Files
gpt4free/g4f/models.py
hlohaus d824d77d65 feat: Refactor PollinationsAI and ARTA provider structure
- Updated `PollinationsAI.py` to strip trailing periods and newlines from the prompt before encoding.
- Modified the encoding of the prompt to remove trailing percent signs after URL encoding.
- Simplified the audio response handling in `PollinationsAI.py` by removing unnecessary checks and yielding chunks directly.
- Renamed `ARTA.py` to `deprecated/ARTA.py` and updated import paths accordingly in `__init__.py`.
- Changed the `working` status of the `ARTA` class to `False` to indicate it is deprecated.
- Enhanced the `Video` class in `Video.py` to include aspect ratio handling and improved URL response caching.
- Updated the `RequestConfig` class to use a dictionary for storing URLs associated with prompts.
- Removed references to the `ARTA` provider in various files, including `models.py` and `any_provider.py`.
- Adjusted the `best_provider` assignments in `models.py` to exclude `ARTA` and include `HuggingFaceMedia` where applicable.
- Updated the response handling in `Video.py` to yield cached responses when available.
2025-06-19 00:42:41 +02:00

1025 lines
24 KiB
Python

from __future__ import annotations
from dataclasses import dataclass
from typing import Dict, List, Optional
from .Provider import IterListProvider, ProviderType
from .Provider import (
### No Auth Required ###
Blackbox,
Chatai,
Cloudflare,
Copilot,
DeepInfraChat,
Free2GPT,
FreeGpt,
HuggingSpace,
Grok,
DeepseekAI_JanusPro7b,
DeepSeekAPI,
ImageLabs,
LambdaChat,
OIVSCodeSer2,
OIVSCodeSer0501,
OpenAIFM,
PerplexityLabs,
Pi,
PollinationsAI,
PollinationsImage,
TeachAnything,
Together,
Websim,
WeWordle,
Yqcloud,
### Needs Auth ###
BingCreateImages,
CopilotAccount,
Gemini,
GeminiPro,
HailuoAI,
HuggingChat,
HuggingFace,
HuggingFaceMedia,
HuggingFaceAPI,
MetaAI,
MicrosoftDesigner,
OpenaiAccount,
OpenaiChat,
)
class ModelRegistry:
"""Simplified registry for automatic model discovery"""
_models: Dict[str, 'Model'] = {}
_aliases: Dict[str, str] = {}
@classmethod
def register(cls, model: 'Model', aliases: List[str] = None):
"""Register a model and optional aliases"""
if model.name:
cls._models[model.name] = model
if aliases:
for alias in aliases:
cls._aliases[alias] = model.name
@classmethod
def get(cls, name: str) -> Optional['Model']:
"""Get model by name or alias"""
if name in cls._models:
return cls._models[name]
if name in cls._aliases:
return cls._models[cls._aliases[name]]
return None
@classmethod
def all_models(cls) -> Dict[str, 'Model']:
"""Get all registered models"""
return cls._models.copy()
@classmethod
def clear(cls):
"""Clear registry (for testing)"""
cls._models.clear()
cls._aliases.clear()
@classmethod
def list_models_by_provider(cls, provider_name: str) -> List[str]:
"""List all models that use specific provider"""
return [name for name, model in cls._models.items()
if provider_name in str(model.best_provider)]
@classmethod
def validate_all_models(cls) -> Dict[str, List[str]]:
"""Validate all models and return issues"""
issues = {}
for name, model in cls._models.items():
model_issues = []
if not model.name:
model_issues.append("Empty name")
if not model.base_provider:
model_issues.append("Empty base_provider")
if model.best_provider is None:
model_issues.append("No best_provider")
if model_issues:
issues[name] = model_issues
return issues
@dataclass(unsafe_hash=True)
class Model:
"""
Represents a machine learning model configuration.
