一个简单的注册式netstack

This commit is contained in:
impact-eintr
2022-12-18 18:52:33 +08:00
parent 5b66b2f42d
commit 07e2e09adb
5 changed files with 221 additions and 80 deletions

View File

@@ -107,24 +107,15 @@ func (conn *TcpConn) SetSockOpt(opt interface{}) error {
return nil
}
// Listener tcp连接监听器
type Listener struct {
raddr tcpip.FullAddress
ep tcpip.Endpoint
wq *waiter.Queue
we *waiter.Entry
notifyCh chan struct{}
}
// Accept 封装tcp的accept操作
func (l *Listener) Accept() (*TcpConn, error) {
l.wq.EventRegister(l.we, waiter.EventIn|waiter.EventOut)
defer l.wq.EventUnregister(l.we)
func (conn *TcpConn) Accept() (*TcpConn, error) {
conn.wq.EventRegister(conn.we, waiter.EventIn|waiter.EventOut)
defer conn.wq.EventUnregister(conn.we)
for {
ep, wq, err := l.ep.Accept()
ep, wq, err := conn.ep.Accept()
if err != nil {
if err == tcpip.ErrWouldBlock {
<-l.notifyCh
<-conn.notifyCh
continue
}
return nil, fmt.Errorf("%s", err.String())
@@ -137,7 +128,7 @@ func (l *Listener) Accept() (*TcpConn, error) {
}
}
func tcpListen(s *stack.Stack, proto tcpip.NetworkProtocolNumber, addr tcpip.Address, localPort int) *Listener {
func tcpListen(s *stack.Stack, proto tcpip.NetworkProtocolNumber, addr tcpip.Address, localPort int) *TcpConn {
var wq waiter.Queue
// 新建一个tcp端
ep, err := s.NewEndpoint(tcp.ProtocolNumber, proto, &wq)
@@ -157,9 +148,18 @@ func tcpListen(s *stack.Stack, proto tcpip.NetworkProtocolNumber, addr tcpip.Add
}
waitEntry, notifyCh := waiter.NewChannelEntry(nil)
return &Listener{
return &TcpConn{
ep: ep,
wq: &wq,
we: &waitEntry,
notifyCh: notifyCh}
}
// Listener tcp连接监听器
type Listener struct {
raddr tcpip.FullAddress
ep tcpip.Endpoint
wq *waiter.Queue
we *waiter.Entry
notifyCh chan struct{}
}

