()
resTmpl.Src = tmpl.Saddr.ToIP()
resTmpl.Proto = Proto(tmpl.XfrmId.Proto)
resTmpl.Mode = Mode(tmpl.Mode)
resTmpl.Reqid = int(tmpl.Reqid)
policy.Tmpls = append(policy.Tmpls, resTmpl)
}
}
}
res = append(res, policy)
}
return res, nil
}
// XfrmPolicyGet gets a the policy described by the index or selector, if found.
// Equivalent to: `ip xfrm policy get { SELECTOR | index INDEX } dir DIR [ctx CTX ] [ mark MARK [ mask MASK ] ] [ ptype PTYPE ]`.
func XfrmPolicyGet(policy *XfrmPolicy) (*XfrmPolicy, error) {
return pkgHandle.XfrmPolicyGet(policy)
}
// XfrmPolicyGet gets a the policy described by the index or selector, if found.
// Equivalent to: `ip xfrm policy get { SELECTOR | index INDEX } dir DIR [ctx CTX ] [ mark MARK [ mask MASK ] ] [ ptype PTYPE ]`.
func (h *Handle) XfrmPolicyGet(policy *XfrmPolicy) (*XfrmPolicy, error) {
return h.xfrmPolicyGetOrDelete(policy, nl.XFRM_MSG_GETPOLICY)
}
// XfrmPolicyFlush will flush the policies on the system.
// Equivalent to: `ip xfrm policy flush`
func XfrmPolicyFlush() error {
return pkgHandle.XfrmPolicyFlush()
}
// XfrmPolicyFlush will flush the policies on the system.
// Equivalent to: `ip xfrm policy flush`
func (h *Handle) XfrmPolicyFlush() error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHPOLICY, unix.NLM_F_ACK)
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmPolicyGetOrDelete(policy *XfrmPolicy, nlProto int) (*XfrmPolicy, error) {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
msg := &nl.XfrmUserpolicyId{}
selFromPolicy(&msg.Sel, policy)
msg.Index = uint32(policy.Index)
msg.Dir = uint8(policy.Dir)
req.AddData(msg)
if policy.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(policy.Mark))
req.AddData(out)
}
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(policy.Ifid)))
req.AddData(ifId)
resType := nl.XFRM_MSG_NEWPOLICY
if nlProto == nl.XFRM_MSG_DELPOLICY {
resType = 0
}
msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELPOLICY {
return nil, err
}
return parseXfrmPolicy(msgs[0], FAMILY_ALL)
}
func parseXfrmPolicy(m []byte, family int) (*XfrmPolicy, error) {
msg := nl.DeserializeXfrmUserpolicyInfo(m)
// This is mainly for the policy dump
if family != FAMILY_ALL && family != int(msg.Sel.Family) {
return nil, familyError
}
var policy XfrmPolicy
policy.Dst = msg.Sel.Daddr.ToIPNet(msg.Sel.PrefixlenD)
policy.Src = msg.Sel.Saddr.ToIPNet(msg.Sel.PrefixlenS)
policy.Proto = Proto(msg.Sel.Proto)
policy.DstPort = int(nl.Swap16(msg.Sel.Dport))
policy.SrcPort = int(nl.Swap16(msg.Sel.Sport))
policy.Ifindex = int(msg.Sel.Ifindex)
policy.Priority = int(msg.Priority)
policy.Index = int(msg.Index)
policy.Dir = Dir(msg.Dir)
policy.Action = PolicyAction(msg.Action)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_TMPL:
max := len(attr.Value)
for i := 0; i < max; i += nl.SizeofXfrmUserTmpl {
var resTmpl XfrmPolicyTmpl
tmpl := nl.DeserializeXfrmUserTmpl(attr.Value[i : i+nl.SizeofXfrmUserTmpl])
resTmpl.Dst = tmpl.XfrmId.Daddr.ToIP()
resTmpl.Src = tmpl.Saddr.ToIP()
resTmpl.Proto = Proto(tmpl.XfrmId.Proto)
resTmpl.Mode = Mode(tmpl.Mode)
resTmpl.Spi = int(nl.Swap32(tmpl.XfrmId.Spi))
resTmpl.Reqid = int(tmpl.Reqid)
policy.Tmpls = append(policy.Tmpls, resTmpl)
}
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
policy.Mark = new(XfrmMark)
policy.Mark.Value = mark.Value
policy.Mark.Mask = mark.Mask
case nl.XFRMA_IF_ID:
policy.Ifid = int(native.Uint32(attr.Value))
}
}
return &policy, nil
}

View File

@@ -1,7 +1,9 @@
package netlink
import (
"fmt"
"net"
"time"
)
// XfrmStateAlgo represents the algorithm to use for the ipsec encryption.