Attributes:
name (str): Name of the model.
base_provider (str): Default provider for the model.
best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
"""
name: str
base_provider: str
best_provider: ProviderType = None
def __post_init__(self):
"""Auto-register model after initialization"""
if self.name:
ModelRegistry.register(self)
@staticmethod
def __all__() -> list[str]:
"""Returns a list of all model names."""
return list(ModelRegistry.all_models().keys())
class ImageModel(Model):
pass
class AudioModel(Model):
pass
class VideoModel(Model):
pass
class VisionModel(Model):
pass
### Default ###
default = Model(
name = "",
base_provider = "",
best_provider = IterListProvider([
OIVSCodeSer0501,
OIVSCodeSer2,
Blackbox,
Copilot,
DeepInfraChat,
LambdaChat,
PollinationsAI,
Together,
Free2GPT,
FreeGpt,
Chatai,
WeWordle,
OpenaiChat,
Cloudflare,
])
)
default_vision = VisionModel(
name = "",
base_provider = "",
best_provider = IterListProvider([
Blackbox,
DeepInfraChat,
OIVSCodeSer2,
OIVSCodeSer0501,
PollinationsAI,
Together,
HuggingSpace,
GeminiPro,
HuggingFaceAPI,
CopilotAccount,
OpenaiAccount,
Gemini,
], shuffle=False)
)
# gpt-4
gpt_4 = Model(
name = 'gpt-4',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, PollinationsAI, Copilot, Yqcloud, WeWordle, OpenaiChat])
)
# gpt-4o
gpt_4o = VisionModel(
name = 'gpt-4o',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, PollinationsAI, OpenaiChat])
)
gpt_4o_mini = Model(
name = 'gpt-4o-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, OIVSCodeSer2, PollinationsAI, Chatai, OpenaiChat])
)
gpt_4o_mini_audio = AudioModel(
name = 'gpt-4o-mini-audio',
base_provider = 'OpenAI',
best_provider = PollinationsAI
)
gpt_4o_mini_tts = AudioModel(
name = 'gpt-4o-mini-tts',
base_provider = 'OpenAI',
best_provider = OpenAIFM
)
# o1
o1 = Model(
name = 'o1',
base_provider = 'OpenAI',
best_provider = IterListProvider([Copilot, OpenaiAccount])
)
o1_mini = Model(
name = 'o1-mini',
base_provider = 'OpenAI',
best_provider = OpenaiAccount
)
# o3
o3_mini = Model(
name = 'o3-mini',
base_provider = 'OpenAI',
best_provider = OpenaiChat
)
o3_mini_high = Model(
name = 'o3-mini-high',
base_provider = 'OpenAI',
best_provider = OpenaiAccount
)
# o4
o4_mini = Model(
name = 'o4-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsAI, OpenaiChat])
)
o4_mini_high = Model(
name = 'o4-mini-high',
base_provider = 'OpenAI',
best_provider = OpenaiChat
)
# gpt-4.1
gpt_4_1 = Model(
name = 'gpt-4.1',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsAI, OpenaiChat])
)
gpt_4_1_mini = Model(
name = 'gpt-4.1-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, OIVSCodeSer0501, PollinationsAI])
)
gpt_4_1_nano = Model(
name = 'gpt-4.1-nano',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, PollinationsAI])
)
gpt_4_5 = Model(
name = 'gpt-4.5',
base_provider = 'OpenAI',
best_provider = OpenaiChat
)
# dall-e
dall_e_3 = ImageModel(
name = 'dall-e-3',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsImage, CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages])
)
gpt_image = ImageModel(
name = 'gpt-image',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsImage])
)
### Meta ###
meta = Model(
name = "meta-ai",
base_provider = "Meta",
best_provider = MetaAI
)
# llama 2
llama_2_7b = Model(
name = "llama-2-7b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Cloudflare])
)
llama_2_70b = Model(
name = "llama-2-70b",
base_provider = "Meta Llama",
best_provider = Together
)
# llama-3
llama_3_8b = Model(
name = "llama-3-8b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Together, Cloudflare])
)
llama_3_70b = Model(
name = "llama-3-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Together])
