Files
gpt4free/g4f/Provider/PollinationsAI.py
2025-01-12 15:15:15 +01:00

253 lines
8.5 KiB
Python

from __future__ import annotations
import json
import random
import requests
from urllib.parse import quote
from typing import Optional
from aiohttp import ClientSession
from .base_provider import AsyncGeneratorProvider, ProviderModelMixin
from ..requests.raise_for_status import raise_for_status
from ..typing import AsyncResult, Messages
from ..image import ImageResponse
class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
label = "Pollinations AI"
url = "https://pollinations.ai"
working = True
supports_stream = False
supports_system_message = True
supports_message_history = True
# API endpoints base
api_base = "https://text.pollinations.ai/openai"
# API endpoints
text_api_endpoint = "https://text.pollinations.ai/"
image_api_endpoint = "https://image.pollinations.ai/"
# Models configuration
default_model = "openai"
default_image_model = "flux"
image_models = []
models = []
additional_models_image = ["midjourney", "dall-e-3"]
additional_models_text = ["claude", "karma", "command-r", "llamalight", "mistral-large", "sur", "sur-mistral"]
model_aliases = {
"gpt-4o": default_model,
"qwen-2-72b": "qwen",
"qwen-2.5-coder-32b": "qwen-coder",
"llama-3.3-70b": "llama",
"mistral-nemo": "mistral",
#"": "karma",
"gpt-4": "searchgpt",
"gpt-4": "claude",
"claude-3.5-sonnet": "sur",
"deepseek-chat": "deepseek",
"llama-3.2-3b": "llamalight",
}
@classmethod
def get_models(cls, **kwargs):
# Initialize model lists if not exists
if not hasattr(cls, 'image_models'):
cls.image_models = []
if not hasattr(cls, 'text_models'):
cls.text_models = []
# Fetch image models if not cached
if not cls.image_models:
url = "https://image.pollinations.ai/models"
response = requests.get(url)
raise_for_status(response)
cls.image_models = response.json()
cls.image_models.extend(cls.additional_models_image)
# Fetch text models if not cached
if not cls.text_models:
url = "https://text.pollinations.ai/models"
response = requests.get(url)
raise_for_status(response)
cls.text_models = [model.get("name") for model in response.json()]
cls.text_models.extend(cls.additional_models_text)
# Return combined models
return cls.text_models + cls.image_models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
# Image specific parameters
prompt: str = None,
width: int = 1024,
height: int = 1024,
seed: Optional[int] = None,
nologo: bool = True,
private: bool = False,
enhance: bool = False,
safe: bool = False,
# Text specific parameters
temperature: float = 0.5,
presence_penalty: float = 0,
top_p: float = 1,
frequency_penalty: float = 0,
stream: bool = False,
**kwargs
) -> AsyncResult:
model = cls.get_model(model)
# Check if models
# Image generation
if model in cls.image_models:
async for result in cls._generate_image(
model=model,
messages=messages,
prompt=prompt,
proxy=proxy,
width=width,
height=height,
seed=seed,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe
):
yield result
else:
# Text generation
async for result in cls._generate_text(
model=model,
messages=messages,
proxy=proxy,
temperature=temperature,
presence_penalty=presence_penalty,
top_p=top_p,
frequency_penalty=frequency_penalty,
stream=stream
):
yield result
@classmethod
async def _generate_image(
cls,
model: str,
messages: Messages,
prompt: str,
proxy: str,
width: int,
height: int,
seed: Optional[int],
nologo: bool,
private: bool,
enhance: bool,
safe: bool
) -> AsyncResult:
if seed is None:
seed = random.randint(0, 10000)
headers = {
'Accept': '*/*',
'Accept-Language': 'en-US,en;q=0.9',
'User-Agent': 'Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/130.0.0.0 Safari/537.36',
}
params = {
"seed": seed,
"width": width,
"height": height,
"model": model,
"nologo": nologo,
"private": private,
"enhance": enhance,
"safe": safe
}
params = {k: v for k, v in params.items() if v is not None}
async with ClientSession(headers=headers) as session:
prompt = messages[-1]["content"] if prompt is None else prompt
param_string = "&".join(f"{k}={v}" for k, v in params.items())
url = f"{cls.image_api_endpoint}/prompt/{quote(prompt)}?{param_string}"
async with session.head(url, proxy=proxy) as response:
if response.status == 200:
image_response = ImageResponse(images=url, alt=prompt)
yield image_response
@classmethod
async def _generate_text(
cls,
model: str,
messages: Messages,
proxy: str,
temperature: float,
presence_penalty: float,
top_p: float,
frequency_penalty: float,
stream: bool,
seed: Optional[int] = None
) -> AsyncResult:
headers = {
"accept": "*/*",
"accept-language": "en-US,en;q=0.9",
"content-type": "application/json",
"user-agent": "Mozilla/5.0 (X11; Linux x86_64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/131.0.0.0 Safari/537.36"
}
if seed is None:
seed = random.randint(0, 10000)
async with ClientSession(headers=headers) as session:
data = {
"messages": messages,
"model": model,
"temperature": temperature,
"presence_penalty": presence_penalty,
"top_p": top_p,
"frequency_penalty": frequency_penalty,
"jsonMode": False,
"stream": stream,
"seed": seed,
"cache": False
}
async with session.post(cls.text_api_endpoint, json=data, proxy=proxy) as response:
response.raise_for_status()
async for chunk in response.content:
if chunk:
decoded_chunk = chunk.decode()
# Skip [DONE].
if "data: [DONE]" in decoded_chunk:
continue
# Processing plain text
if not decoded_chunk.startswith("data:"):
clean_text = decoded_chunk.strip()
if clean_text:
yield clean_text
continue
# Processing JSON format
try:
# Remove the prefix “data: “ and parse JSON
json_str = decoded_chunk.replace("data:", "").strip()
json_response = json.loads(json_str)
if "choices" in json_response and json_response["choices"]:
if "delta" in json_response["choices"][0]:
content = json_response["choices"][0]["delta"].get("content")
if content:
# Remove escaped slashes before parentheses
clean_content = content.replace("\\(", "(").replace("\\)", ")")
yield clean_content
except json.JSONDecodeError:
# If JSON could not be parsed, skip
continue