@@ -9,9 +11,21 @@ type XfrmStateAlgo struct {
Name string
Key []byte
TruncateLen int // Auth only
ICVLen int // AEAD only
}
// EncapType is an enum representing an ipsec template direction.
func (a XfrmStateAlgo) String() string {
base := fmt.Sprintf("{Name: %s, Key: 0x%x", a.Name, a.Key)
if a.TruncateLen != 0 {
base = fmt.Sprintf("%s, Truncate length: %d", base, a.TruncateLen)
}
if a.ICVLen != 0 {
base = fmt.Sprintf("%s, ICV length: %d", base, a.ICVLen)
}
return fmt.Sprintf("%s}", base)
}
// EncapType is an enum representing the optional packet encapsulation.
type EncapType uint8
const (
@@ -22,14 +36,14 @@ const (
func (e EncapType) String() string {
switch e {
case XFRM_ENCAP_ESPINUDP_NONIKE:
return "espinudp-nonike"
return "espinudp-non-ike"
case XFRM_ENCAP_ESPINUDP:
return "espinudp"
}
return "unknown"
}
// XfrmEncap represents the encapsulation to use for the ipsec encryption.
// XfrmStateEncap represents the encapsulation to use for the ipsec encryption.
type XfrmStateEncap struct {
Type EncapType
SrcPort int
@@ -37,6 +51,36 @@ type XfrmStateEncap struct {
OriginalAddress net.IP
}
func (e XfrmStateEncap) String() string {
return fmt.Sprintf("{Type: %s, Srcport: %d, DstPort: %d, OriginalAddress: %v}",
e.Type, e.SrcPort, e.DstPort, e.OriginalAddress)
}
// XfrmStateLimits represents the configured limits for the state.
type XfrmStateLimits struct {
ByteSoft uint64
ByteHard uint64
PacketSoft uint64
PacketHard uint64
TimeSoft uint64
TimeHard uint64
TimeUseSoft uint64
TimeUseHard uint64
}
// XfrmStateStats represents the current number of bytes/packets
// processed by this State, the State's installation and first use
// time and the replay window counters.
type XfrmStateStats struct {
ReplayWindow uint32
Replay uint32
Failed uint32
Bytes uint64
Packets uint64
AddTime uint64
UseTime uint64
}
// XfrmState represents the state of an ipsec policy. It optionally
// contains an XfrmStateAlgo for encryption and one for authentication.
type XfrmState struct {
@@ -47,7 +91,41 @@ type XfrmState struct {
Spi int
Reqid int
ReplayWindow int
Limits XfrmStateLimits
Statistics XfrmStateStats
Mark *XfrmMark
OutputMark int
Ifid int
Auth *XfrmStateAlgo
Crypt *XfrmStateAlgo
Aead *XfrmStateAlgo
Encap *XfrmStateEncap
ESN bool
}
func (sa XfrmState) String() string {
return fmt.Sprintf("Dst: %v, Src: %v, Proto: %s, Mode: %s, SPI: 0x%x, ReqID: 0x%x, ReplayWindow: %d, Mark: %v, OutputMark: %d, Ifid: %d, Auth: %v, Crypt: %v, Aead: %v, Encap: %v, ESN: %t",
sa.Dst, sa.Src, sa.Proto, sa.Mode, sa.Spi, sa.Reqid, sa.ReplayWindow, sa.Mark, sa.OutputMark, sa.Ifid, sa.Auth, sa.Crypt, sa.Aead, sa.Encap, sa.ESN)
}
func (sa XfrmState) Print(stats bool) string {
if !stats {
return sa.String()
}
at := time.Unix(int64(sa.Statistics.AddTime), 0).Format(time.UnixDate)
ut := "-"
if sa.Statistics.UseTime > 0 {
ut = time.Unix(int64(sa.Statistics.UseTime), 0).Format(time.UnixDate)
}
return fmt.Sprintf("%s, ByteSoft: %s, ByteHard: %s, PacketSoft: %s, PacketHard: %s, TimeSoft: %d, TimeHard: %d, TimeUseSoft: %d, TimeUseHard: %d, Bytes: %d, Packets: %d, "+
