mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-30 11:06:22 +08:00
708 lines
33 KiB
Python
708 lines
33 KiB
Python
from __future__ import annotations
|
|
|
|
import os
|
|
import re
|
|
import asyncio
|
|
import uuid
|
|
import json
|
|
import base64
|
|
import time
|
|
import random
|
|
from typing import AsyncIterator, Iterator, Optional, Generator, Dict
|
|
from copy import copy
|
|
|
|
try:
|
|
import nodriver
|
|
has_nodriver = True
|
|
except ImportError:
|
|
has_nodriver = False
|
|
|
|
from ..base_provider import AsyncAuthedProvider, ProviderModelMixin
|
|
from ...typing import AsyncResult, Messages, Cookies, MediaListType
|
|
from ...requests.raise_for_status import raise_for_status
|
|
from ...requests import StreamSession
|
|
from ...requests import get_nodriver
|
|
from ...image import ImageRequest, to_image, to_bytes, is_accepted_format
|
|
from ...errors import MissingAuthError, NoValidHarFileError
|
|
from ...providers.response import JsonConversation, FinishReason, SynthesizeData, AuthResult, ImageResponse
|
|
from ...providers.response import Sources, TitleGeneration, RequestLogin, Parameters, Reasoning
|
|
from ..helper import format_cookies, get_last_user_message
|
|
from ..openai.models import default_model, default_image_model, models, image_models, text_models
|
|
from ..openai.har_file import get_request_config
|
|
from ..openai.har_file import RequestConfig, arkReq, arkose_url, start_url, conversation_url, backend_url, backend_anon_url
|
|
from ..openai.proofofwork import generate_proof_token
|
|
from ..openai.new import get_requirements_token, get_config
|
|
from ... import debug
|
|
|
|
DEFAULT_HEADERS = {
|
|
"accept": "*/*",
|
|
"accept-encoding": "gzip, deflate, br, zstd",
|
|
'accept-language': 'en-US,en;q=0.8',
|
|
"referer": "https://chatgpt.com/",
|
|
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
|
|
"sec-ch-ua-mobile": "?0",
|
|
"sec-ch-ua-platform": "\"Windows\"",
|
|
"sec-fetch-dest": "empty",
|
|
"sec-fetch-mode": "cors",
|
|
"sec-fetch-site": "same-origin",
|
|
"sec-gpc": "1",
|
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
|
|
}
|
|
|
|
INIT_HEADERS = {
|
|
'accept': '*/*',
|
|
'accept-language': 'en-US,en;q=0.8',
|
|
'cache-control': 'no-cache',
|
|
'pragma': 'no-cache',
|
|
'priority': 'u=0, i',
|
|
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
|
|
'sec-ch-ua-arch': '"arm"',
|
|
'sec-ch-ua-bitness': '"64"',
|
|
'sec-ch-ua-mobile': '?0',
|
|
'sec-ch-ua-model': '""',
|
|
"sec-ch-ua-platform": "\"Windows\"",
|
|
'sec-ch-ua-platform-version': '"14.4.0"',
|
|
'sec-fetch-dest': 'document',
|
|
'sec-fetch-mode': 'navigate',
|
|
'sec-fetch-site': 'none',
|
|
'sec-fetch-user': '?1',
|
|
'upgrade-insecure-requests': '1',
|
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
|
|
}
|
|
|
|
UPLOAD_HEADERS = {
|
|
"accept": "application/json, text/plain, */*",
|
|
'accept-language': 'en-US,en;q=0.8',
|
|
"referer": "https://chatgpt.com/",
|
|
"priority": "u=1, i",
|
|
"sec-ch-ua": "\"Google Chrome\";v=\"131\", \"Chromium\";v=\"131\", \"Not_A Brand\";v=\"24\"",
|
|
"sec-ch-ua-mobile": "?0",
|
|
'sec-ch-ua-platform': '"macOS"',
|
|
"sec-fetch-dest": "empty",
|
|
"sec-fetch-mode": "cors",
|
|
"sec-fetch-site": "cross-site",
|
|
"x-ms-blob-type": "BlockBlob",
|
|
"x-ms-version": "2020-04-08",
|
|
"user-agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
|
|
}
|
|
|
|
class OpenaiChat(AsyncAuthedProvider, ProviderModelMixin):
|
|
"""A class for creating and managing conversations with OpenAI chat service"""
|
|
|
|
label = "OpenAI ChatGPT"
