Files
gpt4free/g4f/Provider/PerplexityLabs.py
kqlio67 bb9132bcb4 Updating provider documentation and small fixes in providers (#2469)
* refactor(g4f/Provider/Airforce.py): improve model handling and filtering

- Add hidden_models set to exclude specific models
- Add evil alias for uncensored model handling
- Extend filtering for model-specific response tokens
- Add response buffering for streamed content
- Update model fetching with error handling

* refactor(g4f/Provider/Blackbox.py): improve caching and model handling

- Add caching system for validated values with file-based storage
- Rename 'flux' model to 'ImageGeneration' and update references
- Add temperature, top_p and max_tokens parameters to generator
- Simplify HTTP headers and remove redundant options
- Add model alias mapping for ImageGeneration
- Add file system utilities for cache management

* feat(g4f/Provider/RobocodersAPI.py): add caching and error handling

- Add file-based caching system for access tokens and sessions
- Add robust error handling with specific error messages
- Add automatic dialog continuation on resource limits
- Add HTML parsing with BeautifulSoup for token extraction
- Add debug logging for error tracking
- Add timeout configuration for API requests

* refactor(g4f/Provider/DarkAI.py): update DarkAI default model and aliases

- Change default model from llama-3-405b to llama-3-70b
- Remove llama-3-405b from supported models list
- Remove llama-3.1-405b from model aliases

* feat(g4f/Provider/Blackbox2.py): add image generation support

- Add image model 'flux' with dedicated API endpoint
- Refactor generator to support both text and image outputs
- Extract headers into reusable static method
- Add type hints for AsyncGenerator return type
- Split generation logic into _generate_text and _generate_image methods
- Add ImageResponse handling for image generation results

BREAKING CHANGE: create_async_generator now returns AsyncGenerator instead of AsyncResult

* refactor(g4f/Provider/ChatGptEs.py): update ChatGptEs model configuration

- Update models list to include gpt-3.5-turbo
- Remove chatgpt-4o-latest from supported models
- Remove model_aliases mapping for gpt-4o

* feat(g4f/Provider/DeepInfraChat.py): add Accept-Language header support

- Add Accept-Language header for internationalization
- Maintain existing header configuration
- Improve request compatibility with language preferences

* refactor(g4f/Provider/needs_auth/Gemini.py): add ProviderModelMixin inheritance

- Add ProviderModelMixin to class inheritance
- Import ProviderModelMixin from base_provider
- Move BaseConversation import to base_provider imports

* refactor(g4f/Provider/Liaobots.py): update model details and aliases

- Add version suffix to o1 model IDs
- Update model aliases for o1-preview and o1-mini
- Standardize version format across model definitions

* refactor(g4f/Provider/PollinationsAI.py): enhance model support and generation

- Split generation logic into dedicated image/text methods
- Add additional text models including sur and claude
- Add width/height parameters for image generation
- Add model existence validation
- Add hasattr checks for model lists initialization

* chore(gitignore): add provider cache directory

- Add g4f/Provider/.cache to gitignore patterns

* refactor(g4f/Provider/ReplicateHome.py): update model configuration

- Update default model to gemma-2b-it
- Add default_image_model configuration
- Remove llava-13b from supported models
- Simplify request headers

* feat(g4f/models.py): expand provider and model support

- Add new providers DarkAI and PollinationsAI
- Add new models for Mistral, Flux and image generation
- Update provider lists for existing models
- Add P1 and Evil models with experimental providers

BREAKING CHANGE: Remove llava-13b model support

* refactor(Airforce): Update type hint for split_message return

- Change return type of  from  to  for consistency with import.
- Maintain overall functionality and structure of the  class.
- Ensure compatibility with type hinting standards in Python.

* refactor(g4f/Provider/Airforce.py): Update type hint for split_message return

- Change return type of 'split_message' from 'list[str]' to 'List[str]' for consistency with import.
- Maintain overall functionality and structure of the 'Airforce' class.
- Ensure compatibility with type hinting standards in Python.