"AddTime: %s, UseTime: %s, ReplayWindow: %d, Replay: %d, Failed: %d",
sa.String(), printLimit(sa.Limits.ByteSoft), printLimit(sa.Limits.ByteHard), printLimit(sa.Limits.PacketSoft), printLimit(sa.Limits.PacketHard),
sa.Limits.TimeSoft, sa.Limits.TimeHard, sa.Limits.TimeUseSoft, sa.Limits.TimeUseHard, sa.Statistics.Bytes, sa.Statistics.Packets, at, ut,
sa.Statistics.ReplayWindow, sa.Statistics.Replay, sa.Statistics.Failed)
}
func printLimit(lmt uint64) string {
if lmt == ^uint64(0) {
return "(INF)"
}
return fmt.Sprintf("%d", lmt)
}

View File

@@ -2,9 +2,10 @@ package netlink
import (
"fmt"
"syscall"
"unsafe"
"github.com/vishvananda/netlink/nl"
"golang.org/x/sys/unix"
)
func writeStateAlgo(a *XfrmStateAlgo) []byte {
@@ -34,28 +35,97 @@ func writeStateAlgoAuth(a *XfrmStateAlgo) []byte {
return algo.Serialize()
}
func writeStateAlgoAead(a *XfrmStateAlgo) []byte {
algo := nl.XfrmAlgoAEAD{
AlgKeyLen: uint32(len(a.Key) * 8),
AlgICVLen: uint32(a.ICVLen),
AlgKey: a.Key,
}
end := len(a.Name)
if end > 64 {
end = 64
}
copy(algo.AlgName[:end], a.Name)
return algo.Serialize()
}
func writeMark(m *XfrmMark) []byte {
mark := &nl.XfrmMark{
Value: m.Value,
Mask: m.Mask,
}
if mark.Mask == 0 {
mark.Mask = ^uint32(0)
}
return mark.Serialize()
}
func writeReplayEsn(replayWindow int) []byte {
replayEsn := &nl.XfrmReplayStateEsn{
OSeq: 0,
Seq: 0,
OSeqHi: 0,
SeqHi: 0,
ReplayWindow: uint32(replayWindow),
}
// Linux stores the bitmap to identify the already received sequence packets in blocks of uint32 elements.
// Therefore bitmap length is the minimum number of uint32 elements needed. The following is a ceiling operation.
bytesPerElem := int(unsafe.Sizeof(replayEsn.BmpLen)) // Any uint32 variable is good for this
replayEsn.BmpLen = uint32((replayWindow + (bytesPerElem * 8) - 1) / (bytesPerElem * 8))
return replayEsn.Serialize()
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func XfrmStateAdd(state *XfrmState) error {
return pkgHandle.XfrmStateAdd(state)
}
// XfrmStateAdd will add an xfrm state to the system.
// Equivalent to: `ip xfrm state add $state`
func (h *Handle) XfrmStateAdd(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_NEWSA)
}
// XfrmStateAllocSpi will allocate an xfrm state in the system.
// Equivalent to: `ip xfrm state allocspi`
func XfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
return pkgHandle.xfrmStateAllocSpi(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func XfrmStateUpdate(state *XfrmState) error {
return pkgHandle.XfrmStateUpdate(state)
}
// XfrmStateUpdate will update an xfrm state to the system.
// Equivalent to: `ip xfrm state update $state`
func (h *Handle) XfrmStateUpdate(state *XfrmState) error {
return h.xfrmStateAddOrUpdate(state, nl.XFRM_MSG_UPDSA)
}
func (h *Handle) xfrmStateAddOrUpdate(state *XfrmState, nlProto int) error {
// A state with spi 0 can't be deleted so don't allow it to be set
if state.Spi == 0 {
return fmt.Errorf("Spi must be set when adding xfrm state.")