|
|
url = "https://chatgpt.com"
|
|
working = True
|
|
use_nodriver = True
|
|
supports_gpt_4 = True
|
|
supports_message_history = True
|
|
supports_system_message = True
|
|
default_model = default_model
|
|
default_image_model = default_image_model
|
|
image_models = image_models
|
|
vision_models = text_models
|
|
models = models
|
|
synthesize_content_type = "audio/aac"
|
|
request_config = RequestConfig()
|
|
|
|
_api_key: str = None
|
|
_headers: dict = None
|
|
_cookies: Cookies = None
|
|
_expires: int = None
|
|
|
|
@classmethod
|
|
async def on_auth_async(cls, proxy: str = None, **kwargs) -> AsyncIterator:
|
|
async for chunk in cls.login(proxy=proxy):
|
|
yield chunk
|
|
yield AuthResult(
|
|
api_key=cls._api_key,
|
|
cookies=cls._cookies or cls.request_config.cookies or {},
|
|
headers=cls._headers or cls.request_config.headers or cls.get_default_headers(),
|
|
expires=cls._expires,
|
|
proof_token=cls.request_config.proof_token,
|
|
turnstile_token=cls.request_config.turnstile_token
|
|
)
|
|
|
|
@classmethod
|
|
async def upload_images(
|
|
cls,
|
|
session: StreamSession,
|
|
auth_result: AuthResult,
|
|
media: MediaListType,
|
|
) -> ImageRequest:
|
|
"""
|
|
Upload an image to the service and get the download URL
|
|
|
|
Args:
|
|
session: The StreamSession object to use for requests
|
|
headers: The headers to include in the requests
|
|
media: The images to upload, either a PIL Image object or a bytes object
|
|
|
|
Returns:
|
|
An ImageRequest object that contains the download URL, file name, and other data
|
|
"""
|
|
async def upload_image(image, image_name):
|
|
# Convert the image to a PIL Image object and get the extension
|
|
data_bytes = to_bytes(image)
|
|
image = to_image(data_bytes)
|
|
extension = image.format.lower()
|
|
data = {
|
|
"file_name": "" if image_name is None else image_name,
|
|
"file_size": len(data_bytes),
|
|
"use_case": "multimodal"
|
|
}
|
|
# Post the image data to the service and get the image data
|
|
headers = auth_result.headers if hasattr(auth_result, "headers") else None
|
|
async with session.post(f"{cls.url}/backend-api/files", json=data, headers=headers) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response, "Create file failed")
|
|
image_data = {
|
|
**data,
|
|
**await response.json(),
|
|
"mime_type": is_accepted_format(data_bytes),
|
|
"extension": extension,
|
|
"height": image.height,
|
|
"width": image.width
|
|
}
|
|
# Put the image bytes to the upload URL and check the status
|
|
await asyncio.sleep(1)
|
|
async with session.put(
|
|
image_data["upload_url"],
|
|
data=data_bytes,
|
|
headers={
|
|
**UPLOAD_HEADERS,
|
|
"Content-Type": image_data["mime_type"],
|
|
"x-ms-blob-type": "BlockBlob",
|
|
"x-ms-version": "2020-04-08",
|
|
"Origin": "https://chatgpt.com",
|
|
}
|
|
) as response:
|
|
await raise_for_status(response)
|
|
# Post the file ID to the service and get the download URL
|
|
async with session.post(
|
|
f"{cls.url}/backend-api/files/{image_data['file_id']}/uploaded",
|
|
json={},
|
|
headers=auth_result.headers
|
|
) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response, "Get download url failed")
|
|
image_data["download_url"] = (await response.json())["download_url"]
|
|
return ImageRequest(image_data)
|
|
if not media:
|
|
return
|
|
return [await upload_image(image, image_name) for image, image_name in media]
|
|
|
|
@classmethod
|
|
def create_messages(cls, messages: Messages, image_requests: ImageRequest = None, system_hints: list = None):
|
|
"""
|
|
