mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-29 02:32:44 +08:00
* refactor(g4f/Provider/Airforce.py): improve model handling and filtering - Add hidden_models set to exclude specific models - Add evil alias for uncensored model handling - Extend filtering for model-specific response tokens - Add response buffering for streamed content - Update model fetching with error handling * refactor(g4f/Provider/Blackbox.py): improve caching and model handling - Add caching system for validated values with file-based storage - Rename 'flux' model to 'ImageGeneration' and update references - Add temperature, top_p and max_tokens parameters to generator - Simplify HTTP headers and remove redundant options - Add model alias mapping for ImageGeneration - Add file system utilities for cache management * feat(g4f/Provider/RobocodersAPI.py): add caching and error handling - Add file-based caching system for access tokens and sessions - Add robust error handling with specific error messages - Add automatic dialog continuation on resource limits - Add HTML parsing with BeautifulSoup for token extraction - Add debug logging for error tracking - Add timeout configuration for API requests * refactor(g4f/Provider/DarkAI.py): update DarkAI default model and aliases - Change default model from llama-3-405b to llama-3-70b - Remove llama-3-405b from supported models list - Remove llama-3.1-405b from model aliases * feat(g4f/Provider/Blackbox2.py): add image generation support - Add image model 'flux' with dedicated API endpoint - Refactor generator to support both text and image outputs - Extract headers into reusable static method - Add type hints for AsyncGenerator return type - Split generation logic into _generate_text and _generate_image methods - Add ImageResponse handling for image generation results BREAKING CHANGE: create_async_generator now returns AsyncGenerator instead of AsyncResult * refactor(g4f/Provider/ChatGptEs.py): update ChatGptEs model configuration - Update models list to include gpt-3.5-turbo - Remove chatgpt-4o-latest from supported models - Remove model_aliases mapping for gpt-4o * feat(g4f/Provider/DeepInfraChat.py): add Accept-Language header support - Add Accept-Language header for internationalization - Maintain existing header configuration - Improve request compatibility with language preferences * refactor(g4f/Provider/needs_auth/Gemini.py): add ProviderModelMixin inheritance - Add ProviderModelMixin to class inheritance - Import ProviderModelMixin from base_provider - Move BaseConversation import to base_provider imports * refactor(g4f/Provider/Liaobots.py): update model details and aliases - Add version suffix to o1 model IDs - Update model aliases for o1-preview and o1-mini - Standardize version format across model definitions * refactor(g4f/Provider/PollinationsAI.py): enhance model support and generation - Split generation logic into dedicated image/text methods - Add additional text models including sur and claude - Add width/height parameters for image generation - Add model existence validation - Add hasattr checks for model lists initialization * chore(gitignore): add provider cache directory - Add g4f/Provider/.cache to gitignore patterns * refactor(g4f/Provider/ReplicateHome.py): update model configuration - Update default model to gemma-2b-it - Add default_image_model configuration - Remove llava-13b from supported models - Simplify request headers * feat(g4f/models.py): expand provider and model support - Add new providers DarkAI and PollinationsAI - Add new models for Mistral, Flux and image generation - Update provider lists for existing models - Add P1 and Evil models with experimental providers BREAKING CHANGE: Remove llava-13b model support * refactor(Airforce): Update type hint for split_message return - Change return type of from to for consistency with import. - Maintain overall functionality and structure of the class. - Ensure compatibility with type hinting standards in Python. * refactor(g4f/Provider/Airforce.py): Update type hint for split_message return - Change return type of 'split_message' from 'list[str]' to 'List[str]' for consistency with import. - Maintain overall functionality and structure of the 