Files
gpt4free/g4f/Provider/PollinationsAI.py
hlohaus d824d77d65 feat: Refactor PollinationsAI and ARTA provider structure
- Updated `PollinationsAI.py` to strip trailing periods and newlines from the prompt before encoding.
- Modified the encoding of the prompt to remove trailing percent signs after URL encoding.
- Simplified the audio response handling in `PollinationsAI.py` by removing unnecessary checks and yielding chunks directly.
- Renamed `ARTA.py` to `deprecated/ARTA.py` and updated import paths accordingly in `__init__.py`.
- Changed the `working` status of the `ARTA` class to `False` to indicate it is deprecated.
- Enhanced the `Video` class in `Video.py` to include aspect ratio handling and improved URL response caching.
- Updated the `RequestConfig` class to use a dictionary for storing URLs associated with prompts.
- Removed references to the `ARTA` provider in various files, including `models.py` and `any_provider.py`.
- Adjusted the `best_provider` assignments in `models.py` to exclude `ARTA` and include `HuggingFaceMedia` where applicable.
- Updated the response handling in `Video.py` to yield cached responses when available.
2025-06-19 00:42:41 +02:00

599 lines
25 KiB
Python

from __future__ import annotations
import time
import json
import random
import requests
import asyncio
from urllib.parse import quote, quote_plus
from typing import Optional
from aiohttp import ClientSession, ClientTimeout
from .helper import filter_none, format_media_prompt
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..typing import AsyncResult, Messages, MediaListType
from ..image import is_data_an_audio
from ..errors import ModelNotFoundError, ResponseError, MissingAuthError
from ..requests import see_stream
from ..requests.raise_for_status import raise_for_status
from ..requests.aiohttp import get_connector
from ..image.copy_images import save_response_media
from ..image import use_aspect_ratio
from ..providers.response import FinishReason, Usage, ToolCalls, ImageResponse, Reasoning, TitleGeneration, SuggestedFollowups, ProviderInfo, AudioResponse
from ..tools.media import render_messages
from ..constants import STATIC_URL
from .. import debug
DEFAULT_HEADERS = {
"accept": "*/*",
'accept-language': 'en-US,en;q=0.9',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"referer": "https://pollinations.ai/",
"origin": "https://pollinations.ai",
}
FOLLOWUPS_TOOLS = [{
"type": "function",
"function": {
"name": "options",
"description": "Provides options for the conversation",
"parameters": {
"properties": {
"title": {
"title": "Conversation Title",
"type": "string"
},
"followups": {
"items": {
"type": "string"
},
"title": "Suggested Followups",
"type": "array"
}
},
"title": "Conversation",
"type": "object"
}
}
}]
FOLLOWUPS_DEVELOPER_MESSAGE = [{
"role": "developer",
"content": "Prefix conversation title with one or more emojies. Suggested 4 Followups"
}]
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
label = "Pollinations AI"
url = "https://pollinations.ai"
login_url = "https://auth.pollinations.ai"
working = True
supports_system_message = True
supports_message_history = True
# API endpoints
text_api_endpoint = "https://text.pollinations.ai"
openai_endpoint = "https://text.pollinations.ai/openai"
image_api_endpoint = "https://image.pollinations.ai/"
# Models configuration
default_model = "openai"
default_image_model = "flux"
default_vision_model = default_model
default_audio_model = "openai-audio"
text_models = [default_model, "evil"]
image_models = [default_image_model, "flux-dev", "turbo", "gptimage"]
audio_models = {default_audio_model: []}
vision_models = [default_vision_model, "gpt-4o-mini", "openai", "openai-large", "openai-reasoning", "searchgpt"]
_models_loaded = False
# https://github.com/pollinations/pollinations/blob/master/text.pollinations.ai/generateTextPortkey.js#L15
model_aliases = {
### Text Models ###
"gpt-4o-mini": "openai",
"gpt-4.1-nano": "openai-fast",
"gpt-4": "openai-large",
"gpt-4o": "openai-large",
"gpt-4.1": "openai-large",
"gpt-4o-audio": "openai-audio",
"o4-mini": "openai-reasoning",
"gpt-4.1-mini": "openai",
"command-r-plus": "command-r",
"gemini-2.5-flash": "gemini",
"gemini-2.0-flash-thinking": "gemini-thinking",
"qwen-2.5-coder-32b": "qwen-coder",
"llama-3.3-70b": "llama",
"llama-4-scout": "llamascout",
"llama-4-scout-17b": "llamascout",
"mistral-small-3.1-24b": "mistral",
"deepseek-r1": "deepseek-reasoning-large",
"deepseek-r1-distill-llama-70b": "deepseek-reasoning-large",
#"deepseek-r1-distill-llama-70b": "deepseek-r1-llama",
#"mistral-small-3.1-24b": "unity", # Personas
#"mirexa": "mirexa", # Personas
#"midijourney": "midijourney", # Personas
#"rtist": "rtist", # Personas
#"searchgpt": "searchgpt",
#"evil": "evil", # Personas
"deepseek-r1-distill-qwen-32b": "deepseek-reasoning",
"phi-4": "phi",
#"pixtral-12b": "pixtral",
#"hormoz-8b": "hormoz",
"qwq-32b": "qwen-qwq",
#"hypnosis-tracy-7b": "hypnosis-tracy", # Personas
#"mistral-?": "sur", # Personas
"deepseek-v3": "deepseek",
"deepseek-v3-0324": "deepseek",
#"bidara": "bidara", # Personas
"grok-3-mini": "grok",
### Audio Models ###
"gpt-4o-audio": "openai-audio",
"gpt-4o-mini-audio": "openai-audio",
### Image Models ###
"sdxl-turbo": "turbo",
"gpt-image": "gptimage",
"dall-e-3": "gptimage",
"flux-pro": "flux",
"flux-schnell": "flux"
}
@classmethod
def get_model(cls, model: str) -> str:
"""Get the internal model name from the user-provided model name."""
