Files
gpt4free/g4f/Provider/PollinationsAI.py
hlohaus 713ad2c83c Add many parameters to API endpoints
Support conversational HuggingFace providers
Fix streaming in PollinationsAI provider
2025-03-11 22:16:03 +01:00

341 lines
12 KiB
Python

from __future__ import annotations
import json
import random
import requests
from urllib.parse import quote_plus
from typing import Optional
from aiohttp import ClientSession
from .helper import filter_none, format_image_prompt
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..typing import AsyncResult, Messages, ImagesType
from ..image import to_data_uri
from ..errors import ModelNotFoundError
from ..requests.raise_for_status import raise_for_status
from ..requests.aiohttp import get_connector
from ..providers.response import ImageResponse, ImagePreview, FinishReason, Usage, Audio, ToolCalls
from .. import debug
DEFAULT_HEADERS = {
"accept": "*/*",
'accept-language': 'en-US,en;q=0.9',
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/133.0.0.0 Safari/537.36",
"priority": "u=1, i",
"sec-ch-ua": "\"Not(A:Brand\";v=\"99\", \"Google Chrome\";v=\"133\", \"Chromium\";v=\"133\"",
"sec-ch-ua-mobile": "?0",
"sec-ch-ua-platform": "\"Linux\"",
"sec-fetch-dest": "empty",
"sec-fetch-mode": "cors",
"sec-fetch-site": "same-site",
"referer": "https://pollinations.ai/",
"origin": "https://pollinations.ai",
}
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
label = "Pollinations AI"
url = "https://pollinations.ai"
working = True
supports_stream = False
supports_system_message = True
supports_message_history = True
# API endpoints
text_api_endpoint = "https://text.pollinations.ai"
openai_endpoint = "https://text.pollinations.ai/openai"
image_api_endpoint = "https://image.pollinations.ai/"
# Models configuration
default_model = "openai"
default_image_model = "flux"
default_vision_model = default_model
text_models = [default_model]
image_models = [default_image_model]
extra_image_models = ["flux-pro", "flux-dev", "flux-schnell", "midjourney", "dall-e-3"]
vision_models = [default_vision_model, "gpt-4o-mini", "o1-mini", "openai", "openai-large"]
extra_text_models = vision_models
_models_loaded = False
model_aliases = {
### Text Models ###
"gpt-4o-mini": "openai",
"gpt-4": "openai-large",
"gpt-4o": "openai-large",
"o1-mini": "openai-reasoning",
"qwen-2.5-coder-32b": "qwen-coder",
"llama-3.3-70b": "llama",
"mistral-nemo": "mistral",
"gpt-4o-mini": "searchgpt",
"llama-3.1-8b": "llamalight",
"llama-3.3-70b": "llama-scaleway",
"phi-4": "phi",
"gemini-2.0": "gemini",
"gemini-2.0-flash": "gemini",
"gemini-2.0-flash-thinking": "gemini-thinking",
### Image Models ###
"sdxl-turbo": "turbo",
}
@classmethod
def get_models(cls, **kwargs):
if not cls._models_loaded:
try:
# Update of image models
image_response = requests.get("https://image.pollinations.ai/models")
if image_response.ok:
new_image_models = image_response.json()
else:
new_image_models = []
# Combine models without duplicates
all_image_models = (
cls.image_models + # Already contains the default
cls.extra_image_models +
new_image_models
)
cls.image_models = list(dict.fromkeys(all_image_models))
# Update of text models
text_response = requests.get("https://text.pollinations.ai/models")
text_response.raise_for_status()
models = text_response.json()
original_text_models = [
model.get("name")
for model in models
if model.get("type") == "chat"
]
cls.audio_models = {
model.get("name"): model.get("voices")
for model in models
if model.get("audio")
}
# Combining text models
combined_text = (
cls.text_models + # Already contains the default
cls.extra_text_models +
[
model for model in original_text_models
if model not in cls.extra_text_models
]
)
cls.text_models = list(dict.fromkeys(combined_text))
cls._models_loaded = True
except Exception as e:
# Save default models in case of an error
if not cls.text_models:
cls.text_models = [cls.default_model]
if not cls.image_models:
cls.image_models = [cls.default_image_model]
debug.error(f"Failed to fetch models: {e}")
return cls.text_models + cls.image_models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
stream: bool = False,
proxy: str = None,
cache: bool = False,
# Image generation parameters
prompt: str = None,
width: int = 1024,
height: int = 1024,
seed: Optional[int] = None,
nologo: bool = True,
private: bool = False,
enhance: bool = False,
safe: bool = False,
# Text generation parameters
images: ImagesType = None,
