mirror of
				https://github.com/xtekky/gpt4free.git
				synced 2025-11-01 03:52:43 +08:00 
			
		
		
		
	 241b0fb8b2
			
		
	
	241b0fb8b2
	
	
	
		
			
			- Add new Blackboxapi provider class extending OpenaiTemplate - Configure Blackboxapi with BlackBox API endpoint and default Llama 3.1 70B model - Import Blackboxapi in Provider __init__.py - Add Blackboxapi to default model provider list - Update llama_3_1_70b model to use IterListProvider with Blackboxapi and LMArena - Reorder default model providers to prioritize OIVSCodeSer variants - Add LMArena to default model provider list
		
			
				
	
	
		
			1488 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
			
		
		
	
	
			1488 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			Python
		
	
	
	
	
	
| from __future__ import annotations
 | |
| 
 | |
| import sys
 | |
| import inspect
 | |
| from dataclasses import dataclass, field
 | |
| from typing import Dict, List, Optional, Set, Type
 | |
| 
 | |
| from .Provider import IterListProvider, ProviderType
 | |
| from .Provider import (
 | |
|     ### No Auth Required ###
 | |
|     ARTA,
 | |
|     Blackbox,
 | |
|     Blackboxapi,
 | |
|     Chatai,
 | |
|     ChatGLM,
 | |
|     Cloudflare,
 | |
|     Copilot,
 | |
|     DDG,
 | |
|     DeepInfraChat,
 | |
|     DocsBot,
 | |
|     Dynaspark,
 | |
|     Free2GPT,
 | |
|     FreeGpt,
 | |
|     HuggingSpace,
 | |
|     Grok,
 | |
|     DeepseekAI_JanusPro7b,
 | |
|     DeepSeekAPI,
 | |
|     ImageLabs,
 | |
|     LambdaChat,
 | |
|     LMArena,
 | |
|     OIVSCodeSer2,
 | |
|     OIVSCodeSer5,
 | |
|     OIVSCodeSer0501,
 | |
|     OpenAIFM,
 | |
|     PerplexityLabs,
 | |
|     Pi,
 | |
|     PollinationsAI,
 | |
|     PollinationsImage,
 | |
|     TeachAnything,
 | |
|     Websim,
 | |
|     WeWordle,
 | |
|     Yqcloud,
 | |
|     
 | |
|     ### Needs Auth ###
 | |
|     BingCreateImages,
 | |
|     CopilotAccount,
 | |
|     Gemini,
 | |
|     GeminiPro,
 | |
|     HailuoAI,
 | |
|     HuggingChat,
 | |
|     HuggingFace,
 | |
|     HuggingFaceAPI,
 | |
|     MetaAI,
 | |
|     MicrosoftDesigner,
 | |
|     OpenaiAccount,
 | |
|     OpenaiChat,
 | |
|     Reka,
 | |
| )
 | |
| 
 | |
| class ModelRegistry:
 | |
|     """Central registry for all models with automatic discovery"""
 | |
|     _models: Dict[str, 'Model'] = {}
 | |
|     _aliases: Dict[str, str] = {}
 | |
|     _discovered: bool = False
 | |
|     
 | |
|     @classmethod
 | |
|     def register(cls, model: 'Model', aliases: List[str] = None):
 | |
|         """Register a model and optional aliases"""
 | |
|         if model.name:
 | |
|             cls._models[model.name] = model
 | |
|             if aliases:
 | |
|                 for alias in aliases:
 | |
|                     cls._aliases[alias] = model.name
 | |
|     
 | |
|     @classmethod
 | |
|     def get(cls, name: str) -> Optional['Model']:
 | |
|         """Get model by name or alias"""
 | |
|         cls._ensure_discovered()
 | |
|         if name in cls._models:
 | |
|             return cls._models[name]
 | |
|         if name in cls._aliases:
 | |
|             return cls._models[cls._aliases[name]]
 | |
|         return None
 | |
|     
 | |
|     @classmethod
 | |
|     def all_models(cls) -> Dict[str, 'Model']:
 | |
|         """Get all registered models"""
 | |
|         cls._ensure_discovered()
 | |
|         return cls._models.copy()
 | |
|     
 | |
|     @classmethod
 | |
|     def _ensure_discovered(cls):
 | |
|         """Ensure models have been discovered"""
 | |
|         if not cls._discovered:
 | |
|             cls._discover_models()
 | |
|     
 | |
|     @classmethod
 | |
|     def _discover_models(cls):
 | |
|         """Automatically discover all Model instances in current module"""
 | |
|         if cls._discovered:
 | |
|             return
 | |
|             
 | |
|         current_module = sys.modules[__name__]
 | |
|         
 | |
|         # Find all Model instances (not classes)
 | |
|         for name in dir(current_module):
 | |
|             if name.startswith('_'):
 | |
|                 continue
 | |
|                 
 | |
|             obj = getattr(current_module, name)
 | |
|             
 | |
|             # Check if it's a Model instance (not a class)
 | |
|             if isinstance(obj, Model) and not inspect.isclass(obj):
 | |
|                 cls.register(obj)
 | |
|         
 | |
|         # Register special aliases
 | |
|         cls._aliases["gemini"] = "gemini-2.0"  # Special case for gemini
