mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-19 06:34:38 +08:00

- **Docs** - `docs/file.md`: update upload instructions to use inline `bucket` content parts instead of `tool_calls/bucket_tool`. - `docs/media.md`: add asynchronous audio transcription example, detailed explanation, and notes. - **New audio provider** - Add `g4f/Provider/audio/EdgeTTS.py` implementing Edge Text‑to‑Speech (`EdgeTTS`). - Create `g4f/Provider/audio/__init__.py` for provider export. - Register provider in `g4f/Provider/__init__.py`. - **Refactor image → media** - Introduce `generated_media/` directory and `get_media_dir()` helper in `g4f/image/copy_images.py`; add `ensure_media_dir()`; keep back‑compat with legacy `generated_images/`. - Replace `images_dir` references with `get_media_dir()` across: - `g4f/api/__init__.py` - `g4f/client/stubs.py` - `g4f/gui/server/api.py` - `g4f/gui/server/backend_api.py` - `g4f/image/copy_images.py` - Rename CLI/API config field/flag from `image_provider` to `media_provider` (`g4f/cli.py`, `g4f/api/__init__.py`, `g4f/client/__init__.py`). - Extend `g4f/image/__init__.py` - add `MEDIA_TYPE_MAP`, `get_extension()` - revise `is_allowed_extension()`, `to_input_audio()` to support wider media types. - **Provider adjustments** - `g4f/Provider/ARTA.py`: swap `raise_error()` parameter order. - `g4f/Provider/Cloudflare.py`: drop unused `MissingRequirementsError` import; move `get_args_from_nodriver()` inside try; handle `FileNotFoundError`. - **Core enhancements** - `g4f/providers/any_provider.py`: use `default_model` instead of literal `"default"`; broaden model/provider matching; update model list cleanup. - `g4f/models.py`: safeguard provider count logic when model name is falsy. - `g4f/providers/base_provider.py`: catch `json.JSONDecodeError` when reading auth cache, delete corrupted file. - `g4f/providers/response.py`: allow `AudioResponse` to accept extra kwargs. - **Misc** - Remove obsolete `g4f/image.py`. - `g4f/Provider/Cloudflare.py`, `g4f/client/types.py`: minor whitespace and import tidy‑ups.
511 lines
18 KiB
Python
511 lines
18 KiB
Python
from __future__ import annotations
|
|
|
|
import asyncio
|
|
|
|
from asyncio import AbstractEventLoop
|
|
from concurrent.futures import ThreadPoolExecutor
|
|
from abc import abstractmethod
|
|
import json
|
|
from inspect import signature, Parameter
|
|
from typing import Optional, _GenericAlias
|
|
from pathlib import Path
|
|
try:
|
|
from types import NoneType
|
|
except ImportError:
|
|
NoneType = type(None)
|
|
|
|
from ..typing import CreateResult, AsyncResult, Messages
|
|
from .types import BaseProvider
|
|
from .asyncio import get_running_loop, to_sync_generator, to_async_iterator
|
|
from .response import BaseConversation, AuthResult
|
|
from .helper import concat_chunks
|
|
from ..cookies import get_cookies_dir
|
|
from ..errors import ModelNotSupportedError, ResponseError, MissingAuthError, NoValidHarFileError, PaymentRequiredError
|
|
from .. import debug
|
|
|
|
SAFE_PARAMETERS = [
|
|
"model", "messages", "stream", "timeout",
|
|
"proxy", "media", "response_format",
|
|
"prompt", "negative_prompt", "tools", "conversation",
|
|
"history_disabled",
|
|
"temperature", "top_k", "top_p",
|
|
"frequency_penalty", "presence_penalty",
|
|
"max_tokens", "stop",
|
|
"api_key", "api_base", "seed", "width", "height",
|
|
"max_retries", "web_search",
|
|
"guidance_scale", "num_inference_steps", "randomize_seed",
|
|
"safe", "enhance", "private", "aspect_ratio", "n",
|
|
]
|
|
|
|
BASIC_PARAMETERS = {
|
|
"provider": None,
|
|
"model": "",
|
|
"messages": [],
|
|
"stream": False,
|
|
"timeout": 0,
|
|
"response_format": None,
|
|
"max_tokens": 4096,
|
|
"stop": ["stop1", "stop2"],
|
|
}
|
|
|
|
PARAMETER_EXAMPLES = {
|
|
"proxy": "http://user:password@127.0.0.1:3128",
|
|
"temperature": 1,
|
|
"top_k": 1,
|
|
"top_p": 1,
|
|
"frequency_penalty": 1,
|
|
"presence_penalty": 1,
|
|
"messages": [{"role": "system", "content": ""}, {"role": "user", "content": ""}],
|
|
"media": [["data:image/jpeg;base64,...", "filename.jpg"]],
|
|
"response_format": {"type": "json_object"},
|
|
"conversation": {"conversation_id": "550e8400-e29b-11d4-a716-...", "message_id": "550e8400-e29b-11d4-a716-..."},
|
|
"seed": 42,
|
|
"tools": [],
|
|
}
|
|
|
|
class AbstractProvider(BaseProvider):
|
|
|
|
@classmethod
|
|
@abstractmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Create a completion with the given parameters.
