mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-05 08:16:58 +08:00
125 lines
5.9 KiB
Python
125 lines
5.9 KiB
Python
from __future__ import annotations
|
|
|
|
import re
|
|
import json
|
|
import asyncio
|
|
from typing import Optional, Callable, AsyncIterator
|
|
|
|
from ..typing import Messages
|
|
from ..providers.helper import filter_none
|
|
from ..providers.asyncio import to_async_iterator
|
|
from .web_search import do_search, get_search_message
|
|
from .files import read_bucket, get_bucket_dir
|
|
from .. import debug
|
|
|
|
BUCKET_INSTRUCTIONS = """
|
|
Instruction: Make sure to add the sources of cites using [[domain]](Url) notation after the reference. Example: [[a-z0-9.]](http://example.com)
|
|
"""
|
|
|
|
def validate_arguments(data: dict) -> dict:
|
|
if "arguments" in data:
|
|
if isinstance(data["arguments"], str):
|
|
data["arguments"] = json.loads(data["arguments"])
|
|
if not isinstance(data["arguments"], dict):
|
|
raise ValueError("Tool function arguments must be a dictionary or a json string")
|
|
else:
|
|
return filter_none(**data["arguments"])
|
|
else:
|
|
return {}
|
|
|
|
async def async_iter_run_tools(async_iter_callback, model, messages, tool_calls: Optional[list] = None, **kwargs):
|
|
# Handle web_search from kwargs
|
|
web_search = kwargs.get('web_search')
|
|
if web_search:
|
|
try:
|
|
messages = messages.copy()
|
|
messages[-1]["content"] = await do_search(messages[-1]["content"], web_search if web_search != "true" else None)
|
|
except Exception as e:
|
|
debug.log(f"Couldn't do web search: {e.__class__.__name__}: {e}")
|
|
# Keep web_search in kwargs for provider native support
|
|
pass
|
|
|
|
if tool_calls is not None:
|
|
for tool in tool_calls:
|
|
if tool.get("type") == "function":
|
|
if tool.get("function", {}).get("name") == "search_tool":
|
|
tool["function"]["arguments"] = validate_arguments(tool["function"])
|
|
messages = messages.copy()
|
|
messages[-1]["content"] = await do_search(
|
|
messages[-1]["content"],
|
|
**tool["function"]["arguments"]
|
|
)
|
|
elif tool.get("function", {}).get("name") == "continue":
|
|
last_line = messages[-1]["content"].strip().splitlines()[-1]
|
|
content = f"Carry on from this point:\n{last_line}"
|
|
messages.append({"role": "user", "content": content})
|
|
elif tool.get("function", {}).get("name") == "bucket_tool":
|
|
def on_bucket(match):
|
|
return "".join(read_bucket(get_bucket_dir(match.group(1))))
|
|
has_bucket = False
|
|
for message in messages:
|
|
if "content" in message and isinstance(message["content"], str):
|
|
new_message_content = re.sub(r'{"bucket_id":"([^"]*)"}', on_bucket, message["content"])
|
|
if new_message_content != message["content"]:
|
|
has_bucket = True
|
|
message["content"] = new_message_content
|
|
if has_bucket and isinstance(messages[-1]["content"], str):
|
|
messages[-1]["content"] += BUCKET_INSTRUCTIONS
|
|
|
|
response = to_async_iterator(async_iter_callback(model=model, messages=messages, **kwargs))
|
|
async for chunk in response:
|
|
yield chunk
|
|
|
|
def iter_run_tools(
|
|
iter_callback: Callable,
|
|
model: str,
|
|
messages: Messages,
|
|
provider: Optional[str] = None,
|
|
tool_calls: Optional[list] = None,
|
|
**kwargs
|
|
) -> AsyncIterator:
|
|
# Handle web_search from kwargs
|
|
web_search = kwargs.get('web_search')
|
|
if web_search:
|
|
try:
|
|
messages = messages.copy()
|
|
messages[-1]["content"] = asyncio.run(do_search(messages[-1]["content"], web_search if web_search != "true" else None))
|
|
except Exception as e:
|
|
debug.log(f"Couldn't do web search: {e.__class__.__name__}: {e}")
|
|
# Keep web_search in kwargs for provider native support
|
|
pass
|
|
|
|
if tool_calls is not None:
|
|
for tool in tool_calls:
|
|
if tool.get("type") == "function":
|
|
if tool.get("function", {}).get("name") == "search_tool":
|
|
tool["function"]["arguments"] = validate_arguments(tool["function"])
|
|
messages[-1]["content"] = get_search_message(
|
|
messages[-1]["content"],
|
|
raise_search_exceptions=True,
|
|
**tool["function"]["arguments"]
|
|
)
|
|
elif tool.get("function", {}).get("name") == "continue_tool":
|
|
if provider not in ("OpenaiAccount", "HuggingFace"):
|
|
last_line = messages[-1]["content"].strip().splitlines()[-1]
|
|
content = f"Carry on from this point:\n{last_line}"
|
|
messages.append({"role": "user", "content": content})
|
|
else:
|
|
# Enable provider native continue
|
|
if "action" not in kwargs:
|
|
kwargs["action"] = "continue"
|
|
elif tool.get("function", {}).get("name") == "bucket_tool":
|
|
def on_bucket(match):
|
|
return "".join(read_bucket(get_bucket_dir(match.group(1))))
|
|
has_bucket = False
|
|
for message in messages:
|
|
if "content" in message and isinstance(message["content"], str):
|
|
new_message_content = re.sub(r'{"bucket_id":"([^"]*)"}', on_bucket, message["content"])
|
|
if new_message_content != message["content"]:
|
|
has_bucket = True
|
|
message["content"] = new_message_content
|
|
if has_bucket and isinstance(messages[-1]["content"], str):
|
|
messages[-1]["content"] += BUCKET_INSTRUCTIONS
|
|
|
|
return iter_callback(model=model, messages=messages, provider=provider, **kwargs)
|