mirror of
https://github.com/goplus/llgo.git
synced 2025-10-05 15:47:12 +08:00
add big.Int Set, Abs, Neg and add test it
This commit is contained in:
@@ -5,7 +5,7 @@ import (
|
||||
"math/big"
|
||||
)
|
||||
|
||||
func main() {
|
||||
func fib() {
|
||||
// Initialize two big ints with the first two numbers in the sequence.
|
||||
a := big.NewInt(0)
|
||||
b := big.NewInt(1)
|
||||
@@ -23,3 +23,30 @@ func main() {
|
||||
}
|
||||
fmt.Println(a) // 100-digit Fibonacci number
|
||||
}
|
||||
|
||||
func abs() {
|
||||
a := big.NewInt(64)
|
||||
b := big.NewInt(-52)
|
||||
a.Set(b)
|
||||
a.Abs(a)
|
||||
a.Set(big.NewInt(-164))
|
||||
a.Abs(a)
|
||||
fmt.Println("value: ", a.String())
|
||||
}
|
||||
|
||||
func neg() {
|
||||
fmt.Println("value: ", big.NewInt(-64).Neg(big.NewInt(-64)))
|
||||
fmt.Println("value: ", big.NewInt(64).Neg(big.NewInt(64)))
|
||||
fmt.Println("value: ", big.NewInt(0).Neg(big.NewInt(0)))
|
||||
}
|
||||
|
||||
func main() {
|
||||
a := big.NewInt(64)
|
||||
b := big.NewInt(-52)
|
||||
c := big.NewInt(54)
|
||||
fmt.Println("value:", a.Add(a, b))
|
||||
fmt.Println("value:", a.Sub(b, c))
|
||||
d := big.NewInt(10)
|
||||
e := big.NewInt(4)
|
||||
fmt.Println("value:", d.Mul(d, e))
|
||||
}
|
||||
|
@@ -81,9 +81,35 @@ func NewInt(x int64) *Int {
|
||||
return z.SetInt64(x)
|
||||
}
|
||||
|
||||
/*
|
||||
// Set sets z to x and returns z.
|
||||
func (z *Int) Set(x *Int) *Int {
|
||||
if z != x {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
b := (*openssl.BIGNUM)(x)
|
||||
a.SetWord(b.GetWord())
|
||||
a.SetNegative(b.IsNegative())
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Abs sets z to |x| (the absolute value of x) and returns z.
|
||||
func (z *Int) Abs(x *Int) *Int {
|
||||
z.Set(x)
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
a.SetNegative(0)
|
||||
return z
|
||||
}
|
||||
|
||||
// Neg sets z to -x and returns z.
|
||||
func (z *Int) Neg(x *Int) *Int {
|
||||
z.Set(x)
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
if a.IsNegative() != 0 {
|
||||
a.SetNegative(0)
|
||||
} else {
|
||||
a.SetNegative(1)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Bits provides raw (unchecked but fast) access to x by returning its
|
||||
@@ -92,6 +118,7 @@ func (z *Int) Set(x *Int) *Int {
|
||||
// Bits is intended to support implementation of missing low-level Int
|
||||
// functionality outside this package; it should be avoided otherwise.
|
||||
func (x *Int) Bits() []Word {
|
||||
panic("big.Bits")
|
||||
}
|
||||
|
||||
// SetBits provides raw (unchecked but fast) access to z by setting its
|
||||
@@ -100,17 +127,9 @@ func (x *Int) Bits() []Word {
|
||||
// SetBits is intended to support implementation of missing low-level Int
|
||||
// functionality outside this package; it should be avoided otherwise.
|
||||
func (z *Int) SetBits(abs []Word) *Int {
|
||||
panic("big.SetBits")
|
||||
}
|
||||
|
||||
// Abs sets z to |x| (the absolute value of x) and returns z.
|
||||
func (z *Int) Abs(x *Int) *Int {
|
||||
}
|
||||
|
||||
// Neg sets z to -x and returns z.
|
||||
func (z *Int) Neg(x *Int) *Int {
|
||||
}
|
||||
*/
|
||||
|
||||
// Add sets z to the sum x+y and returns z.
|
||||
func (z *Int) Add(x, y *Int) *Int {
|
||||
(*openssl.BIGNUM)(z).Add((*openssl.BIGNUM)(x), (*openssl.BIGNUM)(y))
|
||||
@@ -123,31 +142,100 @@ func (z *Int) Sub(x, y *Int) *Int {
|
||||
return z
|
||||
}
|
||||
|
||||
/*
|
||||
// Mul sets z to the product x*y and returns z.
|
||||
func (z *Int) Mul(x, y *Int) *Int {
|
||||
a := (*openssl.BIGNUM)(z)
|
||||
xx := (*openssl.BIGNUM)(x)
|
||||
yy := (*openssl.BIGNUM)(y)
|
||||
a.Mul(a, xx, yy, ctxGet())
|
||||
return z
|
||||
}
|
||||
|
||||
// MulRange sets z to the product of all integers
|
||||
// in the range [a, b] inclusively and returns z.
|
||||
// If a > b (empty range), the result is 1.