|
|
|
|
Args:
|
|
model (str): The model to use.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Whether to use streaming.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the creation process.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
async def create_async(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
*,
|
|
timeout: int = None,
|
|
loop: AbstractEventLoop = None,
|
|
executor: ThreadPoolExecutor = None,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Asynchronously creates a result based on the given model and messages.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
executor (ThreadPoolExecutor, optional): The executor for running async tasks. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
loop = asyncio.get_running_loop() if loop is None else loop
|
|
|
|
def create_func() -> str:
|
|
return concat_chunks(cls.create_completion(model, messages, **kwargs))
|
|
|
|
return await asyncio.wait_for(
|
|
loop.run_in_executor(executor, create_func),
|
|
timeout=timeout
|
|
)
|
|
|
|
@classmethod
|
|
def get_create_function(cls) -> callable:
|
|
return cls.create_completion
|
|
|
|
@classmethod
|
|
def get_async_create_function(cls) -> callable:
|
|
return cls.create_async
|
|
|
|
@classmethod
|
|
def get_parameters(cls, as_json: bool = False) -> dict[str, Parameter]:
|
|
params = {name: parameter for name, parameter in signature(
|
|
cls.create_async_generator if issubclass(cls, AsyncGeneratorProvider) else
|
|
cls.create_async if issubclass(cls, AsyncProvider) else
|
|
cls.create_completion
|
|
).parameters.items() if name in SAFE_PARAMETERS
|
|
and (name != "stream" or cls.supports_stream)}
|
|
if as_json:
|
|
def get_type_as_var(annotation: type, key: str, default):
|
|
if key in PARAMETER_EXAMPLES:
|
|
if key == "messages" and not cls.supports_system_message:
|
|
return [PARAMETER_EXAMPLES[key][-1]]
|
|
return PARAMETER_EXAMPLES[key]
|
|
if isinstance(annotation, type):
|
|
if issubclass(annotation, int):
|
|
return 0
|
|
elif issubclass(annotation, float):
|
|
return 0.0
|
|
elif issubclass(annotation, bool):
|
|
return False
|
|
elif issubclass(annotation, str):
|
|
return ""
|
|
elif issubclass(annotation, dict):
|
|
return {}
|
|
elif issubclass(annotation, list):
|
|
return []
|
|
elif issubclass(annotation, BaseConversation):
|
|
return {}
|
|
elif issubclass(annotation, NoneType):
|
|
return {}
|
|
elif annotation is None:
|
|
return None
|
|
elif annotation == "str" or annotation == "list[str]":
|
|
return default
|
|
elif isinstance(annotation, _GenericAlias):
|
|
if annotation.__origin__ is Optional:
|
|
return get_type_as_var(annotation.__args__[0])
|
|
else:
|
|
return str(annotation)
|
|
return { name: (
|
|
param.default
|
|
if isinstance(param, Parameter) and param.default is not Parameter.empty and param.default is not None
|
|
else get_type_as_var(param.annotation, name, param.default) if isinstance(param, Parameter) else param
|
|
) for name, param in {
|
|
**BASIC_PARAMETERS,
|
|
**params,
|
|
**{"provider": cls.__name__, "model": getattr(cls, "default_model", ""), "stream": cls.supports_stream},
|
|
}.items()}
|
|
return params
|
|
|
|
@classmethod
|
|
@property
|
|
def params(cls) -> str:
|
|
"""
|
|
Returns the parameters supported by the provider.
|
|
|
|
Args:
|
|
cls (type): The class on which this property is called.
|
|
|
|
Returns:
|
|
str: A string listing the supported parameters.
|
|
"""
|
|
|
|
def get_type_name(annotation: type) -> str:
|
|
return getattr(annotation, "__name__", str(annotation)) if annotation is not Parameter.empty else ""
|
|
|
|
args = ""
|
|
for name, param in cls.get_parameters().items():
|
|
args += f"\n {name}"
|
|
args += f": {get_type_name(param.annotation)}"
|
|
default_value = getattr(cls, "default_model", "") if name == "model" else param.default
|
|
default_value = f'"{default_value}"' if isinstance(default_value, str) else default_value
|
|
args += f" = {default_value}" if param.default is not Parameter.empty else ""
|
|
args += ","
|
|
|
|
return f"g4f.Provider.{cls.__name__} supports: ({args}\n)"
|
|
|
|
class AsyncProvider(AbstractProvider):
|
|
"""
|
|
Provides asynchronous functionality for creating completions.
