Files
gpt4free/g4f/Provider/PollinationsImage.py
kqlio67 54ef1a511c docs: update providers documentation and enhance support for Blackbox HAR auth
- Added "No auth / HAR file" authentication type in providers-and-models.md
- Added "Video generation" column to provider tables for future capability
- Updated model counts and provider capabilities throughout documentation
- Fixed ARTA provider with improved error handling and response validation
- Enhanced AllenAI provider with vision model support and proper image handling
- Significantly improved Blackbox provider:
  - Added HAR file authentication support
  - Added subscription status checking
  - Added premium/demo model differentiation
  - Improved session handling and error recovery
- Enhanced DDG provider with better error handling for challenges
- Improved PollinationsAI and PollinationsImage providers' model handling
- Added VideoModel class in g4f/models.py
- Added audio/video generation indicators in GUI components
- Added new Ai2 models: olmo-1-7b, olmo-2-32b, olmo-4-synthetic
- Added new commit message generation tool in etc/tool/commit.py
2025-04-04 13:36:28 +03:00

70 lines
2.1 KiB
Python

from __future__ import annotations
from typing import Optional
from .helper import format_image_prompt
from ..typing import AsyncResult, Messages
from .PollinationsAI import PollinationsAI
class PollinationsImage(PollinationsAI):
label = "PollinationsImage"
default_model = "flux"
default_vision_model = None
default_image_model = default_model
audio_models = None
image_models = [default_image_model] # Default models
_models_loaded = False # Add a checkbox for synchronization
@classmethod
def get_models(cls, **kwargs):
if not cls._models_loaded:
# Calling the parent method to load models
super().get_models()
# Combine models from the parent class and additional ones
all_image_models = list(dict.fromkeys(
cls.image_models +
PollinationsAI.image_models +
cls.extra_image_models
))
cls.image_models = all_image_models
cls._models_loaded = True
return cls.image_models
@classmethod
async def create_async_generator(
cls,
model: str,
messages: Messages,
proxy: str = None,
prompt: str = None,
aspect_ratio: str = "1:1",
width: int = None,
height: int = None,
seed: Optional[int] = None,
cache: bool = False,
nologo: bool = True,
private: bool = False,
enhance: bool = False,
safe: bool = False,
n: int = 4,
**kwargs
) -> AsyncResult:
# Calling model updates before creating a generator
cls.get_models()
async for chunk in cls._generate_image(
model=model,
prompt=format_image_prompt(messages, prompt),
proxy=proxy,
aspect_ratio=aspect_ratio,
width=width,
height=height,
seed=seed,
cache=cache,
nologo=nologo,
private=private,
enhance=enhance,
safe=safe,
n=n
):
yield chunk