package stack import ( "log" "netstack/ilist" "netstack/tcpip" "netstack/tcpip/buffer" "netstack/tcpip/header" "strings" "sync" "sync/atomic" ) // PrimaryEndpointBehavior 是端点首要行为的枚举 type PrimaryEndpointBehavior int const ( // CanBePrimaryEndpoint indicates the endpoint can be used as a primary // endpoint for new connections with no local address. This is the // default when calling NIC.AddAddress. CanBePrimaryEndpoint PrimaryEndpointBehavior = iota // FirstPrimaryEndpoint indicates the endpoint should be the first // primary endpoint considered. If there are multiple endpoints with // this behavior, the most recently-added one will be first. FirstPrimaryEndpoint // NeverPrimaryEndpoint indicates the endpoint should never be a // primary endpoint. NeverPrimaryEndpoint ) // 代表一个网卡对象 当我们创建好tap网卡对象后 我们使用NIC来代表它在我们自己的协议栈中的网卡对象 type NIC struct { stack *Stack // 每个网卡的惟一标识号 id tcpip.NICID // 网卡名,可有可无 name string // 链路层端 linkEP LinkEndpoint // 在链路层 这就是 fdbased.endpoint // 传输层的解复用 demux *transportDemuxer mu sync.RWMutex spoofing bool // 欺骗 promiscuous bool // 混杂模式 primary map[tcpip.NetworkProtocolNumber]*ilist.List // 网络协议号:网络端实现 // 网络层端的记录 IP:网络端实现 endpoints map[NetworkEndpointID]*referencedNetworkEndpoint // 子网的记录 subnets []tcpip.Subnet } // 创建新的网卡对象 func newNIC(stack *Stack, id tcpip.NICID, name string, ep LinkEndpoint) *NIC { return &NIC{ stack: stack, id: id, name: name, linkEP: ep, demux: newTransportDemuxer(stack), // NOTE 注册网卡自己的传输层分流器 primary: make(map[tcpip.NetworkProtocolNumber]*ilist.List), endpoints: make(map[NetworkEndpointID]*referencedNetworkEndpoint), } } func (n *NIC) attachLinkEndpoint() { n.linkEP.Attach(n) } // setPromiscuousMode enables or disables promiscuous mode. // 设备网卡为混杂模式 func (n *NIC) setPromiscuousMode(enable bool) { n.mu.Lock() n.promiscuous = enable n.mu.Unlock() } // 判断网卡是否开启混杂模式 func (n *NIC) isPromiscuousMode() bool { n.mu.RLock() rv := n.promiscuous n.mu.RUnlock() return rv } // 在NIC上添加addr地址,注册和初始化网络层协议 // 相当于给网卡添加ip地址 func (n *NIC) addAddressLocked(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address, peb PrimaryEndpointBehavior, replace bool) (*referencedNetworkEndpoint, *tcpip.Error) { netProto, ok := n.stack.networkProtocols[protocol] if !ok { log.Println("添加失败") return nil, tcpip.ErrUnknownProtocol } // 比如netProto是ipv4 会调用ipv4.NewEndpoint 新建一个网络端 ep, err := netProto.NewEndpoint(n.id, addr, n.stack, n, n.linkEP) if err != nil { return nil, err } log.Printf("基于[%d]协议 为 #%d 网卡 添加网络层实现 并绑定地址到: %s\n", netProto.Number(), n.id, ep.ID().LocalAddress) // 获取网络层端的id 其实就是ip地址 id := *ep.ID() if ref, ok := n.endpoints[id]; ok { // 不是替换 且该id已经存在 if !replace { return nil, tcpip.ErrDuplicateAddress } n.removeEndpointLocked(ref) // 这里被调用的时候已经上过锁了 NOTE } ref := &referencedNetworkEndpoint{ refs: 1, ep: ep, nic: n, protocol: protocol, holdsInsertRef: true, } // Set up cache if link address resolution exists for this protocol. if n.linkEP.Capabilities()&CapabilityResolutionRequired != 0 { if _, ok := n.stack.linkAddrResolvers[protocol]; ok { ref.linkCache = n.stack } } // 注册该网络端 n.endpoints[id] = ref l, ok := n.primary[protocol] if !ok { l = &ilist.List{} n.primary[protocol] = l } switch peb { case CanBePrimaryEndpoint: l.PushBack(ref) // 目前走这一支 