 | |
|         
 | |
|         cls._discovered = True
 | |
|     
 | |
|     @classmethod
 | |
|     def refresh(cls):
 | |
|         """Force refresh of model registry"""
 | |
|         cls._models.clear()
 | |
|         cls._aliases.clear()
 | |
|         cls._discovered = False
 | |
|         cls._discover_models()
 | |
| 
 | |
| @dataclass(unsafe_hash=True)
 | |
| class Model:
 | |
|     """
 | |
|     Represents a machine learning model configuration.
 | |
| 
 | |
|     Attributes:
 | |
|         name (str): Name of the model.
 | |
|         base_provider (str): Default provider for the model.
 | |
|         best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
 | |
|     """
 | |
|     name: str
 | |
|     base_provider: str
 | |
|     best_provider: ProviderType = None
 | |
|     _registered: bool = field(default=False, init=False, repr=False)
 | |
| 
 | |
|     def __post_init__(self):
 | |
|         """Auto-register model after initialization"""
 | |
|         if not self._registered and self.name:
 | |
|             ModelRegistry.register(self)
 | |
|             self._registered = True
 | |
| 
 | |
|     @staticmethod
 | |
|     def __all__() -> list[str]:
 | |
|         """Returns a list of all model names."""
 | |
|         return list(ModelRegistry.all_models().keys())
 | |
| 
 | |
| class ImageModel(Model):
 | |
|     pass
 | |
| 
 | |
| class AudioModel(Model):
 | |
|     pass
 | |
|     
 | |
| class VideoModel(Model):
 | |
|     pass
 | |
|     
 | |
| class VisionModel(Model):
 | |
|     pass
 | |
| 
 | |
| ### Default ###
 | |
| default = Model(
 | |
|     name = "",
 | |
|     base_provider = "",
 | |
|     best_provider = IterListProvider([
 | |
|         OIVSCodeSer5,
 | |
|         OIVSCodeSer0501,
 | |
|         OIVSCodeSer2,
 | |
|         Blackbox,
 | |
|         Blackboxapi,
 | |
|         DDG,
 | |
|         Copilot,
 | |
|         DeepInfraChat,
 | |
|         LambdaChat,
 | |
|         PollinationsAI,
 | |
|         Free2GPT,
 | |
|         FreeGpt,
 | |
|         Dynaspark,
 | |
|         Chatai,
 | |
|         WeWordle,
 | |
|         DocsBot,
 | |
|         LMArena,
 | |
|         OpenaiChat,
 | |
|         Cloudflare,
 | |
|     ])
 | |
| )
 | |
| 
 | |
| default_vision = VisionModel(
 | |
|     name = "",
 | |
|     base_provider = "",
 | |
|     best_provider = IterListProvider([
 | |
|         Blackbox,
 | |
|         DeepInfraChat,
 | |
|         OIVSCodeSer2,
 | |
|         OIVSCodeSer5,
 | |
|         OIVSCodeSer0501,
 | |
|         PollinationsAI,
 | |
|         Dynaspark,
 | |
|         DocsBot,
 | |
|         HuggingSpace,
 | |
|         GeminiPro,
 | |
|         HuggingFaceAPI,
 | |
|         CopilotAccount,
 | |
|         OpenaiAccount,
 | |
|         Gemini,
 | |
|     ], shuffle=False)
 | |
| )
 | |
| 
 | |
| ##########################
 | |
| ### Text//Audio/Vision ###
 | |
| ##########################
 | |
| 
 | |
| ### OpenAI ###
 | |
| # gpt-3.5
 | |
| gpt_3_5_turbo = Model(
 | |
|     name          = 'gpt-3.5-turbo',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # gpt-4
 | |
| gpt_4 = Model(
 | |
|     name          = 'gpt-4',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([Blackbox, DDG, PollinationsAI, Copilot, Yqcloud, WeWordle, LMArena, OpenaiChat])
 | |
| )
 | |
| 
 | |
| gpt_4_turbo = Model(
 | |
|     name          = 'gpt-4-turbo',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # gpt-4o
 | |
| gpt_4o = VisionModel(
 | |
|     name          = 'gpt-4o',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([Blackbox, PollinationsAI, DocsBot, LMArena, OpenaiChat])
 | |
| )
 | |
| 
 | |
| gpt_4o_mini = Model(
 | |
|     name          = 'gpt-4o-mini',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([Blackbox, DDG, OIVSCodeSer2, PollinationsAI, Chatai, LMArena, OpenaiChat])
 | |
| )
 | |
| 
 | |
| gpt_4o_mini_audio = AudioModel(
 | |
|     name          = 'gpt-4o-mini-audio',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = PollinationsAI
 | |
| )
 | |
| 
 | |
| gpt_4o_mini_tts = AudioModel(
 | |
|     name          = 'gpt-4o-mini-tts',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = OpenAIFM
 | |
| )
 | |
| 
 | |
| # o1
 | |
| o1 = Model(
 | |
|     name          = 'o1',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([Copilot, LMArena, OpenaiAccount])
 | |
| )
 | |
| 
 | |
| o1_mini = Model(
 | |
|     name          = 'o1-mini',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([LMArena, OpenaiAccount])
 | |
| )
 | |
| 
 | |
| # o3