Create a list of messages for the user input
|
|
|
|
Args:
|
|
prompt: The user input as a string
|
|
image_response: The image response object, if any
|
|
|
|
Returns:
|
|
A list of messages with the user input and the image, if any
|
|
"""
|
|
# Create a message object with the user role and the content
|
|
messages = [{
|
|
"id": str(uuid.uuid4()),
|
|
"author": {"role": message["role"]},
|
|
"content": {"content_type": "text", "parts": [message["content"]]},
|
|
"metadata": {"serialization_metadata": {"custom_symbol_offsets": []}, **({"system_hints": system_hints} if system_hints else {})},
|
|
"create_time": time.time(),
|
|
} for message in messages]
|
|
# Check if there is an image response
|
|
if image_requests:
|
|
# Change content in last user message
|
|
messages[-1]["content"] = {
|
|
"content_type": "multimodal_text",
|
|
"parts": [*[{
|
|
"asset_pointer": f"file-service://{image_request.get('file_id')}",
|
|
"height": image_request.get("height"),
|
|
"size_bytes": image_request.get("file_size"),
|
|
"width": image_request.get("width"),
|
|
}
|
|
for image_request in image_requests],
|
|
messages[-1]["content"]["parts"][0]]
|
|
}
|
|
# Add the metadata object with the attachments
|
|
messages[-1]["metadata"] = {
|
|
"attachments": [{
|
|
"height": image_request.get("height"),
|
|
"id": image_request.get("file_id"),
|
|
"mimeType": image_request.get("mime_type"),
|
|
"name": image_request.get("file_name"),
|
|
"size": image_request.get("file_size"),
|
|
"width": image_request.get("width"),
|
|
}
|
|
for image_request in image_requests]
|
|
}
|
|
return messages
|
|
|
|
@classmethod
|
|
async def get_generated_image(cls, session: StreamSession, auth_result: AuthResult, element: dict, prompt: str = None) -> ImageResponse:
|
|
try:
|
|
prompt = element["metadata"]["dalle"]["prompt"]
|
|
file_id = element["asset_pointer"].split("file-service://", 1)[1]
|
|
except TypeError:
|
|
return
|
|
except Exception as e:
|
|
raise RuntimeError(f"No Image: {e.__class__.__name__}: {e}")
|
|
try:
|
|
async with session.get(f"{cls.url}/backend-api/files/{file_id}/download", headers=auth_result.headers) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response)
|
|
download_url = (await response.json())["download_url"]
|
|
return ImageResponse(download_url, prompt)
|
|
except Exception as e:
|
|
raise RuntimeError(f"Error in downloading image: {e}")
|
|
|
|
@classmethod
|
|
async def create_authed(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
auth_result: AuthResult,
|
|
proxy: str = None,
|
|
timeout: int = 180,
|
|
auto_continue: bool = False,
|
|
action: str = "next",
|
|
conversation: Conversation = None,
|
|
media: MediaListType = None,
|
|
return_conversation: bool = False,
|
|
web_search: bool = False,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
"""
|
|
Create an asynchronous generator for the conversation.
|
|
|
|
Args:
|
|
model (str): The model name.
|
|
messages (Messages): The list of previous messages.
|
|
proxy (str): Proxy to use for requests.
|
|
timeout (int): Timeout for requests.
|
|
api_key (str): Access token for authentication.
|
|
auto_continue (bool): Flag to automatically continue the conversation.
|
|
action (str): Type of action ('next', 'continue', 'variant').
|
|
conversation_id (str): ID of the conversation.
|
|
media (MediaListType): Images to include in the conversation.
|
|
return_conversation (bool): Flag to include response fields in the output.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Yields:
|
|
AsyncResult: Asynchronous results from the generator.