case FirstPrimaryEndpoint: l.PushFront(ref) } return ref, nil } func (n *NIC) AddAddress(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address) *tcpip.Error { return n.AddAddressWithOptions(protocol, addr, CanBePrimaryEndpoint) } func (n *NIC) AddAddressWithOptions(protocol tcpip.NetworkProtocolNumber, addr tcpip.Address, peb PrimaryEndpointBehavior) *tcpip.Error { n.mu.Lock() _, err := n.addAddressLocked(protocol, addr, peb, false) n.mu.Unlock() return err } // 删除一个网络端 func (n *NIC) removeEndpointLocked(r *referencedNetworkEndpoint) { id := *r.ep.ID() // Nothing to do if the reference has already been replaced with a // different one. if n.endpoints[id] != r { return } if r.holdsInsertRef { panic("Reference count dropped to zero before being removed") } delete(n.endpoints, id) wasInList := r.Next() != nil || r.Prev() != nil || r == n.primary[r.protocol].Front() if wasInList { n.primary[r.protocol].Remove(r) } r.ep.Close() } func (n *NIC) removeEndpoint(r *referencedNetworkEndpoint) { n.mu.Lock() n.removeEndpointLocked(r) n.mu.Unlock() } // primaryEndpoint returns the primary endpoint of n for the given network // protocol. // 根据网络层协议号找到对应的网络层端 func (n *NIC) primaryEndpoint(protocol tcpip.NetworkProtocolNumber) *referencedNetworkEndpoint { n.mu.RLock() defer n.mu.RUnlock() list := n.primary[protocol] if list == nil { return nil } for e := list.Front(); e != nil; e = e.Next() { r := e.(*referencedNetworkEndpoint) // TODO: allow broadcast address when SO_BROADCAST is set. switch r.ep.ID().LocalAddress { case header.IPv4Broadcast, header.IPv4Any: continue } if r.tryIncRef() { return r } } return nil } // 根据address参数找到对应的网络层端 func (n *NIC) findEndpoint(protocol tcpip.NetworkProtocolNumber, address tcpip.Address, peb PrimaryEndpointBehavior) *referencedNetworkEndpoint { id := NetworkEndpointID{address} n.mu.RLock() ref := n.endpoints[id] if ref != nil && !ref.tryIncRef() { // 尝试去使用这个网络端实现 ref = nil } spoofing := n.spoofing n.mu.RUnlock() if ref != nil || !spoofing { return ref } // Try again with the lock in exclusive mode. If we still can't get the // endpoint, create a new "temporary" endpoint. It will only exist while // there's a route through it. n.mu.Lock() ref = n.endpoints[id] if ref == nil || !ref.tryIncRef() { ref, _ = n.addAddressLocked(protocol, address, peb, true) if ref != nil { ref.holdsInsertRef = false } } n.mu.Unlock() return ref } // AddSubnet adds a new subnet to n, so that it starts accepting packets // targeted at the given address and network protocol. // AddSubnet向n添加一个新子网,以便它开始接受针对给定地址和网络协议的数据包。 func (n *NIC) AddSubnet(protocol tcpip.NetworkProtocolNumber, subnet tcpip.Subnet) { n.mu.Lock() n.subnets = append(n.subnets, subnet) n.mu.Unlock() } // RemoveSubnet removes the given subnet from n. // 从n中删除一个子网 func (n *NIC) RemoveSubnet(subnet tcpip.Subnet) { n.mu.Lock() // Use the same underlying array. tmp := n.subnets[:0] for _, sub := range n.subnets { if sub != subnet { tmp = append(tmp, sub) } } n.subnets = tmp n.mu.Unlock() } // ContainsSubnet reports whether this NIC contains the given subnet. // 判断 subnet 这个子网是否在该网卡下 func (n *NIC) ContainsSubnet(subnet tcpip.Subnet) bool { for _, s := range n.Subnets() { if s == subnet { return true } } return false } // Subnets returns the Subnets associated with this NIC. // 获取该网卡的所有子网 func (n *NIC) Subnets() []tcpip.Subnet { n.mu.RLock() defer n.mu.RUnlock() sns := make([]tcpip.Subnet, 0, len(n.subnets)+len(n.endpoints)) for nid := range n.endpoints { sn, err := tcpip.NewSubnet(nid.LocalAddress, tcpip.AddressMask(strings.Repeat("\xff", len(nid.LocalAddress)))) if err != nil { // This should never happen as the mask has been carefully crafted to // match the address. panic("Invalid endpoint subnet: " + err.Error()) } sns = append(sns, sn) } return append(sns, n.subnets...) } // RemoveAddress removes an address from n. func (n *NIC) RemoveAddress(addr tcpip.Address) *tcpip.Error { n.mu.Lock() r := n.endpoints[NetworkEndpointID{addr}] if r == nil || !r.holdsInsertRef { n.mu.Unlock() return tcpip.ErrBadLocalAddress } r.holdsInsertRef = false n.mu.Unlock() r.decRef() return nil } // DeliverNetworkPacket 当 NIC 从物理接口接收数据包时,将调用函数 DeliverNetworkPacket,用来分发网络层数据包。 // 比如 protocol 是 arp 协议号,那么会找到arp.HandlePacket来处理数据报。 // 简单来说就是根据网络层协议和目的地址来找到相应的网络层端,将网络层数据发给它, // 当前实现的网络层协议有 arp、ipv4 和 ipv6。 func (n *NIC) DeliverNetworkPacket(linkEP LinkEndpoint, remoteLinkAddr, localLinkAddr tcpip.LinkAddress, protocol tcpip.NetworkProtocolNumber, vv buffer.VectorisedView) { netProto, ok := n.stack.networkProtocols[protocol] if !ok { n.stack.stats.UnknownProtocolRcvdPackets.Increment() return } if netProto.Number() == header.IPv4ProtocolNumber || netProto.Number() == header.IPv6ProtocolNumber { n.stack.stats.IP.PacketsReceived.Increment() } if len(vv.First()) < netProto.MinimumPacketSize() { n.stack.stats.MalformedRcvdPackets.Increment() return } src, dst := netProto.ParseAddresses(vv.First()) log.Printf("网卡[%v]准备从 [%s] 向 [%s] 分发数据: %v\n", linkEP.LinkAddress(), src, dst, func() []byte { if len(vv.ToView()) > 64 { return vv.ToView()[:64] } return vv.ToView() }()) // 根据网络协议和数据包的目的地址,找到网络端 // 然后将数据包分发给网络层 if ref := n.getRef(protocol, dst); ref != nil { r := makeRoute(protocol, dst, src, linkEP.LinkAddress(), ref) r.RemoteLinkAddress = remoteLinkAddr log.Println("准备前往 IP 将本地和远端的MAC、IP 保存在路由中 以便协议栈使用", r.LocalLinkAddress, r.RemoteLinkAddress, r.LocalAddress, r.RemoteAddress) ref.ep.HandlePacket(&r, vv) ref.decRef() return } if n.stack.Forwarding() { r, err := n.stack.FindRoute(0, "", dst, protocol) if err != nil { n.stack.stats.IP.InvalidAddressesReceived.Increment() return } defer r.Release() r.LocalLinkAddress = n.linkEP.LinkAddress() r.RemoteLinkAddress = remoteLinkAddr // Found a NIC. n := r.ref.nic n.mu.RLock() ref, ok := n.endpoints[NetworkEndpointID{dst}] n.mu.RUnlock() if ok && ref.tryIncRef() { ref.ep.HandlePacket(&r, vv) ref.decRef() } else { // n doesn't have a destination endpoint. // Send the packet out of n. hdr := buffer.NewPrependableFromView(vv.First()) vv.RemoveFirst() n.linkEP.WritePacket(&r, hdr, vv, protocol) } return } n.stack.stats.IP.InvalidAddressesReceived.Increment() } // 根据协议类型和目标地址,找出关联的Endpoint func (n *NIC) getRef(protocol tcpip.NetworkProtocolNumber, dst tcpip.Address) *referencedNetworkEndpoint { id := NetworkEndpointID{dst} n.mu.RLock() if ref, ok := n.endpoints[id]; ok && ref.tryIncRef() { log.Println("找到了目标网络端(绑定过的IP): ", id.LocalAddress) n.mu.RUnlock() return