)
# llama-3.1
llama_3_1_8b = Model(
name = "llama-3.1-8b",
base_provider = "Meta Llama",
best_provider = IterListProvider([DeepInfraChat, Together, Cloudflare])
)
llama_3_1_70b = Model(
name = "llama-3.1-70b",
base_provider = "Meta Llama",
best_provider = Together
)
llama_3_1_405b = Model(
name = "llama-3.1-405b",
base_provider = "Meta Llama",
best_provider = Together
)
# llama-3.2
llama_3_2_1b = Model(
name = "llama-3.2-1b",
base_provider = "Meta Llama",
best_provider = Cloudflare
)
llama_3_2_3b = Model(
name = "llama-3.2-3b",
base_provider = "Meta Llama",
best_provider = Together
)
llama_3_2_11b = VisionModel(
name = "llama-3.2-11b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Together, HuggingChat, HuggingFace])
)
llama_3_2_90b = Model(
name = "llama-3.2-90b",
base_provider = "Meta Llama",
best_provider = IterListProvider([DeepInfraChat, Together])
)
# llama-3.3
llama_3_3_70b = Model(
name = "llama-3.3-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([DeepInfraChat, LambdaChat, PollinationsAI, Together, HuggingChat, HuggingFace])
)
# llama-4
llama_4_scout = Model(
name = "llama-4-scout",
base_provider = "Meta Llama",
best_provider = IterListProvider([DeepInfraChat, LambdaChat, PollinationsAI, Together, Cloudflare])
)
llama_4_maverick = Model(
name = "llama-4-maverick",
base_provider = "Meta Llama",
best_provider = IterListProvider([DeepInfraChat, LambdaChat, Together])
)
### MistralAI ###
mistral_7b = Model(
name = "mistral-7b",
base_provider = "Mistral AI",
best_provider = Together
)
mixtral_8x7b = Model(
name = "mixtral-8x7b",
base_provider = "Mistral AI",
best_provider = Together
)
mixtral_8x22b = Model(
name = "mixtral-8x22b",
base_provider = "Mistral AI",
best_provider = DeepInfraChat
)
mistral_nemo = Model(
name = "mistral-nemo",
base_provider = "Mistral AI",
best_provider = IterListProvider([HuggingChat, HuggingFace])
)
mistral_small_24b = Model(
name = "mistral-small-24b",
base_provider = "Mistral AI",
best_provider = IterListProvider([DeepInfraChat, Together])
)
mistral_small_3_1_24b = Model(
name = "mistral-small-3.1-24b",
base_provider = "Mistral AI",
best_provider = PollinationsAI
)
### NousResearch ###
# hermes-2
hermes_2_dpo = Model(
name = "hermes-2-dpo",
base_provider = "NousResearch",
best_provider = Together
)
# phi-3.5
phi_3_5_mini = Model(
name = "phi-3.5-mini",
base_provider = "Microsoft",
best_provider = HuggingChat
)
# phi-4
phi_4 = Model(
name = "phi-4",
base_provider = "Microsoft",
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, HuggingSpace])
)
phi_4_multimodal = VisionModel(
name = "phi-4-multimodal",
base_provider = "Microsoft",
best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
)
phi_4_reasoning_plus = Model(
name = "phi-4-reasoning-plus",
base_provider = "Microsoft",
best_provider = DeepInfraChat
)
# wizardlm
wizardlm_2_7b = Model(
name = 'wizardlm-2-7b',
base_provider = 'Microsoft',
best_provider = DeepInfraChat
)
wizardlm_2_8x22b = Model(
name = 'wizardlm-2-8x22b',
base_provider = 'Microsoft',
best_provider = DeepInfraChat
)
### Google DeepMind ###
# gemini
gemini = Model(
name = 'gemini-2.0',
base_provider = 'Google',
best_provider = Gemini
)
# gemini-1.5
gemini_1_5_flash = Model(
name = 'gemini-1.5-flash',
base_provider = 'Google',
best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, GeminiPro])
)
gemini_1_5_pro = Model(
name = 'gemini-1.5-pro',
base_provider = 'Google',
best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, GeminiPro])
)
# gemini-2.0
gemini_2_0_flash = Model(
name = 'gemini-2.0-flash',
base_provider = 'Google',
best_provider = IterListProvider([Gemini, GeminiPro])
)