|
||||
func (z *Int) MulRange(a, b int64) *Int {
|
||||
switch {
|
||||
case a > b:
|
||||
return z.SetInt64(1) // empty range
|
||||
case a <= 0 && b >= 0:
|
||||
return z.SetInt64(0) // range includes 0
|
||||
}
|
||||
// a <= b && (b < 0 || a > 0)
|
||||
neg := false
|
||||
if a < 0 {
|
||||
neg = (b-a)&1 == 0
|
||||
a, b = -b, -a
|
||||
}
|
||||
zz := (*openssl.BIGNUM)(z)
|
||||
for i := a; i < b; i++ {
|
||||
zz.MulWord(openssl.BN_ULONG(i))
|
||||
}
|
||||
if neg {
|
||||
zz.SetNegative(1)
|
||||
} else {
|
||||
zz.SetNegative(0)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Binomial sets z to the binomial coefficient C(n, k) and returns z.
|
||||
func (z *Int) Binomial(n, k int64) *Int {
|
||||
if k > n {
|
||||
return z.SetInt64(0)
|
||||
}
|
||||
// reduce the number of multiplications by reducing k
|
||||
if k > n-k {
|
||||
k = n - k // C(n, k) == C(n, n-k)
|
||||
}
|
||||
// C(n, k) == n * (n-1) * ... * (n-k+1) / k * (k-1) * ... * 1
|
||||
// == n * (n-1) * ... * (n-k+1) / 1 * (1+1) * ... * k
|
||||
//
|
||||
// Using the multiplicative formula produces smaller values
|
||||
// at each step, requiring fewer allocations and computations:
|
||||
//
|
||||
// z = 1
|
||||
// for i := 0; i < k; i = i+1 {
|
||||
// z *= n-i
|
||||
// z /= i+1
|
||||
// }
|
||||
//
|
||||
// finally to avoid computing i+1 twice per loop:
|
||||
//
|
||||
// z = 1
|
||||
// i := 0
|
||||
// for i < k {
|
||||
// z *= n-i
|
||||
// i++
|
||||
// z /= i
|
||||
// }
|
||||
var N, K, i, t Int
|
||||
N.SetInt64(n)
|
||||
K.SetInt64(k)
|
||||
|
||||
intOne := NewInt(1)
|
||||
|
||||
z.Set(intOne)
|
||||
for i.Cmp(&K) < 0 {
|
||||
z.Mul(z, t.Sub(&N, &i))
|
||||
i.Add(&i, intOne)
|
||||
z.Quo(z, &i)
|
||||
}
|
||||
return z
|
||||
}
|
||||
|
||||
// Quo sets z to the quotient x/y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Quo implements truncated division (like Go); see QuoRem for more details.
|
||||
func (z *Int) Quo(x, y *Int) *Int {
|
||||
panic("big.Quo")
|
||||
}
|
||||
|
||||
// Rem sets z to the remainder x%y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Rem implements truncated modulus (like Go); see QuoRem for more details.
|
||||
func (z *Int) Rem(x, y *Int) *Int {
|
||||
panic("big.Rem")
|
||||
}
|
||||
|
||||
// QuoRem sets z to the quotient x/y and r to the remainder x%y
|
||||
@@ -162,18 +250,21 @@ func (z *Int) Rem(x, y *Int) *Int {
|
||||
// (See Daan Leijen, “Division and Modulus for Computer Scientists”.)
|
||||
// See DivMod for Euclidean division and modulus (unlike Go).
|
||||
func (z *Int) QuoRem(x, y, r *Int) (*Int, *Int) {
|
||||
panic("big.QuoRem")
|
||||
}
|
||||
|
||||
// Div sets z to the quotient x/y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Div implements Euclidean division (unlike Go); see DivMod for more details.
|
||||
func (z *Int) Div(x, y *Int) *Int {
|
||||
panic("big.Div")
|
||||
}
|
||||
|
||||
// Mod sets z to the modulus x%y for y != 0 and returns z.
|
||||
// If y == 0, a division-by-zero run-time panic occurs.
|
||||
// Mod implements Euclidean modulus (unlike Go); see DivMod for more details.
|
||||
func (z *Int) Mod(x, y *Int) *Int {
|
||||
panic("big.Mod")
|
||||
}
|
||||
|
||||
// DivMod sets z to the quotient x div y and m to the modulus x mod y
|
||||
@@ -191,8 +282,8 @@ func (z *Int) Mod(x, y *Int) *Int {
|
||||
// ACM press.)
|
||||
// See QuoRem for T-division and modulus (like Go).
|
||||
func (z *Int) DivMod(x, y, m *Int) (*Int, *Int) {
|
||||
panic("big.DivMod")
|
||||
}
|
||||
*/
|
||||
|
||||
// Cmp compares x and y and returns:
|
||||
//
|
||||
@@ -212,17 +303,19 @@ func (x *Int) CmpAbs(y *Int) int {
|
||||
return int((*openssl.BIGNUM)(x).Ucmp((*openssl.BIGNUM)(y)))
|
||||
}
|
||||
|
||||
/*
|
||||
// Int64 returns the int64 representation of x.
|
||||
// If x cannot be represented in an int64, the result is undefined.
|
||||
func (x *Int) Int64() int64 {
|
||||
panic("big.Int64")
|
||||
}
|
||||
|
||||
// Uint64 returns the uint64 representation of x.
|
||||
// If x cannot be represented in a uint64, the result is undefined.
|
||||
func (x *Int) Uint64() uint64 {
|
||||
panic("big.Uint64")
|
||||
}
|
||||
|
||||
/*
|
||||
// IsInt64 reports whether x can be represented as an int64.
|
||||
func (x *Int) IsInt64() bool {
|
||||
}
|
||||
|
Reference in New Issue
Block a user