|
|
|
|
Raises:
|
|
RuntimeError: If an error occurs during processing.
|
|
"""
|
|
async with StreamSession(
|
|
proxy=proxy,
|
|
impersonate="chrome",
|
|
timeout=timeout
|
|
) as session:
|
|
image_requests = None
|
|
if not cls.needs_auth:
|
|
if cls._headers is None:
|
|
cls._create_request_args(cls._cookies)
|
|
async with session.get(cls.url, headers=INIT_HEADERS) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response)
|
|
else:
|
|
if cls._headers is None and getattr(auth_result, "cookies", None):
|
|
cls._create_request_args(auth_result.cookies, auth_result.headers)
|
|
if not cls._set_api_key(getattr(auth_result, "api_key", None)):
|
|
raise MissingAuthError("Access token is not valid")
|
|
async with session.get(cls.url, headers=cls._headers) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response)
|
|
try:
|
|
image_requests = None if media is None else await cls.upload_images(session, auth_result, media)
|
|
except Exception as e:
|
|
debug.error("OpenaiChat: Upload image failed")
|
|
debug.error(e)
|
|
model = cls.get_model(model)
|
|
if conversation is None:
|
|
conversation = Conversation(None, str(uuid.uuid4()), getattr(auth_result, "cookies", {}).get("oai-did"))
|
|
else:
|
|
conversation = copy(conversation)
|
|
if getattr(auth_result, "cookies", {}).get("oai-did") != getattr(conversation, "user_id", None):
|
|
conversation = Conversation(None, str(uuid.uuid4()))
|
|
if cls._api_key is None:
|
|
auto_continue = False
|
|
conversation.finish_reason = None
|
|
sources = Sources([])
|
|
while conversation.finish_reason is None:
|
|
async with session.post(
|
|
f"{cls.url}/backend-anon/sentinel/chat-requirements"
|
|
if cls._api_key is None else
|
|
f"{cls.url}/backend-api/sentinel/chat-requirements",
|
|
json={"p": None if not getattr(auth_result, "proof_token", None) else get_requirements_token(getattr(auth_result, "proof_token", None))},
|
|
headers=cls._headers
|
|
) as response:
|
|
if response.status in (401, 403):
|
|
raise MissingAuthError(f"Response status: {response.status}")
|
|
else:
|
|
cls._update_request_args(auth_result, session)
|
|
await raise_for_status(response)
|
|
chat_requirements = await response.json()
|
|
need_turnstile = chat_requirements.get("turnstile", {}).get("required", False)
|
|
need_arkose = chat_requirements.get("arkose", {}).get("required", False)
|
|
chat_token = chat_requirements.get("token")
|
|
|
|
# if need_arkose and cls.request_config.arkose_token is None:
|
|
# await get_request_config(proxy)
|
|
# cls._create_request_args(auth_result.cookies, auth_result.headers)
|
|
# cls._set_api_key(auth_result.access_token)
|
|
# if auth_result.arkose_token is None:
|
|
# raise MissingAuthError("No arkose token found in .har file")
|
|
if "proofofwork" in chat_requirements:
|
|
user_agent = getattr(auth_result, "headers", {}).get("user-agent")
|
|
proof_token = getattr(auth_result, "proof_token", None)
|
|
if proof_token is None:
|
|
auth_result.proof_token = get_config(user_agent)
|
|
proofofwork = generate_proof_token(
|
|
**chat_requirements["proofofwork"],
|
|
user_agent=user_agent,
|
|
proof_token=proof_token
|
|
)
|
|
[debug.log(text) for text in (
|
|
#f"Arkose: {'False' if not need_arkose else auth_result.arkose_token[:12]+'...'}",
|
|
#f"Proofofwork: {'False' if proofofwork is None else proofofwork[:12]+'...'}",
|
|
