mirror of
https://github.com/impact-eintr/netstack.git
synced 2025-10-05 12:56:55 +08:00
256 lines
8.9 KiB
Go
256 lines
8.9 KiB
Go
// Copyright 2018 Google LLC
|
||
//
|
||
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
// you may not use this file except in compliance with the License.
|
||
// You may obtain a copy of the License at
|
||
//
|
||
// http://www.apache.org/licenses/LICENSE-2.0
|
||
//
|
||
// Unless required by applicable law or agreed to in writing, software
|
||
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
// See the License for the specific language governing permissions and
|
||
// limitations under the License.
|
||
|
||
package tcp
|
||
|
||
import (
|
||
"math"
|
||
"time"
|
||
)
|
||
|
||
// cubicState 存储与TCP CUBIC拥塞控制算法状态相关的变量。详见: https://tools.ietf.org/html/rfc8312.
|
||
type cubicState struct {
|
||
// wLastMax is the previous wMax value.
|
||
// 上次最大的拥塞窗口
|
||
wLastMax float64
|
||
|
||
// wMax is the value of the congestion window at the
|
||
// time of last congestion event.
|
||
// 上次拥塞时间时的拥塞窗口大小
|
||
wMax float64
|
||
|
||
// t denotes the time when the current congestion avoidance
|
||
// was entered.
|
||
// t 表进入拥塞避免阶段的时间。
|
||
t time.Time
|
||
|
||
// numCongestionEvents tracks the number of congestion events since last
|
||
// RTO.
|
||
// numCongestionEvents 跟踪自上次 RTO 以来的拥塞事件数。
|
||
numCongestionEvents int
|
||
|
||
// c is the cubic constant as specified in RFC8312. It's fixed at 0.4 as
|
||
// per RFC.
|
||
// 三次方函数的系数
|
||
c float64
|
||
|
||
// k is the time period that the above function takes to increase the
|
||
// current window size to W_max if there are no further congestion
|
||
// events and is calculated using the following equation:
|
||
// k是在没有其他拥塞事件时将当前窗口大小增加到W_max所需的时间段,并使用以下公式计算:
|
||
//
|
||
// K = cubic_root(W_max*(1-beta_cubic)/C) (Eq. 2)
|
||
k float64
|
||
|
||
// beta is the CUBIC multiplication decrease factor. that is, when a
|
||
// congestion event is detected, CUBIC reduces its cwnd to
|
||
// W_cubic(0)=W_max*beta_cubic.
|
||
// beta 是CUBIC乘法减少因子。也就是说,当检测到拥塞事件时,CUBIC将其cwnd减少到
|
||
beta float64
|
||
|
||
// wC is window computed by CUBIC at time t. It's calculated using the
|
||
// formula:
|
||
// wC 是由CUBIC在时间t计算的窗口。它使用公式计算:
|
||
//
|
||
// W_cubic(t) = C*(t-K)^3 + W_max (Eq. 1)
|
||
wC float64
|
||
|
||
// wEst is the window computed by CUBIC at time t+RTT i.e
|
||
// wEs t是CUBIC在时间 t+RTT 计算的窗口,即
|
||
// W_cubic(t+RTT).
|
||
wEst float64
|
||
|
||
s *sender
|
||
}
|
||
|
||
// newCubicCC returns a partially initialized cubic state with the constants
|
||
// beta and c set and t set to current time.
|
||
// newCubicCC 返回部分初始化的 cubic 状态,常量为beta和c,t为当前时间。
|
||
func newCubicCC(s *sender) *cubicState {
|
||
return &cubicState{
|
||
t: time.Now(),
|
||
beta: 0.7,
|
||
c: 0.4,
|
||
s: s,
|
||
}
|
||
}
|
||
|
||
// enterCongestionAvoidance is used to initialize cubic in cases where we exit
|
||
// SlowStart without a real congestion event taking place. This can happen when
|
||
// a connection goes back to slow start due to a retransmit and we exceed the
|
||
// previously lowered ssThresh without experiencing packet loss.