'Airforce' class. - Ensure compatibility with type hinting standards in Python. * feat(g4f/Provider/RobocodersAPI.py): Add support for optional BeautifulSoup dependency - Introduce a check for the BeautifulSoup library and handle its absence gracefully. - Raise a if BeautifulSoup is not installed, prompting the user to install it. - Remove direct import of BeautifulSoup to avoid import errors when the library is missing. * fix: Updating provider documentation and small fixes in providers * Disabled the provider (RobocodersAPI) * Fix: Conflicting file g4f/models.py * Update g4f/models.py g4f/Provider/Airforce.py * Update docs/providers-and-models.md g4f/models.py g4f/Provider/Airforce.py g4f/Provider/PollinationsAI.py * Update docs/providers-and-models.md * Update .gitignore * Update g4f/models.py * Update g4f/Provider/PollinationsAI.py --------- Co-authored-by: kqlio67 <>
104 lines
4.0 KiB
Python
104 lines
4.0 KiB
Python
from __future__ import annotations
|
|
|
|
import random
|
|
import json
|
|
|
|
from ..typing import AsyncResult, Messages
|
|
from ..requests import StreamSession, raise_for_status
|
|
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
|
|
|
|
API_URL = "https://www.perplexity.ai/socket.io/"
|
|
WS_URL = "wss://www.perplexity.ai/socket.io/"
|
|
|
|
class PerplexityLabs(AsyncGeneratorProvider, ProviderModelMixin):
|
|
url = "https://labs.perplexity.ai"
|
|
working = True
|
|
default_model = "llama-3.1-70b-instruct"
|
|
models = [
|
|
"llama-3.1-sonar-large-128k-online",
|
|
"llama-3.1-sonar-small-128k-online",
|
|
"llama-3.1-sonar-large-128k-chat",
|
|
"llama-3.1-sonar-small-128k-chat",
|
|
"llama-3.1-8b-instruct",
|
|
"llama-3.1-70b-instruct",
|
|
"/models/LiquidCloud",
|
|
]
|
|
|
|
model_aliases = {
|
|
"sonar-online": "llama-3.1-sonar-large-128k-online",
|
|
"sonar-online": "sonar-small-128k-online",
|
|
"sonar-chat": "llama-3.1-sonar-large-128k-chat",
|
|
"sonar-chat": "llama-3.1-sonar-small-128k-chat",
|
|
"llama-3.3-70b": "llama-3.3-70b-instruct",
|
|
"llama-3.1-8b": "llama-3.1-8b-instruct",
|
|
"llama-3.1-70b": "llama-3.1-70b-instruct",
|
|
"lfm-40b": "/models/LiquidCloud",
|
|
}
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
proxy: str = None,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
headers = {
|
|
"User-Agent": "Mozilla/5.0 (X11; Ubuntu; Linux x86_64; rv:121.0) Gecko/20100101 Firefox/121.0",
|
|
"Accept": "*/*",
|
|
"Accept-Language": "de,en-US;q=0.7,en;q=0.3",
|
|
"Accept-Encoding": "gzip, deflate, br",
|
|
"Origin": cls.url,
|
|
"Connection": "keep-alive",
|
|
"Referer": f"{cls.url}/",
|
|
"Sec-Fetch-Dest": "empty",
|
|
"Sec-Fetch-Mode": "cors",
|
|
"Sec-Fetch-Site": "same-site",
|
|
"TE": "trailers",
|
|
}
|
|
async with StreamSession(headers=headers, proxies={"all": proxy}) as session:
|
|
t = format(random.getrandbits(32), "08x")
|
|
async with session.get(
|
|
f"{API_URL}?EIO=4&transport=polling&t={t}"
|
|
) as response:
|
|
await raise_for_status(response)
|
|
text = await response.text()
|
|
assert text.startswith("0")
|
|
sid = json.loads(text[1:])["sid"]
|
|
post_data = '40{"jwt":"anonymous-ask-user"}'
|
|
async with session.post(
|
|
f"{API_URL}?EIO=4&transport=polling&t={t}&sid={sid}",
|
|
data=post_data
|
|
) as response:
|
|
await raise_for_status(response)
|
|
assert await response.text() == "OK"
|
|
async with session.ws_connect(f"{WS_URL}?EIO=4&transport=websocket&sid={sid}", autoping=False) as ws:
|
|
await ws.send_str("2probe")
|
|
assert(await ws.receive_str() == "3probe")
|
|
await ws.send_str("5")
|
|
assert(await ws.receive_str())
|
|
assert(await ws.receive_str() == "6")
|
|
message_data = {
|
|
"version": "2.13",
|
|
"source": "default",
|
|
"model": model,
|
|
"messages": messages
|
|
}
|
|
await ws.send_str("42" + json.dumps(["perplexity_labs", message_data]))
|
|
last_message = 0
|
|
while True:
|
|
message = await ws.receive_str()
|
|
if message == "2":
|
|
if last_message == 0:
|
|
raise RuntimeError("Unknown error")
|
|
await ws.send_str("3")
|
|
continue
|
|
try:
|
|
data = json.loads(message[2:])[1]
|
|
yield data["output"][last_message:]
|
|
last_message = len(data["output"])
|
|
if data["final"]:
|
|
break
|
|
except:
|
|
raise RuntimeError(f"Message: {message}")
|