View File

@@ -4,7 +4,6 @@ import (
"encoding/binary"
"flag"
"fmt"
"io"
"log"
"net"
"netstack/logger"
@@ -136,38 +135,35 @@ func main() {
//logger.SetFlags(logger.TCP)
go func() { // echo server
//time.Sleep(1 * time.Second)
//pid := Register()
//log.Fatal(pid)
pid := Register()
listener := tcpListen(s, proto, addr, localPort)
lfd := Listen(pid, addr, localPort)
done <- struct{}{}
for {
conn, err := listener.Accept()
cfd := Accept(pid, lfd)
if err != nil {
log.Println(err)
}
log.Println("服务端 建立连接")
go func() {
for {
time.Sleep(50 * time.Millisecond)
buf := make([]byte, 1024)
n, err := conn.Read(buf)
n, err := Read(pid, cfd, buf)
if err != nil {
log.Println(err)
break
}
logger.NOTICE(string(buf[:n]))
//conn.Write([]byte("Hello Client"))
Write(pid, cfd, []byte("Hello Client"))
}
}()
}
}()
<-done
go func() {
<-done
logger.NOTICE("客户端上线")
port := localPort
conn, err := Dial(s, header.IPv4ProtocolNumber, addr, port)
if err != nil {
@@ -185,13 +181,13 @@ func main() {
for i := 0; i < 1; i++ {
conn.Write([]byte("Hello Server!"))
//buf := make([]byte, 1024)
//n, err := conn.Read(buf)
//if err != nil {
// log.Println(err)
// break
//}
//logger.NOTICE(string(buf[:n]))
buf := make([]byte, 1024)
n, err := conn.Read(buf)
if err != nil {
log.Println(err)
break
}
logger.NOTICE(string(buf[:n]))
time.Sleep(1 * time.Second)
}
@@ -199,8 +195,6 @@ func main() {
conn.Close()
}()
close(done)
l, err := net.Listen("tcp", "127.0.0.1:9999")
if err != nil {
fmt.Println("Error listening:", err)
@@ -213,6 +207,7 @@ func main() {
TCPServer(l, rcv)
defer close(done)
c := make(chan os.Signal)
signal.Notify(c, os.Interrupt, os.Kill, syscall.SIGUSR1, syscall.SIGUSR2)
<-c
@@ -221,6 +216,7 @@ func main() {
const (
REGISTER byte = iota
LISTEN
ACCEPT
CONNECT
READ
WRITE
@@ -237,25 +233,81 @@ func Register() PID {
}
defer conn.Close()
_, err = conn.Write(make([]byte, 1<<20))
buf, _ := io.ReadAll(conn)
_, err = conn.Write([]byte{0})
buf := make([]byte, 2)
conn.Read(buf)
log.Fatal(buf)
return 3
return PID(binary.BigEndian.Uint16(buf))
}
// Listen 传递 pid addr port 监听+绑定地址
func Listen(pid PID, addr tcpip.Address, localPort int) FD {
// 连接本地netstack服务
conn, err := net.Dial("tcp", "127.0.0.1:9999")
if err != nil {
fmt.Println("err : ", err)
return 0
}
buf := make([]byte, 1024)
binary.BigEndian.PutUint16(buf[:4], uint16(pid))
// 1 pid port
buf := make([]byte, 5)
buf[0] = LISTEN
binary.BigEndian.PutUint16(buf[1:3], uint16(pid))
binary.BigEndian.PutUint16(buf[3:5], uint16(localPort))
conn.Write(buf)
buf, _ = io.ReadAll(conn)
log.Fatal(buf)
return 0
buf = make([]byte, 2)
conn.Read(buf)
return FD(binary.BigEndian.Uint16(buf))
}
// Accept 传递 pid + listenerfd 返回 connfd
func Accept(pid PID, lfd FD) FD {
conn, err := net.Dial("tcp", "127.0.0.1:9999")
if err != nil {
fmt.Println("err : ", err)
return 0
}
// 2 pid lfd
buf := make([]byte, 5)
buf[0] = ACCEPT
binary.BigEndian.PutUint16(buf[1:3], uint16(pid))
binary.BigEndian.PutUint16(buf[3:5], uint16(lfd))
conn.Write(buf)
buf = make([]byte, 2)
conn.Read(buf)
return FD(binary.BigEndian.Uint16(buf))
}
func Read(pid PID, cfd FD, rcv []byte) (int, error) {
conn, err := net.Dial("tcp", "127.0.0.1:9999")
if err != nil {
fmt.Println("err : ", err)
return 0, err
}
// 2 pid cfd
buf := make([]byte, 5)
buf[0] = READ
binary.BigEndian.PutUint16(buf[1:3], uint16(pid))
binary.BigEndian.PutUint16(buf[3:5], uint16(cfd))
conn.Write(buf)
return conn.Read(rcv)
}
func Write(pid PID, cfd FD, snd []byte) (int, error) {
conn, err := net.Dial("tcp", "127.0.0.1:9999")
if err != nil {
fmt.Println("err : ", err)
return 0, err
}
// 2 pid cfd
buf := make([]byte, 9)
buf[0] = WRITE
binary.BigEndian.PutUint16(buf[1:3], uint16(pid))
binary.BigEndian.PutUint16(buf[3:5], uint16(cfd))
binary.BigEndian.PutUint32(buf[5:9], uint32(len(snd)))
buf = append(buf, snd...)
conn.Write(buf)
return conn.Read(nil)
}