gemini_2_0_flash_thinking = Model(
name = 'gemini-2.0-flash-thinking',
base_provider = 'Google',
best_provider = IterListProvider([PollinationsAI, Gemini])
)
gemini_2_0_flash_thinking_with_apps = Model(
name = 'gemini-2.0-flash-thinking-with-apps',
base_provider = 'Google',
best_provider = Gemini
)
# gemini-2.5
gemini_2_5_flash = Model(
name = 'gemini-2.5-flash',
base_provider = 'Google',
best_provider = IterListProvider([PollinationsAI, Gemini])
)
gemini_2_5_pro = Model(
name = 'gemini-2.5-pro',
base_provider = 'Google',
best_provider = IterListProvider([Gemini])
)
# gemma-2
gemma_2_27b = Model(
name = 'gemma-2-27b',
base_provider = 'Google',
best_provider = Together
)
# gemma-3
gemma_3_12b = Model(
name = 'gemma-3-12b',
base_provider = 'Google',
best_provider = DeepInfraChat
)
gemma_3_27b = Model(
name = 'gemma-3-27b',
base_provider = 'Google',
best_provider = DeepInfraChat
)
### Blackbox AI ###
blackboxai = Model(
name = 'blackboxai',
base_provider = 'Blackbox AI',
best_provider = Blackbox
)
### CohereForAI ###
command_r = Model(
name = 'command-r',
base_provider = 'CohereForAI',
best_provider = HuggingSpace
)
command_r_plus = Model(
name = 'command-r-plus',
base_provider = 'CohereForAI',
best_provider = IterListProvider([PollinationsAI, HuggingSpace, HuggingChat])
)
command_r7b = Model(
name = 'command-r7b',
base_provider = 'CohereForAI',
best_provider = HuggingSpace
)
command_a = Model(
name = 'command-a',
base_provider = 'CohereForAI',
best_provider = HuggingSpace
)
### Qwen ###
# qwen-1.5
qwen_1_5_7b = Model(
name = 'qwen-1.5-7b',
base_provider = 'Qwen',
best_provider = Cloudflare
)
# qwen-2
qwen_2_72b = Model(
name = 'qwen-2-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace, Together])
)
qwen_2_vl_7b = VisionModel(
name = "qwen-2-vl-7b",
base_provider = 'Qwen',
best_provider = HuggingFaceAPI
)
qwen_2_vl_72b = VisionModel(
name = "qwen-2-vl-72b",
base_provider = 'Qwen',
best_provider = Together
)
# qwen-2.5
qwen_2_5 = Model(
name = 'qwen-2.5',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_2_5_7b = Model(
name = 'qwen-2.5-7b',
base_provider = 'Qwen',
best_provider = Together
)
qwen_2_5_72b = Model(
name = 'qwen-2.5-72b',
base_provider = 'Qwen',
best_provider = Together
)
qwen_2_5_coder_32b = Model(
name = 'qwen-2.5-coder-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([PollinationsAI, LambdaChat, Together, HuggingChat])
)
qwen_2_5_1m = Model(
name = 'qwen-2.5-1m',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_2_5_max = Model(
name = 'qwen-2.5-max',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_2_5_vl_72b = Model(
name = 'qwen-2.5-vl-72b',
base_provider = 'Qwen',
best_provider = Together
)
# qwen3
qwen_3_235b = Model(
name = 'qwen-3-235b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, Together, HuggingSpace])
)
qwen_3_32b = Model(
name = 'qwen-3-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, LambdaChat, HuggingSpace])
)
qwen_3_30b = Model(
name = 'qwen-3-30b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
)
qwen_3_14b = Model(
name = 'qwen-3-14b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
)
qwen_3_4b = Model(
name = 'qwen-3-4b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_3_1_7b = Model(
name = 'qwen-3-1.7b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_3_0_6b = Model(
name = 'qwen-3-0.6b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
### qwq/qvq ###
qwq_32b = Model(
name = 'qwq-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, Together, HuggingChat])
)
### DeepSeek ###
# deepseek-v3
deepseek_v3 = Model(
name = 'deepseek-v3',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, Together])
)