if not model:
return cls.default_model
# Check if the model exists directly in our model lists
if model in cls.text_models or model in cls.image_models or model in cls.audio_models:
return model
# Check if there's an alias for this model
if model in cls.model_aliases:
return cls.model_aliases[model]
# If no match is found, raise an error
raise ModelNotFoundError(f"PollinationsAI: Model {model} not found")
@classmethod
def get_models(cls, **kwargs):
if not cls._models_loaded:
try:
# Update of image models
image_response = requests.get("https://image.pollinations.ai/models")
if image_response.ok:
new_image_models = image_response.json()
else:
new_image_models = []
# Combine image models without duplicates
image_models = cls.image_models.copy() # Start with default model
# Add extra image models if not already in the list
for model in new_image_models:
if model not in image_models:
image_models.append(model)
cls.image_models = image_models
text_response = requests.get("https://text.pollinations.ai/models")
text_response.raise_for_status()
models = text_response.json()
# Purpose of audio models
cls.audio_models = {
model.get("name"): model.get("voices")
for model in models
if "output_modalities" in model and "audio" in model["output_modalities"] and model.get("name") != "gemini"
}
cls.vision_models.extend([
model.get("name")
for model in models
if model.get("vision") and model not in cls.vision_models
])
for alias, model in cls.model_aliases.items():
if model in cls.vision_models and alias not in cls.vision_models:
cls.vision_models.append(alias)
# Create a set of unique text models starting with default model
text_models = cls.text_models.copy()
# Add models from vision_models
text_models.extend(cls.vision_models)
# Add models from the API response
for model in models:
model_name = model.get("name")
if model_name and "input_modalities" in model and "text" in model["input_modalities"]:
text_models.append(model_name)
# Convert to list and update text_models
cls.text_models = list(dict.fromkeys(text_models))
cls._models_loaded = True
except Exception as e:
# Save default models in case of an error
if not cls.text_models:
cls.text_models = [cls.default_model]
if not cls.image_models:
cls.image_models = [cls.default_image_model]
debug.error(f"Failed to fetch models: {e}")
# Return unique models across all categories
all_models = cls.text_models.copy()
all_models.extend(cls.image_models)
all_models.extend(cls.audio_models.keys())
if cls.default_audio_model in cls.audio_models:
all_models.extend(cls.audio_models[cls.default_audio_model])
return list(dict.fromkeys(all_models))
@classmethod
def get_grouped_models(cls) -> dict[str, list[str]]:
cls.get_models()
return [
{"group": "Text Generation", "models": cls.text_models},
{"group": "Image Generation", "models": cls.image_models},
{"group": "Audio Generation", "models": list(cls.audio_models.keys())},
{"group": "Audio Voices", "models": cls.audio_models[cls.default_audio_model]}
]
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = True,
proxy: str = None,
cache: bool = None,
referrer: str = STATIC_URL,
api_key: str = None,
extra_body: dict = None,
# Image generation parameters
prompt: str = None,
aspect_ratio: str = None,
width: int = None,
height: int = None,
seed: Optional[int] = None,
nologo: bool = True,
private: bool = False,
enhance: bool = None,
safe: bool = False,
transparent: bool = False,
n: int = 1,
# Text generation parameters
media: MediaListType = None,
temperature: float = None,
presence_penalty: float = None,
top_p: float = None,
frequency_penalty: float = None,
response_format: Optional[dict] = None,
download_media: bool = True,
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "tool_choice", "reasoning_effort", "logit_bias", "voice", "modalities", "audio"],
**kwargs
) -> AsyncResult:
if cache is None:
cache = kwargs.get("action") == "next"
if extra_body is None:
extra_body = {}
# Load model list
cls.get_models()
if not model:
has_audio = "audio" in kwargs or "audio" in kwargs.get("modalities", [])
if not has_audio and media is not None:
for media_data, filename in media:
if is_data_an_audio(media_data, filename):
has_audio = True
break
model = cls.default_audio_model if has_audio else model
try:
model = cls.get_model(model)
except ModelNotFoundError:
pass
if model in cls.image_models:
async for chunk in cls._generate_image(