#f"AccessToken: {'False' if cls._api_key is None else cls._api_key[:12]+'...'}",
|
|
)]
|
|
if action == "continue" and conversation.message_id is None:
|
|
action = "next"
|
|
data = {
|
|
"action": action,
|
|
"parent_message_id": conversation.message_id,
|
|
"model": model,
|
|
"timezone_offset_min":-60,
|
|
"timezone":"Europe/Berlin",
|
|
"conversation_mode":{"kind":"primary_assistant"},
|
|
"enable_message_followups":True,
|
|
"system_hints": ["search"] if web_search else None,
|
|
"supports_buffering":True,
|
|
"supported_encodings":["v1"],
|
|
"client_contextual_info":{"is_dark_mode":False,"time_since_loaded":random.randint(20, 500),"page_height":578,"page_width":1850,"pixel_ratio":1,"screen_height":1080,"screen_width":1920},
|
|
"paragen_cot_summary_display_override":"allow"
|
|
}
|
|
if conversation.conversation_id is not None:
|
|
data["conversation_id"] = conversation.conversation_id
|
|
debug.log(f"OpenaiChat: Use conversation: {conversation.conversation_id}")
|
|
if action != "continue":
|
|
data["parent_message_id"] = getattr(conversation, "parent_message_id", conversation.message_id)
|
|
conversation.parent_message_id = None
|
|
messages = messages if conversation.conversation_id is None else [{"role": "user", "content": get_last_user_message(messages)}]
|
|
data["messages"] = cls.create_messages(messages, image_requests, ["search"] if web_search else None)
|
|
headers = {
|
|
**cls._headers,
|
|
"accept": "text/event-stream",
|
|
"content-type": "application/json",
|
|
"openai-sentinel-chat-requirements-token": chat_token,
|
|
}
|
|
#if cls.request_config.arkose_token:
|
|
# headers["openai-sentinel-arkose-token"] = cls.request_config.arkose_token
|
|
if proofofwork is not None:
|
|
headers["openai-sentinel-proof-token"] = proofofwork
|
|
if need_turnstile and getattr(auth_result, "turnstile_token", None) is not None:
|
|
headers['openai-sentinel-turnstile-token'] = auth_result.turnstile_token
|
|
async with session.post(
|
|
f"{cls.url}/backend-anon/conversation"
|
|
if cls._api_key is None else
|
|
f"{cls.url}/backend-api/conversation",
|
|
json=data,
|
|
headers=headers
|
|
) as response:
|
|
cls._update_request_args(auth_result, session)
|
|
if response.status in (401, 403, 429):
|
|
raise MissingAuthError("Access token is not valid")
|
|
await raise_for_status(response)
|
|
buffer = u""
|
|
async for line in response.iter_lines():
|
|
async for chunk in cls.iter_messages_line(session, auth_result, line, conversation, sources):
|
|
if isinstance(chunk, str):
|
|
chunk = chunk.replace("\ue203", "").replace("\ue204", "").replace("\ue206", "")
|
|
buffer += chunk
|
|
if buffer.find(u"\ue200") != -1:
|
|
if buffer.find(u"\ue201") != -1:
|
|
buffer = buffer.replace("\ue200", "").replace("\ue202", "\n").replace("\ue201", "")
|
|
buffer = buffer.replace("navlist\n", "#### ")
|
|
def replacer(match):
|
|
link = None
|
|
if len(sources.list) > int(match.group(1)):
|
|
link = sources.list[int(match.group(1))]["url"]
|
|
return f"[[{int(match.group(1))+1}]]({link})"
|
|
return f" [{int(match.group(1))+1}]"
|
|
buffer = re.sub(r'(?:cite\nturn0search|cite\nturn0news|turn0news)(\d+)', replacer, buffer)
|
|
else:
|
|
continue
|
|
yield buffer
|
|
buffer = ""
|
|
else:
|
|
yield chunk
|
|
if conversation.finish_reason is not None:
|
|
break
|
|
if sources.list:
|
|
yield sources
|
|
if return_conversation:
|
|
yield conversation
|
|
if auth_result.api_key is not None:
|
|
yield SynthesizeData(cls.__name__, {
|
|
"conversation_id": conversation.conversation_id,
|
|
"message_id": conversation.message_id,
|
|
"voice": "maple",
|
|
})
|
|
if auto_continue and conversation.finish_reason == "max_tokens":
|
|
conversation.finish_reason = None
|
|
action = "continue"
|
|
await asyncio.sleep(5)
|
|
else:
|
|
break
|
|
yield FinishReason(conversation.finish_reason)
|
|
|
|
@classmethod
|
|
async def iter_messages_line(cls, session: StreamSession, auth_result: AuthResult, line: bytes, fields: Conversation, sources: Sources) -> AsyncIterator:
|
|
if not line.startswith(b"data: "):
|
|
return
|
|
elif line.startswith(b"data: [DONE]"):
|
|
if fields.finish_reason is None:
|
|
fields.finish_reason = "error"
|
|
return
|
|
try:
|
|
line = json.loads(line[6:])
|
|
except:
|
|
return
|
|
if not isinstance(line, dict):
|
|
return
|
|
if "type" in line:
|
|
if line["type"] == "title_generation":
|
|
yield TitleGeneration(line["title"])
|
|
if "v" in line:
|
|
v = line.get("v")
|
|
if isinstance(v, str) and fields.is_recipient:
|
|
if "p" not in line or line.get("p") == "/message/content/parts/0":
|
|
yield Reasoning(token=v) if fields.is_thinking else v
|
|
elif isinstance(v, list):
|
|
for m in v:
|
|
if m.get("p") == "/message/content/parts/0" and fields.is_recipient:
|
|
yield m.get("v")
|
|
elif m.get("p") == "/message/metadata/search_result_groups":
|
|
for entry in [p.get("entries") for p in m.get("v")]:
|
|
for link in entry:
|
|
sources.add_source(link)
|
|
elif re.match(r"^/message/metadata/content_references/\d+$", m.get("p")):
|
|
sources.add_source(m.get("v"))
|
|
elif m.get("p") == "/message/metadata/finished_text":
|
|
fields.is_thinking = False
|
|
yield Reasoning(status=m.get("v"))
|
|
elif m.get("p") == "/message/metadata":
|
|
fields.finish_reason = m.get("v", {}).get("finish_details", {}).get("type")
|
|
break
|
|
elif isinstance(v, dict):
|
|
if fields.conversation_id is None:
|
|
fields.conversation_id = v.get("conversation_id")
|
|
debug.log(f"OpenaiChat: New conversation: {fields.conversation_id}")
|
|
m = v.get("message", {})
|
|
fields.is_recipient = m.get("recipient", "all") == "all"
|
|
if fields.is_recipient:
|
|
c = m.get("content", {})
|
|
if c.get("content_type") == "text" and m.get("author", {}).get("role") == "tool" and "initial_text" in m.get("metadata", {}):
|
|
fields.is_thinking = True
|
|
yield Reasoning(status=m.get("metadata", {}).get("initial_text"))
|
|
if c.get("content_type") == "multimodal_text":
|
|
generated_images = []
|
|
for element in c.get("parts"):
|
|
if isinstance(element, dict) and element.get("content_type") == "image_asset_pointer":
|
|
image = cls.get_generated_image(session, auth_result, element)
|
|
generated_images.append(image)
|
|
for image_response in await asyncio.gather(*generated_images):
|
|
if image_response is not None:
|
|
yield image_response
|
|
if m.get("author", {}).get("role") == "assistant":
|
|
if fields.parent_message_id is None:
|
|
fields.parent_message_id = v.get("message", {}).get("id")
|
|
fields.message_id = v.get("message", {}).get("id")
|
|
return
|
|
if "error" in line and line.get("error"):
|
|
raise RuntimeError(line.get("error"))
|
|
|
|
@classmethod
|
|
async def synthesize(cls, params: dict) -> AsyncIterator[bytes]:
|
|
async for _ in cls.login():
|
|
pass
|
|
async with StreamSession(
|
|
impersonate="chrome",