 | |
| o3 = Model(
 | |
|     name          = 'o3',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| o3_mini = Model(
 | |
|     name          = 'o3-mini',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| o3_mini_high = Model(
 | |
|     name          = 'o3-mini-high',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = OpenaiAccount
 | |
| )
 | |
| 
 | |
| # o4
 | |
| o4_mini = Model(
 | |
|     name          = 'o4-mini',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([PollinationsAI, LMArena, OpenaiChat])
 | |
| )
 | |
| 
 | |
| o4_mini_high = Model(
 | |
|     name          = 'o4-mini-high',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = OpenaiChat
 | |
| )
 | |
| 
 | |
| # gpt-4.1
 | |
| gpt_4_1 = Model(
 | |
|     name          = 'gpt-4.1',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([PollinationsAI, LMArena, OpenaiChat])
 | |
| )
 | |
| 
 | |
| gpt_4_1_mini = Model(
 | |
|     name          = 'gpt-4.1-mini',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([OIVSCodeSer5, OIVSCodeSer0501, PollinationsAI, LMArena])
 | |
| )
 | |
| 
 | |
| gpt_4_1_nano = Model(
 | |
|     name          = 'gpt-4.1-nano',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena])
 | |
| )
 | |
| 
 | |
| gpt_4_5 = Model(
 | |
|     name          = 'gpt-4.5',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = OpenaiChat
 | |
| )
 | |
| 
 | |
| # dall-e
 | |
| dall_e_3 = ImageModel(
 | |
|     name = 'dall-e-3',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = IterListProvider([PollinationsImage, CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages])
 | |
| )
 | |
| 
 | |
| gpt_image = ImageModel(
 | |
|     name = 'gpt-image',
 | |
|     base_provider = 'OpenAI',
 | |
|     best_provider = PollinationsImage
 | |
| )
 | |
| 
 | |
| ### Meta ###
 | |
| meta = Model(
 | |
|     name          = "meta-ai",
 | |
|     base_provider = "Meta",
 | |
|     best_provider = MetaAI
 | |
| )
 | |
| 
 | |
| # llama
 | |
| llama_13b = Model(
 | |
|     name          = "llama-13b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # codellama
 | |
| codellama_34b = Model(
 | |
|     name          = "codellama-34b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # llama 2
 | |
| llama_2_7b = Model(
 | |
|     name          = "llama-2-7b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| llama_2_13b = Model(
 | |
|     name          = "llama-2-13b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| llama_2_70b = Model(
 | |
|     name          = "llama-2-70b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # llama-3
 | |
| llama_3_8b = Model(
 | |
|     name          = "llama-3-8b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| llama_3_70b = Model(
 | |
|     name          = "llama-3-70b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # llama-3.1
 | |
| llama_3_1_8b = Model(
 | |
|     name          = "llama-3.1-8b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| llama_3_1_70b = Model(
 | |
|     name          = "llama-3.1-70b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackboxapi, LMArena])
 | |
| )
 | |
| 
 | |
| llama_3_1_405b = Model(
 | |
|     name          = "llama-3.1-405b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # llama-3.2
 | |
| llama_3_2_1b = Model(
 | |
|     name          = "llama-3.2-1b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| llama_3_2_3b = Model(
 | |
|     name          = "llama-3.2-3b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| llama_3_2_11b = VisionModel(
 | |
|     name          = "llama-3.2-11b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| llama_3_2_90b = Model(
 | |
|     name          = "llama-3.2-90b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| # llama-3.3
 | |
| llama_3_3_70b = Model(
 | |
|     name          = "llama-3.3-70b",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat, LambdaChat, PollinationsAI, LMArena, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| # llama-4
 | |
| llama_4_scout = Model(
 | |
|     name          = "llama-4-scout",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| llama_4_maverick = Model(
 | |
|     name          = "llama-4-maverick",
 | |
|     base_provider = "Meta Llama",
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
 | |
| )
 | |
| 
 | |
| ### MistralAI ###
 | |
| mistral_7b = Model(
 | |
|     name          = "mistral-7b",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| mixtral_8x7b = Model(
 | |
