#define _CRT_SECURE_NO_WARNINGS #include #include #include #include #include #include //#include #include using namespace cv; using namespace std; using namespace Ort; typedef struct BoxInfo { float x1; float y1; float x2; float y2; float score; int label; } BoxInfo; class NanoDet_Plus { public: NanoDet_Plus(string model_path, string classesFile, float nms_threshold, float objThreshold); void detect(Mat& cv_image); private: float score_threshold = 0.5; float nms_threshold = 0.5; vector class_names; int num_class; Mat resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left); vector input_image_; void normalize_(Mat img); void softmax_(const float* x, float* y, int length); void generate_proposal(vector& generate_boxes, const float* preds); void nms(vector& input_boxes); const bool keep_ratio = false; int inpWidth; int inpHeight; int reg_max; const int num_stages = 4; const int stride[4] = { 8,16,32,64 }; const float mean[3] = { 103.53, 116.28, 123.675 }; const float stds[3] = { 57.375, 57.12, 58.395 }; Env env = Env(ORT_LOGGING_LEVEL_ERROR, "nanodetplus"); Ort::Session *ort_session = nullptr; SessionOptions sessionOptions = SessionOptions(); vector input_names; vector output_names; vector> input_node_dims; // >=1 outputs vector> output_node_dims; // >=1 outputs }; NanoDet_Plus::NanoDet_Plus(string model_path, string classesFile, float nms_threshold, float objThreshold) { ifstream ifs(classesFile.c_str()); string line; while (getline(ifs, line)) this->class_names.push_back(line); this->num_class = class_names.size(); this->nms_threshold = nms_threshold; this->score_threshold = objThreshold; std::wstring widestr = std::wstring(model_path.begin(), model_path.end()); //OrtStatus* status = OrtSessionOptionsAppendExecutionProvider_CUDA(sessionOptions, 0); sessionOptions.SetGraphOptimizationLevel(ORT_ENABLE_BASIC); ort_session = new Session(env, widestr.c_str(), sessionOptions); size_t numInputNodes = ort_session->GetInputCount(); size_t numOutputNodes = ort_session->GetOutputCount(); AllocatorWithDefaultOptions allocator; for (int i = 0; i < numInputNodes; i++) { input_names.push_back(ort_session->GetInputName(i, allocator)); Ort::TypeInfo input_type_info = ort_session->GetInputTypeInfo(i); auto input_tensor_info = input_type_info.GetTensorTypeAndShapeInfo(); auto input_dims = input_tensor_info.GetShape(); input_node_dims.push_back(input_dims); } for (int i = 0; i < numOutputNodes; i++) { output_names.push_back(ort_session->GetOutputName(i, allocator)); Ort::TypeInfo output_type_info = ort_session->GetOutputTypeInfo(i); auto output_tensor_info = output_type_info.GetTensorTypeAndShapeInfo(); auto output_dims = output_tensor_info.GetShape(); output_node_dims.push_back(output_dims); /*for (int j = 0; j < output_dims.size(); j++) { cout << output_dims[j] << ","; } cout << endl;*/ } this->inpHeight = input_node_dims[0][2]; this->inpWidth = input_node_dims[0][3]; this->reg_max = (output_node_dims[0][output_node_dims[0].size() - 1] - this->num_class) / 4 - 1; } Mat NanoDet_Plus::resize_image(Mat srcimg, int *newh, int *neww, int *top, int *left) { int srch = srcimg.rows, srcw = srcimg.cols; *newh = this->inpHeight; *neww = this->inpWidth; Mat dstimg; if (this->keep_ratio && srch != srcw) { float hw_scale = (float)srch / srcw; if (hw_scale > 1) { *newh = this->inpHeight; *neww = int(this->inpWidth / hw_scale); resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA); *left = int((this->inpWidth - *neww) * 0.5); copyMakeBorder(dstimg, dstimg, 0, 0, *left, this->inpWidth - *neww - *left, BORDER_CONSTANT, 0); } else { *newh = (int)this->inpHeight * hw_scale; *neww = this->inpWidth; resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA); *top = (int)(this->inpHeight - *newh) * 0.5; copyMakeBorder(dstimg, dstimg, *top, this->inpHeight - *newh - *top, 0, 0, BORDER_CONSTANT, 0); } } else { resize(srcimg, dstimg, Size(*neww, *newh), INTER_AREA); } return dstimg; } void NanoDet_Plus::normalize_(Mat img) { // img.convertTo(img, CV_32F); int row = img.rows; int col = img.cols; this->input_image_.resize(row * col * img.channels()); for (int c = 0; c < 3; c++) { for (int i = 0; i < row; i++) { for (int j = 0; j < col; j++) { float pix = img.ptr(i)[j * 3 + c]; //this->input_image_[c * row * col + i * col + j] = (pix / 255.0 - mean[c] / 255.0) / (stds[c] / 255.0); this->input_image_[c * row * col + i * col + j] = (pix - mean[c]) / stds[c]; } } } } void NanoDet_Plus::softmax_(const float* x, float* y, int length) { float sum = 0; int i = 0; for (i = 0; i < length; i++) { y[i] = exp(x[i]); sum += y[i]; } for (i = 0; i < length; i++) { y[i] /= sum; } } void NanoDet_Plus::generate_proposal(vector& generate_boxes, const float* preds) { const int