ref } promiscuous := n.promiscuous // Check if the packet is for a subnet this NIC cares about. if !promiscuous { for _, sn := range n.subnets { if sn.Contains(dst) { promiscuous = true break } } } n.mu.RUnlock() if promiscuous { // Try again with the lock in exclusive mode. If we still can't // get the endpoint, create a new "temporary" one. It will only // exist while there's a route through it. n.mu.Lock() if ref, ok := n.endpoints[id]; ok && ref.tryIncRef() { n.mu.Unlock() return ref } ref, err := n.addAddressLocked(protocol, dst, CanBePrimaryEndpoint, true) n.mu.Unlock() if err == nil { ref.holdsInsertRef = false return ref } } return nil } // DeliverTransportPacket delivers packets to the appropriate // transport protocol endpoint. func (n *NIC) DeliverTransportPacket(r *Route, protocol tcpip.TransportProtocolNumber, vv buffer.VectorisedView) { // 先查找协议栈是否注册了该传输层协议 state, ok := n.stack.transportProtocols[protocol] if !ok { n.stack.stats.UnknownProtocolRcvdPackets.Increment() return } transProto := state.proto // 如果报文长度比该协议最小报文长度还小,那么丢弃它 if len(vv.First()) < transProto.MinimumPacketSize() { n.stack.stats.MalformedRcvdPackets.Increment() return } // 解析报文得到源端口和目的端口 srcPort, dstPort, err := transProto.ParsePorts(vv.First()) if err != nil { n.stack.stats.MalformedRcvdPackets.Increment() return } log.Println("网卡准备分发传输层数据报", n.stack.transportProtocols, srcPort, dstPort) id := TransportEndpointID{dstPort, r.LocalAddress, srcPort, r.RemoteAddress} // 调用分流器,根据传输层协议和传输层id分发数据报文 if n.demux.deliverPacket(r, protocol, vv, id) { return } if n.stack.demux.deliverPacket(r, protocol, vv, id) { return } // Try to deliver to per-stack default handler. if state.defaultHandler != nil { if state.defaultHandler(r, id, vv) { return } } // We could not find an appropriate destination for this packet, so // deliver it to the global handler. if !transProto.HandleUnknownDestinationPacket(r, id, vv) { n.stack.stats.MalformedRcvdPackets.Increment() } } // DeliverTransportControlPacket delivers control packets to the // appropriate transport protocol endpoint. func (n *NIC) DeliverTransportControlPacket(local, remote tcpip.Address, net tcpip.NetworkProtocolNumber, trans tcpip.TransportProtocolNumber, typ ControlType, extra uint32, vv buffer.VectorisedView) { } func (n *NIC) ID() tcpip.NICID { return n.id } // 网络端引用 type referencedNetworkEndpoint struct { ilist.Entry refs int32 // 引用计数 ep NetworkEndpoint // 网络端实现 nic *NIC protocol tcpip.NetworkProtocolNumber // linkCache is set if link address resolution is enabled for this // protocol. Set to nil otherwise. linkCache LinkAddressCache // holdsInsertRef is protected by the NIC's mutex. It indicates whether // the reference count is biased by 1 due to the insertion of the // endpoint. It is reset to false when RemoveAddress is called on the // NIC. holdsInsertRef bool } func (r *referencedNetworkEndpoint) decRef() { if atomic.AddInt32(&r.refs, -1) == 0 { r.nic.removeEndpoint(r) } } func (r *referencedNetworkEndpoint) incRef() { atomic.AddInt32(&r.refs, 1) } func (r *referencedNetworkEndpoint) tryIncRef() bool { for { v := atomic.LoadInt32(&r.refs) if v == 0 { return false } if atomic.CompareAndSwapInt32(&r.refs, v, v+1) { return true } } }