View File

@@ -3,11 +3,11 @@ package main
import (
"encoding/binary"
"fmt"
"io"
"log"
"net"
"netstack/logger"
"netstack/tcpip"
"netstack/tcpip/header"
"netstack/tcpip/stack"
"runtime"
"strings"
@@ -17,11 +17,17 @@ import (
// PID netstack PID
type PID uint16
var currPID uint32 = 2 // 0 1 2 用过了
var currPID uint32 = 1
// Socket in memory
type Socket struct { // 0 1 2 用过了
socket *TcpConn
}
// FD file descriptor
type FD uint16
var fds = make(map[PID][1024]FD, 8)
var fds = make(map[PID][]Socket, 8)
type TCPHandler interface {
Handle(net.Conn)
@@ -54,32 +60,34 @@ var transportPool = make(map[uint64]tcpip.Endpoint)
type RCV struct {
*stack.Stack
ep tcpip.Endpoint
addr tcpip.FullAddress
rcvBuf []byte
}
func (r *RCV) Handle(conn net.Conn) {
logger.NOTICE("RCV handle")
var err error
r.rcvBuf, err = io.ReadAll(conn)
_, err = conn.Read(r.rcvBuf)
if err != nil && len(r.rcvBuf) < 1 { // 操作码
panic(err)
}
logger.NOTICE("注意测试")
switch r.rcvBuf[0] {
case REGISTER:
conn.Write(r.Register())
conn.Write(r.register())
return
case LISTEN:
goto FAULT
conn.Write(r.listen())
return
case ACCEPT:
conn.Write(r.accept())
return
case CONNECT:
goto FAULT
case READ:
goto FAULT
conn.Write(r.read())
return
case WRITE:
goto FAULT
conn.Write(r.write())
return
case CLOSE:
goto FAULT
default:
@@ -90,30 +98,89 @@ FAULT:
logger.NOTICE("FAULT")
}
func (r *RCV) Listen() {
if len(r.rcvBuf) < 9 { // udp ip port
func (r *RCV) listen() []byte {
if len(r.rcvBuf) < 5 { // udp ip port
log.Println("Error: too few arg")
return
return nil
}
port := binary.BigEndian.Uint16(r.rcvBuf[7:9])
r.addr = tcpip.FullAddress{
NIC: 1,
Addr: tcpip.Address(r.rcvBuf[3:7]),
Port: port,
pid := binary.BigEndian.Uint16(r.rcvBuf[1:3])
port := binary.BigEndian.Uint16(r.rcvBuf[3:5])
listener := tcpListen(r.Stack, header.IPv4ProtocolNumber, "", int(port))
for i, v := range fds[PID(pid)] {
if i > 2 && v.socket == nil {
fds[PID(pid)][i] = Socket{listener}
b := make([]byte, 2)
binary.BigEndian.PutUint16(b[:2], uint16(i))
return b
}
r.ep.Bind(r.addr, nil)
}
panic("No Idle Space")
}
func (r *RCV) Connect() {
r.ep.Connect(tcpip.FullAddress{NIC: 1, Addr: "\xc0\xa8\x01\x02", Port: 8888})
func (r *RCV) accept() []byte {
if len(r.rcvBuf) < 5 { // udp ip port
log.Println("Error: too few arg")
return nil
}
pid := binary.BigEndian.Uint16(r.rcvBuf[1:3])
lfd := binary.BigEndian.Uint16(r.rcvBuf[3:5])
l := fds[PID(pid)][lfd]
conn, err := l.socket.Accept()
if err != nil {
log.Println(err)
}
for i, v := range fds[PID(pid)] {
if i > 2 && v.socket == nil {
fds[PID(pid)][i] = Socket{conn}
b := make([]byte, 2)
binary.BigEndian.PutUint16(b[:2], uint16(i))
return b
}
}
panic("No Idle Space")
}
func (r *RCV) Close() {
r.ep.Close()
func (r *RCV) connect() {
}
func (r *RCV) Register() []byte {
func (r *RCV) read() []byte {
if len(r.rcvBuf) < 5 { // opc pid cfd
log.Println("Error: too few arg")
return nil
}
pid := binary.BigEndian.Uint16(r.rcvBuf[1:3])
cfd := binary.BigEndian.Uint16(r.rcvBuf[3:5])
c := fds[PID(pid)][cfd]
buf := make([]byte, 1024)
c.socket.Read(buf)
return buf
}
func (r *RCV) write() []byte {
if len(r.rcvBuf) < 9 { // opc pid cfd length
log.Println("Error: too few arg")
return nil
}
pid := binary.BigEndian.Uint16(r.rcvBuf[1:3])
cfd := binary.BigEndian.Uint16(r.rcvBuf[3:5])
length := binary.BigEndian.Uint32(r.rcvBuf[5:9])
c := fds[PID(pid)][cfd]
c.socket.Write(r.rcvBuf[9 : 9+length])
return nil
}
func (r *RCV) close() {
}
// Register 注册pid
func (r *RCV) register() []byte {
pid := uint16(atomic.AddUint32(&currPID, 1))
fds[PID(pid)] = make([]Socket, 1024)
b := make([]byte, 2)
binary.BigEndian.PutUint16(b[:2], pid)
return b