|
||
//
|
||
// Refer: https://tools.ietf.org/html/rfc8312#section-4.8
|
||
// enterCongestionAvoidance 用于在我们退出 SlowStart 而没有发生真正的拥塞事件的情况下初始化 cubic。
|
||
// 当连接由于重新传输而返回慢启动时会发生这种情况,并且我们超过先前降低的ssThresh而不会遇到丢包。
|
||
func (c *cubicState) enterCongestionAvoidance() {
|
||
// See: https://tools.ietf.org/html/rfc8312#section-4.7 &
|
||
// https://tools.ietf.org/html/rfc8312#section-4.8
|
||
// 初次进入拥塞避免,只记录当前拥塞避免的时间点,当前的窗口wMax=cwnd
|
||
if c.numCongestionEvents == 0 {
|
||
c.k = 0
|
||
c.t = time.Now()
|
||
c.wLastMax = c.wMax
|
||
c.wMax = float64(c.s.sndCwnd)
|
||
}
|
||
}
|
||
|
||
// updateSlowStart will update the congestion window as per the slow-start
|
||
// algorithm used by NewReno. If after adjusting the congestion window we cross
|
||
// the ssThresh then it will return the number of packets that must be consumed
|
||
// in congestion avoidance mode.
|
||
// updateSlowStart 将根据NewReno使用的慢启动算法更新拥塞窗口。
|
||
// 如果在调整拥塞窗口之后我们越过ssThresh,那么它将返回在拥塞避免模式下必须消耗的数据包的数量。
|
||
func (c *cubicState) updateSlowStart(packetsAcked int) int {
|
||
// Don't let the congestion window cross into the congestion
|
||
// avoidance range.
|
||
newcwnd := c.s.sndCwnd + packetsAcked
|
||
enterCA := false
|
||
if newcwnd >= c.s.sndSsthresh {
|
||
newcwnd = c.s.sndSsthresh
|
||
c.s.sndCAAckCount = 0
|
||
enterCA = true
|
||
}
|
||
|
||
packetsAcked -= newcwnd - c.s.sndCwnd
|
||
c.s.sndCwnd = newcwnd
|
||
if enterCA {
|
||
// 进入拥塞避免
|
||
c.enterCongestionAvoidance()
|
||
}
|
||
return packetsAcked
|
||
}
|
||
|
||
// Update updates cubic's internal state variables. It must be called on every
|
||
// ACK received.
|
||
// Refer: https://tools.ietf.org/html/rfc8312#section-4
|
||
// Update 更新 cubic 内部状态变量,每次收到ack都必须调用
|
||
func (c *cubicState) Update(packetsAcked int) {
|
||
if c.s.sndCwnd < c.s.sndSsthresh {
|
||
packetsAcked = c.updateSlowStart(packetsAcked)
|
||
if packetsAcked == 0 {
|
||
return
|
||
}
|
||
} else {
|
||
// 拥塞避免阶段
|
||
c.s.rtt.Lock()
|
||
srtt := c.s.rtt.srtt
|
||
c.s.rtt.Unlock()
|
||
c.s.sndCwnd = c.getCwnd(packetsAcked, c.s.sndCwnd, srtt)
|
||
}
|
||
}
|
||
|
||
// cubicCwnd computes the CUBIC congestion window after t seconds from last
|
||
// congestion event.
|
||
// cubicCwnd 在上次拥塞事件发生t秒后计算CUBIC拥塞窗口。
|
||
func (c *cubicState) cubicCwnd(t float64) float64 {
|
||
return c.c*math.Pow(t, 3.0) + c.wMax
|
||
}
|
||
|
||
// getCwnd returns the current congestion window as computed by CUBIC.
|
||
// Refer: https://tools.ietf.org/html/rfc8312#section-4
|
||
// getCwnd 返回由CUBIC计算的当前拥塞窗口。
|
||
func (c *cubicState) getCwnd(packetsAcked, sndCwnd int, srtt time.Duration) int {
|
||
elapsed := time.Since(c.t).Seconds()
|
||
|
||
// Compute the window as per Cubic after 'elapsed' time
|
||
// since last congestion event.
|
||
c.wC = c.cubicCwnd(elapsed - c.k)
|
||
|
||
// Compute the TCP friendly estimate of the congestion window.