model=model,
prompt=format_media_prompt(messages, prompt),
media=media,
proxy=proxy,
aspect_ratio=aspect_ratio,
width=width,
height=height,
seed=seed,
cache=cache,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe,
transparent=transparent,
n=n,
referrer=referrer,
api_key=api_key
):
yield chunk
else:
if prompt is not None and len(messages) == 1:
messages = [{
"role": "user",
"content": prompt
}]
if model and model in cls.audio_models[cls.default_audio_model]:
kwargs["audio"] = {
"voice": model,
}
model = cls.default_audio_model
async for result in cls._generate_text(
model=model,
messages=messages,
media=media,
proxy=proxy,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
seed=seed,
cache=cache,
stream=stream,
extra_parameters=extra_parameters,
referrer=referrer,
api_key=api_key,
download_media=download_media,
extra_body=extra_body,
**kwargs
):
yield result
@classmethod
async def _generate_image(
cls,
model: str,
prompt: str,
media: MediaListType,
proxy: str,
aspect_ratio: str,
width: int,
height: int,
seed: Optional[int],
cache: bool,
nologo: bool,
private: bool,
enhance: bool,
safe: bool,
transparent: bool,
n: int,
referrer: str,
api_key: str,
timeout: int = 120
) -> AsyncResult:
if enhance is None:
enhance = True if model == "flux" else False
params = {
"model": model,
"nologo": str(nologo).lower(),
"private": str(private).lower(),
"enhance": str(enhance).lower(),
"safe": str(safe).lower(),
}
if model == "gptimage":
n = 1
# Only remote images are supported
image = [item[0] for item in media if isinstance(item[0], str) and item[0].startswith("http")] if media else []
params = {
**params,
"transparent": str(transparent).lower(),
"image": ",".join(image) if image else "",
}
else:
params = use_aspect_ratio({
"width": width,
"height": height,
**params
}, "1:1" if aspect_ratio is None else aspect_ratio)
query = "&".join(f"{k}={quote_plus(str(v))}" for k, v in params.items() if v is not None)
encoded_prompt = prompt.strip(". \n")
if model == "gptimage" and aspect_ratio is not None:
encoded_prompt = f"{encoded_prompt} aspect-ratio: {aspect_ratio}"
encoded_prompt = quote_plus(encoded_prompt)[:4096-len(cls.image_api_endpoint)-len(query)-8].rstrip("%")
url = f"{cls.image_api_endpoint}prompt/{encoded_prompt}?{query}"
def get_url_with_seed(i: int, seed: Optional[int] = None):
if model == "gptimage":
return url
if i == 0:
if not cache and seed is None:
seed = random.randint(0, 2**32)
else:
seed = random.randint(0, 2**32)
return f"{url}&seed={seed}" if seed else url
headers = {"referer": referrer}
if api_key:
headers["authorization"] = f"Bearer {api_key}"
async with ClientSession(
headers=DEFAULT_HEADERS,
connector=get_connector(proxy=proxy),
timeout=ClientTimeout(timeout)
) as session:
responses = set()
responses.add(Reasoning(label=f"Generating {n} {'image' if n == 1 else 'images'}"))
finished = 0
start = time.time()
async def get_image(responses: set, i: int, seed: Optional[int] = None):
nonlocal finished
try:
async with session.get(get_url_with_seed(i, seed), allow_redirects=False, headers=headers) as response:
debug.log("GET", response.status, response.url)
await raise_for_status(response)
except Exception as e:
responses.add(e)
debug.error(f"Error fetching image: {e}")
responses.add(ImageResponse(str(response.url), prompt, {"headers": headers}))
finished += 1
responses.add(Reasoning(label=f"Image {finished}/{n} generated in {time.time() - start:.2f}s"))
tasks: list[asyncio.Task] = []
for i in range(int(n)):
tasks.append(asyncio.create_task(get_image(responses, i, seed)))
while finished < n or len(responses) > 0:
while len(responses) > 0:
item = responses.pop()
if isinstance(item, Exception) and finished < 2:
yield Reasoning(status="")
for task in tasks:
task.cancel()
if cls.login_url in str(item):
raise MissingAuthError(item)
raise item
yield item
await asyncio.sleep(1)
yield Reasoning(status="")
await asyncio.gather(*tasks)
@classmethod
async def _generate_text(
cls,
model: str,
messages: Messages,
media: MediaListType,
proxy: str,
temperature: float,
presence_penalty: float,
top_p: float,
frequency_penalty: float,
response_format: Optional[dict],
seed: Optional[int],
cache: bool,
stream: bool,
extra_parameters: list[str],
referrer: str,
api_key: str,
download_media: bool,
extra_body: dict,
**kwargs
) -> AsyncResult:
if not cache and seed is None:
seed = random.randint(0, 2**32)