temperature: float = None,
presence_penalty: float = None,
top_p: float = 1,
frequency_penalty: float = None,
response_format: Optional[dict] = None,
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "tool_choice", "reasoning_effort", "logit_bias", "voice"],
**kwargs
) -> AsyncResult:
# Load model list
cls.get_models()
try:
model = cls.get_model(model)
except ModelNotFoundError:
if model not in cls.image_models:
raise
if model in cls.image_models:
async for chunk in cls._generate_image(
model=model,
prompt=format_image_prompt(messages, prompt),
proxy=proxy,
width=width,
height=height,
seed=seed,
cache=cache,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe
):
yield chunk
else:
async for result in cls._generate_text(
model=model,
messages=messages,
images=images,
proxy=proxy,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
response_format=response_format,
seed=seed,
cache=cache,
stream=stream,
extra_parameters=extra_parameters,
**kwargs
):
yield result
@classmethod
async def _generate_image(
cls,
model: str,
prompt: str,
proxy: str,
width: int,
height: int,
seed: Optional[int],
cache: bool,
nologo: bool,
private: bool,
enhance: bool,
safe: bool
) -> AsyncResult:
if not cache and seed is None:
seed = random.randint(9999, 99999999)
params = {
"seed": str(seed) if seed is not None else None,
"width": str(width),
"height": str(height),
"model": model,
"nologo": str(nologo).lower(),
"private": str(private).lower(),
"enhance": str(enhance).lower(),
"safe": str(safe).lower()
}
query = "&".join(f"{k}={quote_plus(v)}" for k, v in params.items() if v is not None)
url = f"{cls.image_api_endpoint}prompt/{quote_plus(prompt)}?{query}"
#yield ImagePreview(url, prompt)
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
async with session.get(url, allow_redirects=True) as response:
await raise_for_status(response)
image_url = str(response.url)
yield ImageResponse(image_url, prompt)
@classmethod
async def _generate_text(
cls,
model: str,
messages: Messages,
images: Optional[ImagesType],
proxy: str,
temperature: float,
presence_penalty: float,
top_p: float,
frequency_penalty: float,
response_format: Optional[dict],
seed: Optional[int],
cache: bool,
stream: bool,
extra_parameters: list[str],
**kwargs
) -> AsyncResult:
if not cache and seed is None:
seed = random.randint(9999, 99999999)
json_mode = False
if response_format and response_format.get("type") == "json_object":
json_mode = True
if images and messages:
last_message = messages[-1].copy()
image_content = [
{
"type": "image_url",
"image_url": {"url": to_data_uri(image)}
}
for image, _ in images
]
last_message["content"] = image_content + [{"type": "text", "text": last_message["content"]}]
messages[-1] = last_message
async with ClientSession(headers=DEFAULT_HEADERS, connector=get_connector(proxy=proxy)) as session:
if model in cls.audio_models:
#data["voice"] = random.choice(cls.audio_models[model])
url = cls.text_api_endpoint
stream = False
else:
url = cls.openai_endpoint
extra_parameters = {param: kwargs[param] for param in extra_parameters if param in kwargs}
data = filter_none(**{
"messages": messages,
"model": model,
"temperature": temperature,
"presence_penalty": presence_penalty,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"jsonMode": json_mode,
"stream": stream,
"seed": seed,
"cache": cache,
**extra_parameters
})
async with session.post(url, json=data) as response:
await raise_for_status(response)
if response.headers["content-type"] == "audio/mpeg":
yield Audio(await response.read())
return
elif response.headers["content-type"].startswith("text/plain"):
yield await response.text()
return
elif response.headers["content-type"].startswith("text/event-stream"):
async for line in response.content:
if line.startswith(b"data: "):
if line[6:].startswith(b"[DONE]"):
break
result = json.loads(line[6:])
choice = result.get("choices", [{}])[0]
content = choice.get("delta", {}).get("content")
if content:
yield content
if "usage" in result:
yield Usage(**result["usage"])
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)
return
result = await response.json()
choice = result["choices"][0]
message = choice.get("message", {})
content = message.get("content", "")
if "tool_calls" in message:
yield ToolCalls(message["tool_calls"])
if content:
yield content
if "usage" in result:
yield Usage(**result["usage"])
finish_reason = choice.get("finish_reason")
if finish_reason:
yield FinishReason(finish_reason)