reg_1max = reg_max + 1; const int len = this->num_class + 4 * reg_1max; for (int n = 0; n < this->num_stages; n++) { const int stride_ = this->stride[n]; const int num_grid_y = (int)ceil((float)this->inpHeight / stride_); const int num_grid_x = (int)ceil((float)this->inpWidth / stride_); ////cout << "num_grid_x=" << num_grid_x << ",num_grid_y=" << num_grid_y << endl; for (int i = 0; i < num_grid_y; i++) { for (int j = 0; j < num_grid_x; j++) { int max_ind = 0; float max_score = 0; for (int k = 0; k < num_class; k++) { if (preds[k] > max_score) { max_score = preds[k]; max_ind = k; } } if (max_score >= score_threshold) { const float* pbox = preds + this->num_class; float dis_pred[4]; float* y = new float[reg_1max]; for (int k = 0; k < 4; k++) { softmax_(pbox + k * reg_1max, y, reg_1max); float dis = 0.f; for (int l = 0; l < reg_1max; l++) { dis += l * y[l]; } dis_pred[k] = dis * stride_; } delete[] y; /*float pb_cx = (j + 0.5f) * stride_ - 0.5; float pb_cy = (i + 0.5f) * stride_ - 0.5;*/ float pb_cx = j * stride_ ; float pb_cy = i * stride_; float x0 = pb_cx - dis_pred[0]; float y0 = pb_cy - dis_pred[1]; float x1 = pb_cx + dis_pred[2]; float y1 = pb_cy + dis_pred[3]; generate_boxes.push_back(BoxInfo{ x0, y0, x1, y1, max_score, max_ind }); } preds += len; } } } } void NanoDet_Plus::nms(vector& input_boxes) { sort(input_boxes.begin(), input_boxes.end(), [](BoxInfo a, BoxInfo b) { return a.score > b.score; }); vector vArea(input_boxes.size()); for (int i = 0; i < int(input_boxes.size()); ++i) { vArea[i] = (input_boxes.at(i).x2 - input_boxes.at(i).x1 + 1) * (input_boxes.at(i).y2 - input_boxes.at(i).y1 + 1); } vector isSuppressed(input_boxes.size(), false); for (int i = 0; i < int(input_boxes.size()); ++i) { if (isSuppressed[i]) { continue; } for (int j = i + 1; j < int(input_boxes.size()); ++j) { if (isSuppressed[j]) { continue; } float xx1 = (max)(input_boxes[i].x1, input_boxes[j].x1); float yy1 = (max)(input_boxes[i].y1, input_boxes[j].y1); float xx2 = (min)(input_boxes[i].x2, input_boxes[j].x2); float yy2 = (min)(input_boxes[i].y2, input_boxes[j].y2); float w = (max)(float(0), xx2 - xx1 + 1); float h = (max)(float(0), yy2 - yy1 + 1); float inter = w * h; float ovr = inter / (vArea[i] + vArea[j] - inter); if (ovr >= this->nms_threshold) { isSuppressed[j] = true; } } } // return post_nms; int idx_t = 0; input_boxes.erase(remove_if(input_boxes.begin(), input_boxes.end(), [&idx_t, &isSuppressed](const BoxInfo& f) { return isSuppressed[idx_t++]; }), input_boxes.end()); } void NanoDet_Plus::detect(Mat& srcimg) { int newh = 0, neww = 0, top = 0, left = 0; Mat cv_image = srcimg.clone(); Mat dst = this->resize_image(cv_image, &newh, &neww, &top, &left); this->normalize_(dst); array input_shape_{ 1, 3, this->inpHeight, this->inpWidth }; auto allocator_info = MemoryInfo::CreateCpu(OrtDeviceAllocator, OrtMemTypeCPU); Value input_tensor_ = Value::CreateTensor(allocator_info, input_image_.data(), input_image_.size(), input_shape_.data(), input_shape_.size()); // ¿ªÊ¼ÍÆÀí vector ort_outputs = ort_session->Run(RunOptions{ nullptr }, &input_names[0], &input_tensor_, 1, output_names.data(), output_names.size()); // ¿ªÊ¼ÍÆÀí /////generate proposals vector generate_boxes; const float* preds = ort_outputs[0].GetTensorMutableData(); generate_proposal(generate_boxes, preds); //// Perform non maximum suppression to eliminate redundant overlapping boxes with //// lower confidences nms(generate_boxes); float ratioh = (float)cv_image.rows / newh; float ratiow = (float)cv_image.cols / neww; for (size_t i = 0; i < generate_boxes.size(); ++i) { int xmin = (int)max((generate_boxes[i].x1 - left)*ratiow, 0.f); int ymin = (int)max((generate_boxes[i].y1 - top)*ratioh, 0.f); int xmax = (int)min((generate_boxes[i].x2 - left)*ratiow, (float)cv_image.cols); int ymax = (int)min((generate_boxes[i].y2 - top)*ratioh, (float)cv_image.rows); rectangle(srcimg, Point(xmin, ymin), Point(xmax, ymax), Scalar(0, 0, 255), 2); string label = format("%.2f", generate_boxes[i].score); label = this->class_names[generate_boxes[i].label] + ":" + label; putText(srcimg, label, Point(xmin, ymin - 5), FONT_HERSHEY_SIMPLEX, 0.75, Scalar(0, 255, 0), 1); } } int main() { NanoDet_Plus mynet("onnxmodel/nanodet-plus-m_320.onnx", "onnxmodel/coco.names", 0.5, 0.5); /// choice = ["onnxmodel/nanodet-plus-m_320.onnx", "onnxmodel/nanodet-plus-m_416.onnx", "onnxmodel/nanodet-plus-m-1.5x_320.onnx", "onnxmodel/nanodet-plus-m-1.5x_416.onnx"] string imgpath = "imgs/person.jpg"; Mat srcimg = imread(imgpath); mynet.detect(srcimg); static const string kWinName = "Deep learning object detection in ONNXRuntime"; namedWindow(kWinName, WINDOW_NORMAL); imshow(kWinName, srcimg); waitKey(0); destroyAllWindows(); }