|
|
"""
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = False,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to False.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the completion creation.
|
|
"""
|
|
get_running_loop(check_nested=False)
|
|
yield asyncio.run(cls.create_async(model, messages, **kwargs))
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async(
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> str:
|
|
"""
|
|
Abstract method for creating asynchronous results.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
str: The created result as a string.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def get_create_function(cls) -> callable:
|
|
return cls.create_completion
|
|
|
|
@classmethod
|
|
def get_async_create_function(cls) -> callable:
|
|
return cls.create_async
|
|
|
|
class AsyncGeneratorProvider(AbstractProvider):
|
|
"""
|
|
Provides asynchronous generator functionality for streaming results.
|
|
"""
|
|
supports_stream = True
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
"""
|
|
Creates a streaming completion result synchronously.
|
|
|
|
Args:
|
|
cls (type): The class on which this method is called.
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
loop (AbstractEventLoop, optional): The event loop to use. Defaults to None.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Returns:
|
|
CreateResult: The result of the streaming completion creation.
|
|
"""
|
|
return to_sync_generator(
|
|
cls.create_async_generator(model, messages, stream=stream, **kwargs),
|
|
stream=stream
|
|
)
|
|
|
|
@staticmethod
|
|
@abstractmethod
|
|
async def create_async_generator(
|
|
model: str,
|
|
messages: Messages,
|
|
stream: bool = True,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
"""
|
|
Abstract method for creating an asynchronous generator.
|
|
|
|
Args:
|
|
model (str): The model to use for creation.
|
|
messages (Messages): The messages to process.
|
|
stream (bool): Indicates whether to stream the results. Defaults to True.
|
|
**kwargs: Additional keyword arguments.
|
|
|
|
Raises:
|
|
NotImplementedError: If this method is not overridden in derived classes.
|
|
|
|
Returns:
|
|
AsyncResult: An asynchronous generator yielding results.
|
|
"""
|
|
raise NotImplementedError()
|
|
|
|
@classmethod
|
|
def get_create_function(cls) -> callable:
|
|
return cls.create_completion
|
|
|
|
@classmethod
|
|
def get_async_create_function(cls) -> callable:
|
|
return cls.create_async_generator
|
|
|
|
class ProviderModelMixin:
|
|
default_model: str = None
|
|
models: list[str] = []
|
|
model_aliases: dict[str, str] = {}
|
|
image_models: list = []
|
|
vision_models: list = []
|
|
video_models: list = []
|
|
audio_models: dict = {}
|
|
last_model: str = None
|
|
|
|
@classmethod
|
|
def get_models(cls, **kwargs) -> list[str]:
|
|
if not cls.models and cls.default_model is not None:
|
|
return [cls.default_model]
|
|
return cls.models
|
|
|
|
@classmethod
|
|
def get_model(cls, model: str, **kwargs) -> str:
|
|
if not model and cls.default_model is not None:
|
|
model = cls.default_model
|
|
elif model in cls.model_aliases:
|
|
model = cls.model_aliases[model]
|
|
else:
|
|
if model not in cls.get_models(**kwargs) and cls.models:
|
|
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__} Valid models: {cls.models}")
|
|
cls.last_model = model
|
|
debug.last_model = model
|
|
return model
|
|
|
|
class RaiseErrorMixin():
|
|
|
|
@staticmethod
|
|
def raise_error(data: dict, status: int = None):
|
|
if "error_message" in data:
|
|
raise ResponseError(data["error_message"])
|
|
elif "error" in data:
|
|
if isinstance(data["error"], str):
|
|
if status is not None:
|
|
if status == 401:
|
|
raise MissingAuthError(f"Error {status}: {data['error']}")
|
|
elif status == 402:
|
|
raise PaymentRequiredError(f"Error {status}: {data['error']}")
|
|
raise ResponseError(f"Error {status}: {data['error']}")
|
|
raise ResponseError(data["error"])
|
|
elif isinstance(data["error"], bool):
|
|
raise ResponseError(data)
|
|
elif "code" in data["error"]:
|
|
raise ResponseError("\n".join(