View File

@@ -1,8 +1,6 @@
package loopback
import (
"fmt"
"netstack/logger"
"netstack/tcpip"
"netstack/tcpip/buffer"
"netstack/tcpip/stack"
@@ -49,10 +47,10 @@ func (e *endpoint) WritePacket(r *stack.Route, hdr buffer.Prependable, payload b
// TODO 这里整点活 在特定的情况下丢掉数据报 模拟网络阻塞
e.count++
if e.count == 5 || e.count == 7 || e.count == 9 {
logger.NOTICE(fmt.Sprintf("统计 %d 丢掉这个报文", e.count))
return nil
}
//if e.count == 5 || e.count == 7 || e.count == 9 {
// logger.NOTICE(fmt.Sprintf("统计 %d 丢掉这个报文", e.count))
// return nil
//}
// Because we're immediately turning around and writing the packet back to the
// rx path, we intentionally don't preserve the remote and local link
// addresses from the stack.Route we're passed.

View File

@@ -305,3 +305,27 @@ Silly Window Syndrome 翻译成中文就是“糊涂窗口综合症”。正如
## tcp的拥塞控制
节介绍 tcp 的拥塞控制,拥塞控制控制是 tcp 协议中最复杂问题之一,主要是如何探测链路已经拥塞?探测到拥塞后如何处理?
事实上,早期 TCP 实现是没有拥塞控制的,拥塞控制是网络出现问题后才提出的,在 1986 年互联网首次出现了一系列“拥堵事故”从伯克利实验室到加州大学伯克利分校的数据吞吐量从32 Kbps降至40 bps。然后在伯克利实验室的工作人员 Van_Jacobson 很好奇为何网络会拥堵并开始调查网络变得如此糟糕2 年后,他提出了拥塞算法。
我们知道 TCP 通过采样了 RTT 并计算 RTO但是如果网络上的延时突然增加超过了 RTO那么 TCP 对这个事做出的应对只有重传数据,但是,重传会导致网络的负担更重,于是会导致更大的延迟以及更多的丢包,这样就会进入恶性循环被不断地放大。试想一下,如果一个网络内有成千上万的 TCP 连接都这么行事那么马上就会形成“网络风暴”TCP 这个协议就会拖垮整个网络。这是一个灾难。
所以TCP 不能忽略网络上发生的事情,而一个劲的重发数据,对网络造成更大的伤害。于是就提出了拥塞控制,当拥塞发生的时候,要做自我牺牲,降低发送速率。就像交通阻塞一样,每个车都应该把路让出来,而不要再去抢路了。
要注意流量控制和拥塞控制的区别,流量控制只控制两个端的速度,它抑制发送端的速度,以便接收端能接收,但它并不关心中间链路的网络情况。而拥塞控制是关心中间链路的网络情况,防止过多的数据注入到网络中,以便防止中间的链路或路由不过载。
## 拥塞控制的算法
TCP 通过维护一个拥塞窗口(cwnd 全称 Congestion Window)来进行拥塞控制,拥塞控制的原则是,只要网络中没有出现拥塞,拥塞窗口的值就可以再增大一些,以便把更多的数据包发送出去,但只要网络出现拥塞,拥塞窗口的值就应该减小一些,以减少注入到网络中的数据包数。
拥塞控制主要是四个算法1慢启动2拥塞避免3快速重传4快速恢复。
这四个算法不是一天都搞出来的,这个四算法的发展经历了很时间,至今都还在优化中,仅实现这个四个算法的拥塞算法叫 Reno 算法。
### 慢启动slow start
### 拥塞避免congestion avoidance
### 快速重传Fast Retransmit
### 快速恢复Fast Recovery