* feat(g4f/Provider/RobocodersAPI.py): Add support for optional BeautifulSoup dependency

- Introduce a check for the BeautifulSoup library and handle its absence gracefully.
- Raise a  if BeautifulSoup is not installed, prompting the user to install it.
- Remove direct import of BeautifulSoup to avoid import errors when the library is missing.

* fix: Updating provider documentation and small fixes in providers

* Disabled the provider (RobocodersAPI)

* Fix: Conflicting file g4f/models.py

* Update g4f/models.py g4f/Provider/Airforce.py

* Update docs/providers-and-models.md g4f/models.py g4f/Provider/Airforce.py g4f/Provider/PollinationsAI.py

* Update docs/providers-and-models.md

* Update .gitignore

* Update g4f/models.py

* Update g4f/Provider/PollinationsAI.py

---------

Co-authored-by: kqlio67 <>
2024-12-09 16:52:25 +01:00

104 lines
4.0 KiB
Python

from __future__ import annotations
import random
import json
from ..typing import AsyncResult, Messages
from ..requests import StreamSession, raise_for_status
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
API_URL = "https://www.perplexity.ai/socket.io/"
WS_URL = "wss://www.perplexity.ai/socket.io/"
class PerplexityLabs(AsyncGeneratorProvider, ProviderModelMixin):
url = "https://labs.perplexity.ai"
working = True
default_model = "llama-3.1-70b-instruct"
models = [
"llama-3.1-sonar-large-128k-online",
"llama-3.1-sonar-small-128k-online",
"llama-3.1-sonar-large-128k-chat",
"llama-3.1-sonar-small-128k-chat",
"llama-3.1-8b-instruct",
"llama-3.1-70b-instruct",
"/models/LiquidCloud",
]
model_aliases = {
"sonar-online": "llama-3.1-sonar-large-128k-online",
"sonar-online": "sonar-small-128k-online",
"sonar-chat": "llama-3.1-sonar-large-128k-chat",
"sonar-chat": "llama-3.1-sonar-small-128k-chat",
"llama-3.3-70b": "llama-3.3-70b-instruct",
"llama-3.1-8b": "llama-3.1-8b-instruct",
"llama-3.1-70b": "llama-3.1-70b-instruct",
"lfm-40b": "/models/LiquidCloud",
}
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
**kwargs
) -> AsyncResult:
headers = {
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:121.0) Gecko/20100101 Firefox/121.0",
"Accept": "*/*",
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
"Accept-Encoding": "gzip, deflate, br",
"Origin": cls.url,
"Connection": "keep-alive",
"Referer": f"{cls.url}/",
"Sec-Fetch-Dest": "empty",
"Sec-Fetch-Mode": "cors",
"Sec-Fetch-Site": "same-site",
"TE": "trailers",
}
async with StreamSession(headers=headers, proxies={"all": proxy}) as session:
t = format(random.getrandbits(32), "08x")
async with session.get(
f"{API_URL}?EIO=4&transport=polling&t={t}"
) as response:
await raise_for_status(response)
text = await response.text()
assert text.startswith("0")
sid = json.loads(text[1:])["sid"]
post_data = '40{"jwt":"anonymous-ask-user"}'
async with session.post(
f"{API_URL}?EIO=4&transport=polling&t={t}&sid={sid}",
data=post_data
) as response:
await raise_for_status(response)
assert await response.text() == "OK"
async with session.ws_connect(f"{WS_URL}?EIO=4&transport=websocket&sid={sid}", autoping=False) as ws:
await ws.send_str("2probe")
assert(await ws.receive_str() == "3probe")
await ws.send_str("5")
assert(await ws.receive_str())
assert(await ws.receive_str() == "6")
message_data = {
"version": "2.13",
"source": "default",
"model": model,
"messages": messages
}
await ws.send_str("42" + json.dumps(["perplexity_labs", message_data]))
last_message = 0
while True:
message = await ws.receive_str()
if message == "2":
if last_message == 0:
raise RuntimeError("Unknown error")
await ws.send_str("3")
continue
try:
data = json.loads(message[2:])[1]
yield data["output"][last_message:]
last_message = len(data["output"])
if data["final"]:
break
except:
raise RuntimeError(f"Message: {message}")