Files
openvision/go/examples/pose/main.go
2021-11-04 14:15:41 +08:00

162 lines
3.8 KiB
Go

package main
import (
"bytes"
"fmt"
"image"
"image/jpeg"
"log"
"os"
"os/user"
"path/filepath"
"strings"
"github.com/bububa/openvision/go/common"
"github.com/bububa/openvision/go/pose/detecter"
posedrawer "github.com/bububa/openvision/go/pose/drawer"
"github.com/bububa/openvision/go/pose/estimator"
)
func main() {
wd, _ := os.Getwd()
dataPath := cleanPath(wd, "~/go/src/github.com/bububa/openvision/data")
imgPath := filepath.Join(dataPath, "./images")
modelPath := filepath.Join(dataPath, "./models")
common.CreateGPUInstance()
defer common.DestroyGPUInstance()
cpuCores := common.GetBigCPUCount()
common.SetOMPThreads(cpuCores)
log.Printf("CPU big cores:%d\n", cpuCores)
for did, d := range []detecter.Detecter{
ultralightDetector(modelPath),
openposeDetector(modelPath),
} {
defer d.Destroy()
common.SetEstimatorThreads(d, cpuCores)
for mid, m := range []estimator.Estimator{
ultralightEstimator(modelPath),
moveNetEstimator(modelPath, estimator.MoveNetType_Lightning),
moveNetEstimator(modelPath, estimator.MoveNetType_Thunder),
} {
defer m.Destroy()
common.SetEstimatorThreads(d, cpuCores)
detect(d, m, imgPath, "ultralight-pose.jpg", did, mid)
}
}
}
func ultralightDetector(modelPath string) detecter.Detecter {
modelPath = filepath.Join(modelPath, "ultralight-pose/roi")
d := detecter.NewUltralight()
if err := d.LoadModel(modelPath); err != nil {
log.Fatalln(err)
}
return d
}
func openposeDetector(modelPath string) detecter.Detecter {
modelPath = filepath.Join(modelPath, "openpose")
d := detecter.NewOpenPose()
if err := d.LoadModel(modelPath); err != nil {
log.Fatalln(err)
}
return d
}
func ultralightEstimator(modelPath string) estimator.Estimator {
modelPath = filepath.Join(modelPath, "ultralight-pose/pose")
d := estimator.NewUltralight()
if err := d.LoadModel(modelPath); err != nil {
log.Fatalln(err)
}
return d
}
func moveNetEstimator(modelPath string, modelType estimator.MoveNetType) estimator.Estimator {
if modelType == estimator.MoveNetType_Lightning {
modelPath = filepath.Join(modelPath, "movenet/lightning")
} else {
modelPath = filepath.Join(modelPath, "movenet/thunder")
}
d := estimator.NewMoveNet(modelType)
if err := d.LoadModel(modelPath); err != nil {
log.Fatalln(err)
}
return d
}
func detect(d detecter.Detecter, m estimator.Estimator, imgPath string, filename string, did int, mid int) {
inPath := filepath.Join(imgPath, filename)
imgSrc, err := loadImage(inPath)
if err != nil {
log.Fatalln("load image failed,", err)
}
img := common.NewImage(imgSrc)
rois, err := d.Detect(img)
if err != nil {
log.Fatalln(err)
}
if !d.HasKeypoints() {
for idx, roi := range rois {
keypoints, err := m.ExtractKeypoints(img, roi.Rect)
if err != nil {
log.Fatalln(err)
}
rois[idx].Keypoints = keypoints
}
}
var useOpenPose bool
if did == 1 {
useOpenPose = true
}
outPath := filepath.Join(imgPath, "./results", fmt.Sprintf("pose-%d-%d-%s", did, mid, filename))
drawer := posedrawer.New()
out := drawer.Draw(img, rois, true, useOpenPose)
if err := saveImage(out, outPath); err != nil {
log.Fatalln(err)
}
}
func loadImage(filePath string) (image.Image, error) {
fn, err := os.Open(filePath)
if err != nil {
return nil, err
}
defer fn.Close()
img, _, err := image.Decode(fn)
if err != nil {
return nil, err
}
return img, nil
}
func saveImage(img image.Image, filePath string) error {
buf := new(bytes.Buffer)
if err := jpeg.Encode(buf, img, nil); err != nil {
return err
}
fn, err := os.Create(filePath)
if err != nil {
return err
}
defer fn.Close()
fn.Write(buf.Bytes())
return nil
}
func cleanPath(wd string, path string) string {
usr, _ := user.Current()
dir := usr.HomeDir
if path == "~" {
return dir
} else if strings.HasPrefix(path, "~/") {
return filepath.Join(dir, path[2:])
}
return filepath.Join(wd, path)
}