}
req := nl.NewNetlinkRequest(nl.XFRM_MSG_NEWSA, syscall.NLM_F_CREATE|syscall.NLM_F_EXCL|syscall.NLM_F_ACK)
req := h.newNetlinkRequest(nlProto, unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
msg.Lft.SoftByteLimit = nl.XFRM_INF
msg.Lft.HardByteLimit = nl.XFRM_INF
msg.Lft.SoftPacketLimit = nl.XFRM_INF
msg.Lft.HardPacketLimit = nl.XFRM_INF
msg := xfrmUsersaInfoFromXfrmState(state)
if state.ESN {
if state.ReplayWindow == 0 {
return fmt.Errorf("ESN flag set without ReplayWindow")
}
msg.Flags |= nl.XFRM_STATE_ESN
msg.ReplayWindow = 0
}
limitsToLft(state.Limits, &msg.Lft)
req.AddData(msg)
if state.Auth != nil {
@@ -66,6 +136,10 @@ func XfrmStateAdd(state *XfrmState) error {
out := nl.NewRtAttr(nl.XFRMA_ALG_CRYPT, writeStateAlgo(state.Crypt))
req.AddData(out)
}
if state.Aead != nil {
out := nl.NewRtAttr(nl.XFRMA_ALG_AEAD, writeStateAlgoAead(state.Aead))
req.AddData(out)
}
if state.Encap != nil {
encapData := make([]byte, nl.SizeofXfrmEncapTmpl)
encap := nl.DeserializeXfrmEncapTmpl(encapData)
@@ -76,106 +150,313 @@ func XfrmStateAdd(state *XfrmState) error {
out := nl.NewRtAttr(nl.XFRMA_ENCAP, encapData)
req.AddData(out)
}
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.ESN {
out := nl.NewRtAttr(nl.XFRMA_REPLAY_ESN_VAL, writeReplayEsn(state.ReplayWindow))
req.AddData(out)
}
if state.OutputMark != 0 {
out := nl.NewRtAttr(nl.XFRMA_OUTPUT_MARK, nl.Uint32Attr(uint32(state.OutputMark)))
req.AddData(out)
}
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
req.AddData(ifId)
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func (h *Handle) xfrmStateAllocSpi(state *XfrmState) (*XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_ALLOCSPI,
unix.NLM_F_CREATE|unix.NLM_F_EXCL|unix.NLM_F_ACK)
msg := &nl.XfrmUserSpiInfo{}
msg.XfrmUsersaInfo = *(xfrmUsersaInfoFromXfrmState(state))
// 1-255 is reserved by IANA for future use
msg.Min = 0x100
msg.Max = 0xffffffff
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
msgs, err := req.Execute(unix.NETLINK_XFRM, 0)
if err != nil {
return nil, err
}
return parseXfrmState(msgs[0], FAMILY_ALL)
}
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func XfrmStateDel(state *XfrmState) error {
req := nl.NewNetlinkRequest(nl.XFRM_MSG_DELSA, syscall.NLM_F_ACK)
return pkgHandle.XfrmStateDel(state)
}
msg := &nl.XfrmUsersaId{}
msg.Daddr.FromIP(state.Dst)
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
saddr := nl.XfrmAddress{}
saddr.FromIP(state.Src)
srcdata := nl.NewRtAttr(nl.XFRMA_SRCADDR, saddr.Serialize())
req.AddData(srcdata)
_, err := req.Execute(syscall.NETLINK_XFRM, 0)
// XfrmStateDel will delete an xfrm state from the system. Note that
// the Algos are ignored when matching the state to delete.
// Equivalent to: `ip xfrm state del $state`
func (h *Handle) XfrmStateDel(state *XfrmState) error {
_, err := h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_DELSA)
return err
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip [-4|-6] xfrm state show`.
// The list can be filtered by ip family.
func XfrmStateList(family int) ([]XfrmState, error) {
return pkgHandle.XfrmStateList(family)
}
// XfrmStateList gets a list of xfrm states in the system.
// Equivalent to: `ip xfrm state show`.
// The list can be filtered by ip family.
func XfrmStateList(family int) ([]XfrmState, error) {
req := nl.NewNetlinkRequest(nl.XFRM_MSG_GETSA, syscall.NLM_F_DUMP)
func (h *Handle) XfrmStateList(family int) ([]XfrmState, error) {
req := h.newNetlinkRequest(nl.XFRM_MSG_GETSA, unix.NLM_F_DUMP)
msg := nl.NewIfInfomsg(family)
req.AddData(msg)
msgs, err := req.Execute(syscall.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
msgs, err := req.Execute(unix.NETLINK_XFRM, nl.XFRM_MSG_NEWSA)
if err != nil {
return nil, err
}
var res []XfrmState
for _, m := range msgs {
msg := nl.DeserializeXfrmUsersaInfo(m)
if family != FAMILY_ALL && family != int(msg.Family) {
if state, err := parseXfrmState(m, family); err == nil {
res = append(res, *state)
} else if err == familyError {
continue
}
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
attrs, err := nl.ParseRouteAttr(m[msg.Len():])
if err != nil {
} else {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
}
}
res = append(res, state)
}
return res, nil
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return pkgHandle.XfrmStateGet(state)
}
// XfrmStateGet gets the xfrm state described by the ID, if found.
