Files
lancet/datastructure/tree/bstree.go

113 lines
3.1 KiB
Go

// Copyright 2021 dudaodong@gmail.com. All rights reserved.
// Use of this source code is governed by MIT license
// Package datastructure contains some data structure. BSTree is binary search tree.
package datastructure
import (
"math"
"github.com/duke-git/lancet/v2/constraints"
"github.com/duke-git/lancet/v2/datastructure"
)
// BSTree is a binary search tree data structure in which each node has at most two children,
// which are referred to as the left child and the right child.
// In BSTree: leftNode < rootNode < rightNode
// type T should implements Compare function in constraints.Comparator interface.
type BSTree[T any] struct {
root *datastructure.TreeNode[T]
comparator constraints.Comparator
}
// NewBSTree create a BSTree pointer
// param `comparator` is used to compare values in the tree
func NewBSTree[T any](rootData T, comparator constraints.Comparator) *BSTree[T] {
root := datastructure.NewTreeNode(rootData)
return &BSTree[T]{root, comparator}
}
// InsertNode insert data into BSTree
func (t *BSTree[T]) Insert(data T) {
root := t.root
newNode := datastructure.NewTreeNode(data)
if root == nil {
t.root = newNode
} else {
insertTreeNode(root, newNode, t.comparator)
}
}
// DeletetNode delete data into BSTree
func (t *BSTree[T]) Delete(data T) {
deleteTreeNode(t.root, data, t.comparator)
}
// NodeLevel get node level in BSTree
func (t *BSTree[T]) NodeLevel(node *datastructure.TreeNode[T]) int {
if node == nil {
return 0
}
left := float64(t.NodeLevel(node.Left))
right := float64(t.NodeLevel(node.Right))
return int(math.Max(left, right)) + 1
}
// PreOrderTraverse traverse tree node in pre order
func (t *BSTree[T]) PreOrderTraverse() []T {
return preOrderTraverse(t.root)
}
// PostOrderTraverse traverse tree node in post order
func (t *BSTree[T]) PostOrderTraverse() []T {
return postOrderTraverse(t.root)
}
// InOrderTraverse traverse tree node in mid order
func (t *BSTree[T]) InOrderTraverse() []T {
return inOrderTraverse(t.root)
}
// LevelOrderTraverse traverse tree node in level order
func (t *BSTree[T]) LevelOrderTraverse() []T {
traversal := make([]T, 0)
levelOrderTraverse(t.root, &traversal)
return traversal
}
// Depth returns the calculated depth of a binary saerch tree
func (t *BSTree[T]) Depth() int {
return calculateDepth(t.root, 0)
}
// IsSubTree checks if the tree `t` has `subTree` or not
func (t *BSTree[T]) HasSubTree(subTree *BSTree[T]) bool {
return hasSubTree(t.root, subTree.root, t.comparator)
}
func hasSubTree[T any](superTreeRoot, subTreeRoot *datastructure.TreeNode[T],
comparator constraints.Comparator) bool {
result := false
if superTreeRoot != nil && subTreeRoot != nil {
if comparator.Compare(superTreeRoot.Value, subTreeRoot.Value) == 0 {
result = isSubTree(superTreeRoot, subTreeRoot, comparator)
}
if !result {
result = hasSubTree(superTreeRoot.Left, subTreeRoot, comparator)
}
if !result {
result = hasSubTree(superTreeRoot.Right, subTreeRoot, comparator)
}
}
return result
}
// Print the bstree structure
func (t *BSTree[T]) Print() {
maxLevel := t.NodeLevel(t.root)
nodes := []*datastructure.TreeNode[T]{t.root}
printTreeNodes(nodes, 1, maxLevel)
}