# deepseek-r1
deepseek_r1 = Model(
name = 'deepseek-r1',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, LambdaChat, PollinationsAI, Together, HuggingChat, HuggingFace])
)
deepseek_r1_turbo = Model(
name = 'deepseek-r1-turbo',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
deepseek_r1_distill_llama_70b = Model(
name = 'deepseek-r1-distill-llama-70b',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, Together, PollinationsAI])
)
deepseek_r1_distill_qwen_1_5b = Model(
name = 'deepseek-r1-distill-qwen-1.5b',
base_provider = 'DeepSeek',
best_provider = Together
)
deepseek_r1_distill_qwen_14b = Model(
name = 'deepseek-r1-distill-qwen-14b',
base_provider = 'DeepSeek',
best_provider = Together
)
deepseek_r1_distill_qwen_32b = Model(
name = 'deepseek-r1-distill-qwen-32b',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, PollinationsAI])
)
# deepseek-v2
deepseek_prover_v2 = Model(
name = 'deepseek-prover-v2',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
deepseek_prover_v2_671b = Model(
name = 'deepseek-prover-v2-671b',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
# deepseek-v3-0324
deepseek_v3_0324 = Model(
name = 'deepseek-v3-0324',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, Together, LambdaChat, PollinationsAI])
)
# deepseek-r1-0528
deepseek_r1_0528 = Model(
name = 'deepseek-r1-0528',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, LambdaChat, Together])
)
# janus
janus_pro_7b = VisionModel(
name = DeepseekAI_JanusPro7b.default_model,
base_provider = 'DeepSeek',
best_provider = DeepseekAI_JanusPro7b
)
### x.ai ###
grok_2 = Model(
name = 'grok-2',
base_provider = 'x.ai',
best_provider = Grok
)
grok_3 = Model(
name = 'grok-3',
base_provider = 'x.ai',
best_provider = Grok
)
grok_3_mini = Model(
name = 'grok-3-mini',
base_provider = 'x.ai',
best_provider = PollinationsAI
)
grok_3_r1 = Model(
name = 'grok-3-r1',
base_provider = 'x.ai',
best_provider = Grok
)
### Perplexity AI ###
sonar = Model(
name = 'sonar',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_pro = Model(
name = 'sonar-pro',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_reasoning = Model(
name = 'sonar-reasoning',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_reasoning_pro = Model(
name = 'sonar-reasoning-pro',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
r1_1776 = Model(
name = 'r1-1776',
base_provider = 'Perplexity AI',
best_provider = IterListProvider([Together, PerplexityLabs])
)
### Nvidia ###
nemotron_70b = Model(
name = 'nemotron-70b',
base_provider = 'Nvidia',
best_provider = IterListProvider([LambdaChat, Together, HuggingChat, HuggingFace])
)
### Cognitive Computations ###
# dolphin-2
dolphin_2_6 = Model(
name = "dolphin-2.6",
base_provider = "Cognitive Computations",
best_provider = DeepInfraChat
)
dolphin_2_9 = Model(
name = "dolphin-2.9",
base_provider = "Cognitive Computations",
best_provider = DeepInfraChat
)
### DeepInfra ###
airoboros_70b = Model(
name = "airoboros-70b",
base_provider = "DeepInfra",
best_provider = DeepInfraChat
)
### Lizpreciatior ###
lzlv_70b = Model(
name = "lzlv-70b",
base_provider = "Lizpreciatior",
best_provider = DeepInfraChat
)
### Liquid AI ###
lfm_40b = Model(
name = "lfm-40b",
base_provider = "Liquid AI",
best_provider = LambdaChat
)
### Uncensored AI ###
evil = Model(
name = 'evil',
base_provider = 'Evil Mode - Experimental',
best_provider = PollinationsAI
)
sdxl_turbo = ImageModel(
name = 'sdxl-turbo',
base_provider = 'Stability AI',
best_provider = IterListProvider([HuggingFaceMedia, PollinationsImage, ImageLabs])
)
sd_3_5_large = ImageModel(
name = 'sd-3.5-large',
base_provider = 'Stability AI',