// Equivalent to: `ip xfrm state get ID [ mark MARK [ mask MASK ] ]`.
// Only the fields which constitue the SA ID must be filled in:
// ID := [ src ADDR ] [ dst ADDR ] [ proto XFRM-PROTO ] [ spi SPI ]
// mark is optional
func (h *Handle) XfrmStateGet(state *XfrmState) (*XfrmState, error) {
return h.xfrmStateGetOrDelete(state, nl.XFRM_MSG_GETSA)
}
func (h *Handle) xfrmStateGetOrDelete(state *XfrmState, nlProto int) (*XfrmState, error) {
req := h.newNetlinkRequest(nlProto, unix.NLM_F_ACK)
msg := &nl.XfrmUsersaId{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Daddr.FromIP(state.Dst)
msg.Proto = uint8(state.Proto)
msg.Spi = nl.Swap32(uint32(state.Spi))
req.AddData(msg)
if state.Mark != nil {
out := nl.NewRtAttr(nl.XFRMA_MARK, writeMark(state.Mark))
req.AddData(out)
}
if state.Src != nil {
out := nl.NewRtAttr(nl.XFRMA_SRCADDR, state.Src.To16())
req.AddData(out)
}
ifId := nl.NewRtAttr(nl.XFRMA_IF_ID, nl.Uint32Attr(uint32(state.Ifid)))
req.AddData(ifId)
resType := nl.XFRM_MSG_NEWSA
if nlProto == nl.XFRM_MSG_DELSA {
resType = 0
}
msgs, err := req.Execute(unix.NETLINK_XFRM, uint16(resType))
if err != nil {
return nil, err
}
if nlProto == nl.XFRM_MSG_DELSA {
return nil, nil
}
s, err := parseXfrmState(msgs[0], FAMILY_ALL)
if err != nil {
return nil, err
}
return s, nil
}
var familyError = fmt.Errorf("family error")
func xfrmStateFromXfrmUsersaInfo(msg *nl.XfrmUsersaInfo) *XfrmState {
var state XfrmState
state.Dst = msg.Id.Daddr.ToIP()
state.Src = msg.Saddr.ToIP()
state.Proto = Proto(msg.Id.Proto)
state.Mode = Mode(msg.Mode)
state.Spi = int(nl.Swap32(msg.Id.Spi))
state.Reqid = int(msg.Reqid)
state.ReplayWindow = int(msg.ReplayWindow)
lftToLimits(&msg.Lft, &state.Limits)
curToStats(&msg.Curlft, &msg.Stats, &state.Statistics)
return &state
}
func parseXfrmState(m []byte, family int) (*XfrmState, error) {
msg := nl.DeserializeXfrmUsersaInfo(m)
// This is mainly for the state dump
if family != FAMILY_ALL && family != int(msg.Family) {
return nil, familyError
}
state := xfrmStateFromXfrmUsersaInfo(msg)
attrs, err := nl.ParseRouteAttr(m[nl.SizeofXfrmUsersaInfo:])
if err != nil {
return nil, err
}
for _, attr := range attrs {
switch attr.Attr.Type {
case nl.XFRMA_ALG_AUTH, nl.XFRMA_ALG_CRYPT:
var resAlgo *XfrmStateAlgo
if attr.Attr.Type == nl.XFRMA_ALG_AUTH {
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
resAlgo = state.Auth
} else {
state.Crypt = new(XfrmStateAlgo)
resAlgo = state.Crypt
}
algo := nl.DeserializeXfrmAlgo(attr.Value[:])
(*resAlgo).Name = nl.BytesToString(algo.AlgName[:])
(*resAlgo).Key = algo.AlgKey
case nl.XFRMA_ALG_AUTH_TRUNC:
if state.Auth == nil {
state.Auth = new(XfrmStateAlgo)
}
algo := nl.DeserializeXfrmAlgoAuth(attr.Value[:])
state.Auth.Name = nl.BytesToString(algo.AlgName[:])
state.Auth.Key = algo.AlgKey
state.Auth.TruncateLen = int(algo.AlgTruncLen)
case nl.XFRMA_ALG_AEAD:
state.Aead = new(XfrmStateAlgo)
algo := nl.DeserializeXfrmAlgoAEAD(attr.Value[:])
state.Aead.Name = nl.BytesToString(algo.AlgName[:])
state.Aead.Key = algo.AlgKey
state.Aead.ICVLen = int(algo.AlgICVLen)
case nl.XFRMA_ENCAP:
encap := nl.DeserializeXfrmEncapTmpl(attr.Value[:])
state.Encap = new(XfrmStateEncap)
state.Encap.Type = EncapType(encap.EncapType)
state.Encap.SrcPort = int(nl.Swap16(encap.EncapSport))
state.Encap.DstPort = int(nl.Swap16(encap.EncapDport))
state.Encap.OriginalAddress = encap.EncapOa.ToIP()
case nl.XFRMA_MARK:
mark := nl.DeserializeXfrmMark(attr.Value[:])
state.Mark = new(XfrmMark)
state.Mark.Value = mark.Value
state.Mark.Mask = mark.Mask
case nl.XFRMA_OUTPUT_MARK:
state.OutputMark = int(native.Uint32(attr.Value))
case nl.XFRMA_IF_ID:
state.Ifid = int(native.Uint32(attr.Value))
}
}
return state, nil
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func XfrmStateFlush(proto Proto) error {
return pkgHandle.XfrmStateFlush(proto)
}
// XfrmStateFlush will flush the xfrm state on the system.
// proto = 0 means any transformation protocols
// Equivalent to: `ip xfrm state flush [ proto XFRM-PROTO ]`
func (h *Handle) XfrmStateFlush(proto Proto) error {
req := h.newNetlinkRequest(nl.XFRM_MSG_FLUSHSA, unix.NLM_F_ACK)
req.AddData(&nl.XfrmUsersaFlush{Proto: uint8(proto)})
_, err := req.Execute(unix.NETLINK_XFRM, 0)
return err
}
func limitsToLft(lmts XfrmStateLimits, lft *nl.XfrmLifetimeCfg) {
if lmts.ByteSoft != 0 {
lft.SoftByteLimit = lmts.ByteSoft
} else {
lft.SoftByteLimit = nl.XFRM_INF
}
if lmts.ByteHard != 0 {
lft.HardByteLimit = lmts.ByteHard
} else {
lft.HardByteLimit = nl.XFRM_INF
}
if lmts.PacketSoft != 0 {
lft.SoftPacketLimit = lmts.PacketSoft
} else {
lft.SoftPacketLimit = nl.XFRM_INF
}
if lmts.PacketHard != 0 {
lft.HardPacketLimit = lmts.PacketHard
} else {
lft.HardPacketLimit = nl.XFRM_INF
}
lft.SoftAddExpiresSeconds = lmts.TimeSoft
lft.HardAddExpiresSeconds = lmts.TimeHard
lft.SoftUseExpiresSeconds = lmts.TimeUseSoft
lft.HardUseExpiresSeconds = lmts.TimeUseHard
}
func lftToLimits(lft *nl.XfrmLifetimeCfg, lmts *XfrmStateLimits) {
*lmts = *(*XfrmStateLimits)(unsafe.Pointer(lft))
}
func curToStats(cur *nl.XfrmLifetimeCur, wstats *nl.XfrmStats, stats *XfrmStateStats) {
stats.Bytes = cur.Bytes
stats.Packets = cur.Packets
stats.AddTime = cur.AddTime
stats.UseTime = cur.UseTime
stats.ReplayWindow = wstats.ReplayWindow
stats.Replay = wstats.Replay
stats.Failed = wstats.IntegrityFailed
}
func xfrmUsersaInfoFromXfrmState(state *XfrmState) *nl.XfrmUsersaInfo {
msg := &nl.XfrmUsersaInfo{}
msg.Family = uint16(nl.GetIPFamily(state.Dst))
msg.Id.Daddr.FromIP(state.Dst)
msg.Saddr.FromIP(state.Src)
msg.Id.Proto = uint8(state.Proto)
msg.Mode = uint8(state.Mode)
msg.Id.Spi = nl.Swap32(uint32(state.Spi))
msg.Reqid = uint32(state.Reqid)
msg.ReplayWindow = uint8(state.ReplayWindow)
return msg
}