Files
gpt4free/g4f/client/stubs.py
hlohaus b68b9ff6be feat: add audio generation support for multiple providers
- Added new examples for `client.media.generate` with `PollinationsAI`, `EdgeTTS`, and `Gemini` in `docs/media.md`
- Modified `PollinationsAI.py` to default to `default_audio_model` when audio data is present
- Adjusted `PollinationsAI.py` to conditionally construct message list from `prompt` when media is being generated
- Rearranged `PollinationsAI.py` response handling to yield `save_response_media` after checking for non-JSON content types
- Added support in `EdgeTTS.py` to use default values for `language`, `locale`, and `format` from class attributes
- Improved voice selection logic in `EdgeTTS.py` to fallback to default locale or language when not explicitly provided
- Updated `EdgeTTS.py` to yield `AudioResponse` with `text` field included
- Modified `Gemini.py` to support `.ogx` audio generation when `model == "gemini-audio"` or `audio` is passed
- Used `format_image_prompt` in `Gemini.py` to create audio prompt and saved audio file using `synthesize`
- Appended `AudioResponse` to `Gemini.py` for audio generation flow
- Added `save()` method to `Image` class in `stubs.py` to support saving `/media/` files locally
- Changed `client/__init__.py` to fallback to `options["text"]` if `alt` is missing in `Images.create`
- Ensured `AudioResponse` in `copy_images.py` includes the `text` (prompt) field
- Added `Annotated` fallback definition in `api/__init__.py` for compatibility with older Python versions
2025-04-19 06:23:46 +02:00

239 lines
7.3 KiB
Python

from __future__ import annotations
import os
from typing import Optional, List
from time import time
from ..image import extract_data_uri
from ..image.copy_images import get_media_dir
from ..client.helper import filter_markdown
from .helper import filter_none
try:
from pydantic import BaseModel, field_serializer
except ImportError:
class BaseModel():
@classmethod
def model_construct(cls, **data):
new = cls()
for key, value in data.items():
setattr(new, key, value)
return new
class field_serializer():
def __init__(self, field_name):
self.field_name = field_name
def __call__(self, *args, **kwargs):
return args[0]
class BaseModel(BaseModel):
@classmethod
def model_construct(cls, **data):
if hasattr(super(), "model_construct"):
return super().model_construct(**data)
return cls.construct(**data)
class TokenDetails(BaseModel):
cached_tokens: int
class UsageModel(BaseModel):
prompt_tokens: int
completion_tokens: int
total_tokens: int
prompt_tokens_details: TokenDetails
completion_tokens_details: TokenDetails
@classmethod
def model_construct(cls, prompt_tokens=0, completion_tokens=0, total_tokens=0, prompt_tokens_details=None, completion_tokens_details=None, **kwargs):
return super().model_construct(
prompt_tokens=prompt_tokens,
completion_tokens=completion_tokens,
total_tokens=total_tokens,
prompt_tokens_details=TokenDetails.model_construct(**prompt_tokens_details if prompt_tokens_details else {"cached_tokens": 0}),
completion_tokens_details=TokenDetails.model_construct(**completion_tokens_details if completion_tokens_details else {}),
**kwargs
)
class ToolFunctionModel(BaseModel):
name: str
arguments: str
class ToolCallModel(BaseModel):
id: str
type: str
function: ToolFunctionModel
@classmethod
def model_construct(cls, function=None, **kwargs):
return super().model_construct(
**kwargs,
function=ToolFunctionModel.model_construct(**function),
)
class ChatCompletionChunk(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: List[ChatCompletionDeltaChoice]
usage: UsageModel
conversation: dict
@classmethod
def model_construct(
cls,
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None,
usage: UsageModel = None,
conversation: dict = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion.chunk",
created=created,
model=None,
provider=None,
choices=[ChatCompletionDeltaChoice.model_construct(
ChatCompletionDelta.model_construct(content),
finish_reason
)],
**filter_none(usage=usage, conversation=conversation)
)
@field_serializer('conversation')
def serialize_conversation(self, conversation: dict):
if hasattr(conversation, "get_dict"):
return conversation.get_dict()
return conversation
class ChatCompletionMessage(BaseModel):
role: str
content: str
tool_calls: list[ToolCallModel] = None
@classmethod
def model_construct(cls, content: str, tool_calls: list = None):
return super().model_construct(role="assistant", content=content, **filter_none(tool_calls=tool_calls))
@field_serializer('content')
def serialize_content(self, content: str):
return str(content)
def save(self, filepath: str, allowd_types = None):
if hasattr(self.content, "data"):
os.rename(self.content.data.replace("/media", get_media_dir()), filepath)
return
if self.content.startswith("data:"):
with open(filepath, "wb") as f:
f.write(extract_data_uri(self.content))
return
content = filter_markdown(self.content, allowd_types)
if content is not None:
with open(filepath, "w") as f:
f.write(content)
class ChatCompletionChoice(BaseModel):
index: int
message: ChatCompletionMessage
finish_reason: str
@classmethod
def model_construct(cls, message: ChatCompletionMessage, finish_reason: str):
return super().model_construct(index=0, message=message, finish_reason=finish_reason)
class ChatCompletion(BaseModel):
id: str
object: str
created: int
model: str
provider: Optional[str]
choices: list[ChatCompletionChoice]
usage: UsageModel
conversation: dict
@classmethod
def model_construct(
cls,
content: str,
finish_reason: str,
completion_id: str = None,
created: int = None,
tool_calls: list[ToolCallModel] = None,
usage: UsageModel = None,
conversation: dict = None
):
return super().model_construct(
id=f"chatcmpl-{completion_id}" if completion_id else None,
object="chat.completion",
created=created,
model=None,
provider=None,
choices=[ChatCompletionChoice.model_construct(
ChatCompletionMessage.model_construct(content, tool_calls),
finish_reason,
)],
**filter_none(usage=usage, conversation=conversation)
)
@field_serializer('conversation')
def serialize_conversation(self, conversation: dict):
if hasattr(conversation, "get_dict"):
return conversation.get_dict()
return conversation
class ChatCompletionDelta(BaseModel):
role: str
content: str
@classmethod
def model_construct(cls, content: Optional[str]):
return super().model_construct(role="assistant", content=content)
@field_serializer('content')
def serialize_content(self, content: str):
return str(content)
class ChatCompletionDeltaChoice(BaseModel):
index: int
delta: ChatCompletionDelta
finish_reason: Optional[str]
@classmethod
def model_construct(cls, delta: ChatCompletionDelta, finish_reason: Optional[str]):
return super().model_construct(index=0, delta=delta, finish_reason=finish_reason)
class Image(BaseModel):
url: Optional[str]
b64_json: Optional[str]
revised_prompt: Optional[str]
@classmethod
def model_construct(cls, url: str = None, b64_json: str = None, revised_prompt: str = None):
return super().model_construct(**filter_none(
url=url,
b64_json=b64_json,
revised_prompt=revised_prompt
))
def save(self, path: str):
if self.url is not None and self.url.startswith("/media/"):
os.rename(self.url.replace("/media", get_media_dir()), path)
class ImagesResponse(BaseModel):
data: List[Image]
model: str
provider: str
created: int
@classmethod
def model_construct(cls, data: List[Image], created: int = None, model: str = None, provider: str = None):
if created is None:
created = int(time())
return super().model_construct(
data=data,
model=model,
provider=provider,
created=created
)