|
||
c.wEst = c.wMax*c.beta + (3.0*((1.0-c.beta)/(1.0+c.beta)))*(elapsed/srtt.Seconds())
|
||
|
||
// Make sure in the TCP friendly region CUBIC performs at least
|
||
// as well as Reno.
|
||
if c.wC < c.wEst && float64(sndCwnd) < c.wEst {
|
||
// TCP Friendly region of cubic.
|
||
return int(c.wEst)
|
||
}
|
||
|
||
// In Concave/Convex region of CUBIC, calculate what CUBIC window
|
||
// will be after 1 RTT and use that to grow congestion window
|
||
// for every ack.
|
||
tEst := (time.Since(c.t) + srtt).Seconds()
|
||
wtRtt := c.cubicCwnd(tEst - c.k)
|
||
// As per 4.3 for each received ACK cwnd must be incremented
|
||
// by (w_cubic(t+RTT) - cwnd/cwnd.
|
||
cwnd := float64(sndCwnd)
|
||
for i := 0; i < packetsAcked; i++ {
|
||
// Concave/Convex regions of cubic have the same formulas.
|
||
// See: https://tools.ietf.org/html/rfc8312#section-4.3
|
||
cwnd += (wtRtt - cwnd) / cwnd
|
||
}
|
||
return int(cwnd)
|
||
}
|
||
|
||
// HandleNDupAcks implements congestionControl.HandleNDupAcks.
|
||
// 收到三次重复ack,调用 HandleNDupAcks
|
||
func (c *cubicState) HandleNDupAcks() {
|
||
// See: https://tools.ietf.org/html/rfc8312#section-4.5
|
||
c.numCongestionEvents++
|
||
c.t = time.Now()
|
||
c.wLastMax = c.wMax
|
||
c.wMax = float64(c.s.sndCwnd)
|
||
|
||
c.fastConvergence()
|
||
c.reduceSlowStartThreshold()
|
||
}
|
||
|
||
// HandleRTOExpired implements congestionContrl.HandleRTOExpired.
|
||
// 发生重传时调用 HandleRTOExpired。
|
||
func (c *cubicState) HandleRTOExpired() {
|
||
// See: https://tools.ietf.org/html/rfc8312#section-4.6
|
||
c.t = time.Now()
|
||
c.numCongestionEvents = 0
|
||
c.wLastMax = c.wMax
|
||
c.wMax = float64(c.s.sndCwnd)
|
||
|
||
c.fastConvergence()
|
||
|
||
// We lost a packet, so reduce ssthresh.
|
||
c.reduceSlowStartThreshold()
|
||
|
||
// Reduce the congestion window to 1, i.e., enter slow-start. Per
|
||
// RFC 5681, page 7, we must use 1 regardless of the value of the
|
||
// initial congestion window.
|
||
c.s.sndCwnd = 1
|
||
}
|
||
|
||
// fastConvergence implements the logic for Fast Convergence algorithm as
|
||
// described in https://tools.ietf.org/html/rfc8312#section-4.6.
|
||
// 快速收敛
|
||
func (c *cubicState) fastConvergence() {
|
||
if c.wMax < c.wLastMax {
|
||
c.wLastMax = c.wMax
|
||
c.wMax = c.wMax * (1.0 + c.beta) / 2.0
|
||
} else {
|
||
c.wLastMax = c.wMax
|
||
}
|
||
// Recompute k as wMax may have changed.
|
||
c.k = math.Cbrt(c.wMax * (1 - c.beta) / c.c)
|
||
}
|
||
|
||
// PostRecovery implemements congestionControl.PostRecovery.
|
||
// 更新t为当前的时间,当发送方退出快速恢复阶段时,将调用 PostRecovery
|
||
func (c *cubicState) PostRecovery() {
|
||
c.t = time.Now()
|
||
}
|
||
|
||
// reduceSlowStartThreshold returns new SsThresh as described in
|
||
// https://tools.ietf.org/html/rfc8312#section-4.7.
|
||
// 按 cubic 的算法更新慢启动和拥塞避免之间的阈值
|
||
func (c *cubicState) reduceSlowStartThreshold() {
|
||
c.s.sndSsthresh = int(math.Max(float64(c.s.sndCwnd)*c.beta, 2.0))
|
||
}
|