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
extra_body.update({param: kwargs[param] for param in extra_parameters if param in kwargs})
if model in cls.audio_models:
if "audio" in extra_body and extra_body.get("audio", {}).get("voice") is None:
extra_body["audio"]["voice"] = cls.audio_models[model][0]
elif "audio" not in extra_body:
extra_body["audio"] = {"voice": cls.audio_models[model][0]}
if extra_body.get("audio", {}).get("format") is None:
extra_body["audio"]["format"] = "mp3"
if "modalities" not in extra_body:
extra_body["modalities"] = ["text", "audio"]
stream = False
voice = extra_body.get("audio", {}).get("voice")
data = filter_none(
messages=list(render_messages(messages, media)),
model=model,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
stream=stream,
seed=None if model =="grok" else seed,
**extra_body
)
headers = {"referer": referrer}
if api_key:
headers["authorization"] = f"Bearer {api_key}"
async with session.post(cls.openai_endpoint, json=data, headers=headers) as response:
if response.status in (400, 500):
debug.error(f"Error: {response.status} - Bad Request: {data}")
await raise_for_status(response)
if response.headers["content-type"].startswith("text/plain"):
yield await response.text()
return
elif response.headers["content-type"].startswith("text/event-stream"):
reasoning = False
model_returned = False
async for result in see_stream(response.content):
if "error" in result:
raise ResponseError(result["error"].get("message", result["error"]))
if not model_returned and result.get("model"):
yield ProviderInfo(**cls.get_dict(), model=result.get("model"))
model_returned = True
if result.get("usage") is not None:
yield Usage(**result["usage"])
choices = result.get("choices", [{}])
choice = choices.pop() if choices else {}
content = choice.get("delta", {}).get("content")
if content:
yield content
tool_calls = choice.get("delta", {}).get("tool_calls")
if tool_calls:
yield ToolCalls(choice["delta"]["tool_calls"])
reasoning_content = choice.get("delta", {}).get("reasoning_content")
if reasoning_content:
reasoning = True
yield Reasoning(reasoning_content)
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)
if reasoning:
yield Reasoning(status="")
if kwargs.get("action") == "next":
safe_messages = []
for message in messages:
if message.get("role") == "user":
if isinstance(message.get("content"), str):
safe_messages.append({"role": "user", "content": message.get("content")})
elif isinstance(message.get("content"), list):
next_value = message.get("content").pop()
if isinstance(next_value, dict):
next_value = next_value.get("text")
if next_value:
safe_messages.append({"role": "user", "content": next_value})
data = {
"model": "openai",
"messages": safe_messages + FOLLOWUPS_DEVELOPER_MESSAGE,
"tool_choice": "required",
"tools": FOLLOWUPS_TOOLS
}
async with session.post(cls.openai_endpoint, json=data, headers=headers) as response:
try:
await raise_for_status(response)
tool_calls = (await response.json()).get("choices", [{}])[0].get("message", {}).get("tool_calls", [])
if tool_calls:
arguments = json.loads(tool_calls.pop().get("function", {}).get("arguments"))
if arguments.get("title"):
yield TitleGeneration(arguments.get("title"))
if arguments.get("followups"):
yield SuggestedFollowups(arguments.get("followups"))
except Exception as e:
debug.error("Error generating title and followups")
debug.error(e)
elif response.headers["content-type"].startswith("application/json"):
prompt = format_media_prompt(messages)
result = await response.json()
if result.get("model"):
yield ProviderInfo(**cls.get_dict(), model=result.get("model"))
if "choices" in result:
choice = result["choices"][0]
message = choice.get("message", {})
content = message.get("content", "")
if content:
yield content
if "tool_calls" in message:
yield ToolCalls(message["tool_calls"])
audio = message.get("audio", {})
if "data" in audio:
async for chunk in save_response_media(audio["data"], prompt, [model, extra_body.get("audio", {}).get("voice")]):
yield chunk
if "transcript" in audio:
yield "\n\n"
yield audio["transcript"]
else:
raise ResponseError(result)
if result.get("usage") is not None:
yield Usage(**result["usage"])
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)
else:
async for chunk in save_response_media(response, prompt, [model, extra_body.get("audio", {}).get("voice")]):
yield chunk