|
|
timeout=0
|
|
) as session:
|
|
async with session.get(
|
|
f"{cls.url}/backend-api/synthesize",
|
|
params=params,
|
|
headers=cls._headers
|
|
) as response:
|
|
await raise_for_status(response)
|
|
async for chunk in response.iter_content():
|
|
yield chunk
|
|
|
|
@classmethod
|
|
async def login(
|
|
cls,
|
|
proxy: str = None,
|
|
api_key: str = None,
|
|
proof_token: str = None,
|
|
cookies: Cookies = None,
|
|
headers: dict = None,
|
|
**kwargs
|
|
) -> AsyncIterator:
|
|
if cls._expires is not None and (cls._expires - 60*10) < time.time():
|
|
cls._headers = cls._api_key = None
|
|
if cls._headers is None or headers is not None:
|
|
cls._headers = {} if headers is None else headers
|
|
if proof_token is not None:
|
|
cls.request_config.proof_token = proof_token
|
|
if cookies is not None:
|
|
cls.request_config.cookies = cookies
|
|
if api_key is not None:
|
|
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers)
|
|
cls._set_api_key(api_key)
|
|
else:
|
|
try:
|
|
await get_request_config(cls.request_config, proxy)
|
|
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers)
|
|
if cls.request_config.access_token is not None or cls.needs_auth:
|
|
if not cls._set_api_key(cls.request_config.access_token):
|
|
raise NoValidHarFileError(f"Access token is not valid: {cls.request_config.access_token}")
|
|
except NoValidHarFileError:
|
|
if has_nodriver:
|
|
if cls._api_key is None:
|
|
yield RequestLogin(cls.label, os.environ.get("G4F_LOGIN_URL", ""))
|
|
await cls.nodriver_auth(proxy)
|
|
else:
|
|
raise
|
|
|
|
@classmethod
|
|
async def nodriver_auth(cls, proxy: str = None):
|
|
browser, stop_browser = await get_nodriver(proxy=proxy)
|
|
try:
|
|
page = browser.main_tab
|
|
def on_request(event: nodriver.cdp.network.RequestWillBeSent, page=None):
|
|
if event.request.url == start_url or event.request.url.startswith(conversation_url):
|
|
if cls.request_config.headers is None:
|
|
cls.request_config.headers = {}
|
|
for key, value in event.request.headers.items():
|
|
cls.request_config.headers[key.lower()] = value
|
|
elif event.request.url in (backend_url, backend_anon_url):
|
|
if "OpenAI-Sentinel-Proof-Token" in event.request.headers:
|
|
cls.request_config.proof_token = json.loads(base64.b64decode(
|
|
event.request.headers["OpenAI-Sentinel-Proof-Token"].split("gAAAAAB", 1)[-1].encode()
|
|
).decode())
|
|
if "OpenAI-Sentinel-Turnstile-Token" in event.request.headers:
|
|
cls.request_config.turnstile_token = event.request.headers["OpenAI-Sentinel-Turnstile-Token"]
|
|
if "Authorization" in event.request.headers:
|
|
cls._api_key = event.request.headers["Authorization"].split()[-1]
|
|
elif event.request.url == arkose_url:
|
|
cls.request_config.arkose_request = arkReq(
|
|
arkURL=event.request.url,
|
|
arkBx=None,
|
|
arkHeader=event.request.headers,
|
|
arkBody=event.request.post_data,
|
|
userAgent=event.request.headers.get("User-Agent")
|
|
)
|
|
await page.send(nodriver.cdp.network.enable())
|
|
page.add_handler(nodriver.cdp.network.RequestWillBeSent, on_request)
|
|
page = await browser.get(cls.url)
|
|
user_agent = await page.evaluate("window.navigator.userAgent")
|
|
await page.select("#prompt-textarea", 240)
|
|
await page.evaluate("document.getElementById('prompt-textarea').innerText = 'Hello'")
|
|
await page.select("[data-testid=\"send-button\"]", 30)
|
|
