Files
gpt4free/g4f/Provider/hf/HuggingFaceAPI.py
hlohaus 89e096334d Support reasoning tokens by default
Add new default HuggingFace provider
Add format_image_prompt and get_last_user_message helper
Add stop_browser callable to get_nodriver function
Fix content type response in images route
2025-01-31 17:36:48 +01:00

61 lines
2.3 KiB
Python

from __future__ import annotations
from ..template.OpenaiTemplate import OpenaiTemplate
from .models import model_aliases
from ...providers.types import Messages
from .HuggingChat import HuggingChat
from ... import debug
class HuggingFaceAPI(OpenaiTemplate):
label = "HuggingFace (Inference API)"
parent = "HuggingFace"
url = "https://api-inference.huggingface.com"
api_base = "https://api-inference.huggingface.co/v1"
working = True
needs_auth = True
default_model = "meta-llama/Llama-3.2-11B-Vision-Instruct"
default_vision_model = default_model
vision_models = [default_vision_model, "Qwen/Qwen2-VL-7B-Instruct"]
model_aliases = model_aliases
@classmethod
def get_models(cls, **kwargs):
if not cls.models:
HuggingChat.get_models()
cls.models = HuggingChat.text_models.copy()
for model in cls.vision_models:
if model not in cls.models:
cls.models.append(model)
return cls.models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
api_base: str = None,
max_tokens: int = 2048,
max_inputs_lenght: int = 10000,
**kwargs
):
if api_base is None:
model_name = model
if model in cls.model_aliases:
model_name = cls.model_aliases[model]
api_base = f"https://api-inference.huggingface.co/models/{model_name}/v1"
start = calculate_lenght(messages)
if start > max_inputs_lenght:
if len(messages) > 6:
messages = messages[:3] + messages[-3:]
if calculate_lenght(messages) > max_inputs_lenght:
if len(messages) > 2:
messages = [m for m in messages if m["role"] == "system"] + messages[-1:]
if len(messages) > 1 and calculate_lenght(messages) > max_inputs_lenght:
messages = [messages[-1]]
debug.log(f"Messages trimmed from: {start} to: {calculate_lenght(messages)}")
async for chunk in super().create_async_generator(model, messages, api_base=api_base, max_tokens=max_tokens, **kwargs):
yield chunk
def calculate_lenght(messages: Messages) -> int:
return sum([len(message["content"]) + 16 for message in messages])