|
|
[e for e in [f'Error {data["error"]["code"]}: {data["error"]["message"]}', data["error"].get("failed_generation")] if e is not None]
|
|
))
|
|
elif "message" in data["error"]:
|
|
raise ResponseError(data["error"]["message"])
|
|
else:
|
|
raise ResponseError(data["error"])
|
|
elif ("choices" not in data or not data["choices"]) and "data" not in data:
|
|
raise ResponseError(f"Invalid response: {json.dumps(data)}")
|
|
|
|
class AuthFileMixin():
|
|
|
|
@classmethod
|
|
def get_cache_file(cls) -> Path:
|
|
return Path(get_cookies_dir()) / f"auth_{cls.parent if hasattr(cls, 'parent') else cls.__name__}.json"
|
|
|
|
class AsyncAuthedProvider(AsyncGeneratorProvider, AuthFileMixin):
|
|
|
|
@classmethod
|
|
async def on_auth_async(cls, **kwargs) -> AuthResult:
|
|
if "api_key" not in kwargs:
|
|
raise MissingAuthError(f"API key is required for {cls.__name__}")
|
|
return AuthResult()
|
|
|
|
@classmethod
|
|
def on_auth(cls, **kwargs) -> AuthResult:
|
|
auth_result = cls.on_auth_async(**kwargs)
|
|
if hasattr(auth_result, "__aiter__"):
|
|
return to_sync_generator(auth_result)
|
|
return asyncio.run(auth_result)
|
|
|
|
@classmethod
|
|
def get_create_function(cls) -> callable:
|
|
return cls.create_completion
|
|
|
|
@classmethod
|
|
def get_async_create_function(cls) -> callable:
|
|
return cls.create_async_generator
|
|
|
|
@classmethod
|
|
def write_cache_file(cls, cache_file: Path, auth_result: AuthResult = None):
|
|
if auth_result is not None:
|
|
cache_file.parent.mkdir(parents=True, exist_ok=True)
|
|
try:
|
|
def toJSON(obj):
|
|
if hasattr(obj, "get_dict"):
|
|
return obj.get_dict()
|
|
return str(obj)
|
|
with cache_file.open("w") as cache_file:
|
|
json.dump(auth_result, cache_file, default=toJSON)
|
|
except TypeError as e:
|
|
raise RuntimeError(f"Failed to save: {auth_result.get_dict()}\n{type(e).__name__}: {e}")
|
|
elif cache_file.exists():
|
|
cache_file.unlink()
|
|
|
|
@classmethod
|
|
def create_completion(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> CreateResult:
|
|
auth_result: AuthResult = None
|
|
cache_file = cls.get_cache_file()
|
|
try:
|
|
if cache_file.exists():
|
|
try:
|
|
with cache_file.open("r") as f:
|
|
auth_result = AuthResult(**json.load(f))
|
|
except json.JSONDecodeError:
|
|
cache_file.unlink()
|
|
raise MissingAuthError(f"Invalid auth file: {cache_file}")
|
|
else:
|
|
raise MissingAuthError
|
|
yield from to_sync_generator(cls.create_authed(model, messages, auth_result, **kwargs))
|
|
except (MissingAuthError, NoValidHarFileError):
|
|
response = cls.on_auth(**kwargs)
|
|
for chunk in response:
|
|
if isinstance(chunk, AuthResult):
|
|
auth_result = chunk
|
|
else:
|
|
yield chunk
|
|
yield from to_sync_generator(cls.create_authed(model, messages, auth_result, **kwargs))
|
|
finally:
|
|
cls.write_cache_file(cache_file, auth_result)
|
|
|
|
@classmethod
|
|
async def create_async_generator(
|
|
cls,
|
|
model: str,
|
|
messages: Messages,
|
|
**kwargs
|
|
) -> AsyncResult:
|
|
auth_result: AuthResult = None
|
|
cache_file = cls.get_cache_file()
|
|
try:
|
|
if cache_file.exists():
|
|
try:
|
|
with cache_file.open("r") as f:
|
|
auth_result = AuthResult(**json.load(f))
|
|
except json.JSONDecodeError:
|
|
cache_file.unlink()
|
|
raise MissingAuthError(f"Invalid auth file: {cache_file}")
|
|
else:
|
|
raise MissingAuthError
|
|
response = to_async_iterator(cls.create_authed(model, messages, **kwargs, auth_result=auth_result))
|
|
async for chunk in response:
|
|
yield chunk
|
|
except (MissingAuthError, NoValidHarFileError):
|
|
if cache_file.exists():
|
|
cache_file.unlink()
|
|
response = cls.on_auth_async(**kwargs)
|
|
async for chunk in response:
|
|
if isinstance(chunk, AuthResult):
|
|
auth_result = chunk
|
|
else:
|
|
yield chunk
|
|
response = to_async_iterator(cls.create_authed(model, messages, **kwargs, auth_result=auth_result))
|
|
async for chunk in response:
|
|
if cache_file is not None:
|
|
cls.write_cache_file(cache_file, auth_result)
|
|
cache_file = None
|
|
yield chunk
|
|
finally:
|
|
cls.write_cache_file(cache_file, auth_result)
|