await page.evaluate("document.querySelector('[data-testid=\"send-button\"]').click()")
|
|
while True:
|
|
body = await page.evaluate("JSON.stringify(window.__remixContext)")
|
|
if body:
|
|
match = re.search(r'"accessToken":"(.*?)"', body)
|
|
if match:
|
|
cls._api_key = match.group(1)
|
|
break
|
|
if cls._api_key is not None or not cls.needs_auth:
|
|
break
|
|
await asyncio.sleep(1)
|
|
while True:
|
|
if cls.request_config.proof_token:
|
|
break
|
|
await asyncio.sleep(1)
|
|
cls.request_config.data_build = await page.evaluate("document.documentElement.getAttribute('data-build')")
|
|
cls.request_config.cookies = await page.send(get_cookies([cls.url]))
|
|
await page.close()
|
|
cls._create_request_args(cls.request_config.cookies, cls.request_config.headers, user_agent=user_agent)
|
|
cls._set_api_key(cls._api_key)
|
|
finally:
|
|
stop_browser()
|
|
|
|
@staticmethod
|
|
def get_default_headers() -> Dict[str, str]:
|
|
return {
|
|
**DEFAULT_HEADERS,
|
|
"content-type": "application/json",
|
|
}
|
|
|
|
@classmethod
|
|
def _create_request_args(cls, cookies: Cookies = None, headers: dict = None, user_agent: str = None):
|
|
cls._headers = cls.get_default_headers() if headers is None else headers
|
|
if user_agent is not None:
|
|
cls._headers["user-agent"] = user_agent
|
|
cls._cookies = {} if cookies is None else cookies
|
|
cls._update_cookie_header()
|
|
|
|
@classmethod
|
|
def _update_request_args(cls, auth_result: AuthResult, session: StreamSession):
|
|
if hasattr(auth_result, "cookies"):
|
|
for c in session.cookie_jar if hasattr(session, "cookie_jar") else session.cookies.jar:
|
|
auth_result.cookies[getattr(c, "key", getattr(c, "name", ""))] = c.value
|
|
cls._cookies = auth_result.cookies
|
|
cls._update_cookie_header()
|
|
|
|
@classmethod
|
|
def _set_api_key(cls, api_key: str):
|
|
if api_key:
|
|
exp = api_key.split(".")[1]
|
|
exp = (exp + "=" * (4 - len(exp) % 4)).encode()
|
|
cls._expires = json.loads(base64.b64decode(exp)).get("exp")
|
|
debug.log(f"OpenaiChat: API key expires at\n {cls._expires} we have:\n {time.time()}")
|
|
if time.time() > cls._expires:
|
|
debug.log(f"OpenaiChat: API key is expired")
|
|
else:
|
|
cls._api_key = api_key
|
|
cls._headers["authorization"] = f"Bearer {api_key}"
|
|
return True
|
|
return False
|
|
|
|
@classmethod
|
|
def _update_cookie_header(cls):
|
|
if cls._cookies:
|
|
cls._headers["cookie"] = format_cookies(cls._cookies)
|
|
|
|
class Conversation(JsonConversation):
|
|
"""
|
|
Class to encapsulate response fields.
|
|
"""
|
|
def __init__(self, conversation_id: str = None, message_id: str = None, user_id: str = None, finish_reason: str = None, parent_message_id: str = None, is_thinking: bool = False):
|
|
self.conversation_id = conversation_id
|
|
self.message_id = message_id
|
|
self.finish_reason = finish_reason
|
|
self.is_recipient = False
|
|
self.parent_message_id = message_id if parent_message_id is None else parent_message_id
|
|
self.user_id = user_id
|
|
self.is_thinking = is_thinking
|
|
|
|
def get_cookies(
|
|
urls: Optional[Iterator[str]] = None
|
|
) -> Generator[Dict, Dict, Dict[str, str]]:
|
|
params = {}
|
|
if urls is not None:
|
|
params['urls'] = [i for i in urls]
|
|
cmd_dict = {
|
|
'method': 'Network.getCookies',
|
|
'params': params,
|
|
}
|
|
json = yield cmd_dict
|
|
return {c["name"]: c["value"] for c in json['cookies']} if 'cookies' in json else {}
|