best_provider = IterListProvider([HuggingFaceMedia, HuggingSpace])
)
### Black Forest Labs ###
flux = ImageModel(
name = 'flux',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([HuggingFaceMedia, PollinationsImage, Websim, Together, HuggingSpace])
)
flux_pro = ImageModel(
name = 'flux-pro',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, Together])
)
flux_dev = ImageModel(
name = 'flux-dev',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, HuggingSpace, Together, HuggingChat, HuggingFace])
)
flux_schnell = ImageModel(
name = 'flux-schnell',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, Together, HuggingChat, HuggingFace])
)
flux_redux = ImageModel(
name = 'flux-redux',
base_provider = 'Black Forest Labs',
best_provider = Together
)
flux_depth = ImageModel(
name = 'flux-depth',
base_provider = 'Black Forest Labs',
best_provider = Together
)
flux_canny = ImageModel(
name = 'flux-canny',
base_provider = 'Black Forest Labs',
best_provider = Together
)
flux_kontext_max = ImageModel(
name = 'flux-kontext-max',
base_provider = 'Black Forest Labs',
best_provider = Together
)
flux_dev_lora = ImageModel(
name = 'flux-dev-lora',
base_provider = 'Black Forest Labs',
best_provider = Together
)
flux_kontext_pro = ImageModel(
name = 'flux-kontext-pro',
base_provider = 'Black Forest Labs',
best_provider = Together
)
class ModelUtils:
"""
Utility class for mapping string identifiers to Model instances.
Now uses automatic discovery instead of manual mapping.
"""
convert: Dict[str, Model] = {}
@classmethod
def refresh(cls):
"""Refresh the model registry and update convert"""
cls.convert = ModelRegistry.all_models()
@classmethod
def get_model(cls, name: str) -> Optional[Model]:
"""Get model by name or alias"""
return ModelRegistry.get(name)
@classmethod
def register_alias(cls, alias: str, model_name: str):
"""Register an alias for a model"""
ModelRegistry._aliases[alias] = model_name
# Register special aliases after all models are created
ModelRegistry._aliases["gemini"] = "gemini-2.0"
# Fill the convert dictionary
ModelUtils.convert = ModelRegistry.all_models()
# Demo models configuration
demo_models = {
llama_3_2_11b.name: [llama_3_2_11b, [HuggingChat]],
qwen_2_vl_7b.name: [qwen_2_vl_7b, [HuggingFaceAPI]],
deepseek_r1.name: [deepseek_r1, [HuggingFace, PollinationsAI]],
janus_pro_7b.name: [janus_pro_7b, [HuggingSpace]],
command_r.name: [command_r, [HuggingSpace]],
command_r_plus.name: [command_r_plus, [HuggingSpace]],
command_r7b.name: [command_r7b, [HuggingSpace]],
qwen_2_5_coder_32b.name: [qwen_2_5_coder_32b, [HuggingFace]],
qwq_32b.name: [qwq_32b, [HuggingFace]],
llama_3_3_70b.name: [llama_3_3_70b, [HuggingFace]],
sd_3_5_large.name: [sd_3_5_large, [HuggingSpace, HuggingFace]],
flux_dev.name: [flux_dev, [PollinationsImage, HuggingFace, HuggingSpace]],
flux_schnell.name: [flux_schnell, [PollinationsImage, HuggingFace, HuggingSpace]],
}
# Create a list of all models and their providers
def _get_working_providers(model: Model) -> List:
"""Get list of working providers for a model"""
if model.best_provider is None:
return []
if isinstance(model.best_provider, IterListProvider):
return [p for p in model.best_provider.providers if p.working]
return [model.best_provider] if model.best_provider.working else []
# Generate __models__ using the auto-discovered models
__models__ = {
name: (model, _get_working_providers(model))
for name, model in ModelRegistry.all_models().items()
if name and _get_working_providers(model)
}
# Generate _all_models list
_all_models = list(__models__.keys())
# Backward compatibility - ensure Model.__all__() returns the correct list
Model.__all__ = staticmethod(lambda: _all_models)