|     name          = "mixtral-8x7b",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| mixtral_8x22b = Model(
 | |
|     name          = "mixtral-8x22b",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([DeepInfraChat, LMArena])
 | |
| )
 | |
| 
 | |
| mistral_nemo = Model(
 | |
|     name          = "mistral-nemo",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([Blackbox, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| mistral_small = Model(
 | |
|     name          = "mistral-small",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat])
 | |
| )
 | |
| 
 | |
| mistral_small_24b = Model(
 | |
|     name          = "mistral-small-24b",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat, LMArena])
 | |
| )
 | |
| 
 | |
| mistral_small_3_1_24b = Model(
 | |
|     name          = "mistral-small-3.1-24b",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena])
 | |
| )
 | |
| 
 | |
| mistral_large = Model(
 | |
|     name          = "mistral-large",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| mistral_medium = Model(
 | |
|     name          = "mistral-medium",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| mistral_next = Model(
 | |
|     name          = "mistral-next",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # pixtral
 | |
| pixtral_large = Model(
 | |
|     name          = "pixtral-large",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # codestral
 | |
| codestral = Model(
 | |
|     name          = "codestral",
 | |
|     base_provider = "Mistral AI",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### NousResearch ###
 | |
| # hermes-2
 | |
| hermes_2_dpo = Model(
 | |
|     name          = "hermes-2-dpo",
 | |
|     base_provider = "NousResearch",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # hermes-3
 | |
| hermes_3_405b = Model(
 | |
|     name          = "hermes-3-405b",
 | |
|     base_provider = "NousResearch",
 | |
|     best_provider = LambdaChat
 | |
| )
 | |
| 
 | |
| # deephermes-3
 | |
| deephermes_3_8b = Model(
 | |
|     name          = "deephermes-3-8b",
 | |
|     base_provider = "NousResearch",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Microsoft ###
 | |
| # phi-3
 | |
| phi_3_small = Model(
 | |
|     name          = "phi-3-small",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| phi_3_mini = Model(
 | |
|     name          = "phi-3-mini",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| phi_3_medium = Model(
 | |
|     name          = "phi-3-medium",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # phi-3.5
 | |
| phi_3_5_mini = Model(
 | |
|     name          = "phi-3.5-mini",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = HuggingChat
 | |
| )
 | |
| 
 | |
| # phi-4
 | |
| phi_4 = Model(
 | |
|     name          = "phi-4",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = IterListProvider([DeepInfraChat, PollinationsAI, HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| phi_4_multimodal = VisionModel(
 | |
|     name          = "phi-4-multimodal",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
 | |
| )
 | |
| 
 | |
| phi_4_reasoning_plus = Model(
 | |
|     name          = "phi-4-reasoning-plus",
 | |
|     base_provider = "Microsoft",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| # wizardlm
 | |
| wizardlm_2_7b = Model(
 | |
|     name = 'wizardlm-2-7b',
 | |
|     base_provider = 'Microsoft',
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| wizardlm_2_8x22b = Model(
 | |
|     name = 'wizardlm-2-8x22b',
 | |
|     base_provider = 'Microsoft',
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| ### Google DeepMind ###
 | |
| # gemini
 | |
| gemini = Model(
 | |
|     name          = 'gemini-2.0',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = Gemini
 | |
| )
 | |
| 
 | |
| # gemini-1.5
 | |
| gemini_1_5_flash = Model(
 | |
|     name          = 'gemini-1.5-flash',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, LMArena, Dynaspark, GeminiPro])
 | |
| )
 | |
| 
 | |
| gemini_1_5_pro = Model(
 | |
|     name          = 'gemini-1.5-pro',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, LMArena, GeminiPro])
 | |
| )
 | |
| 
 | |
| # gemini-2.0
 | |
| gemini_2_0_pro = Model(
 | |
|     name          = 'gemini-2.0-pro',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| gemini_2_0_flash = Model(
 | |
|     name          = 'gemini-2.0-flash',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena, Dynaspark, GeminiPro, Gemini])
 | |
| )
 | |
| 
 | |
| gemini_2_0_flash_thinking = Model(
 | |
|     name          = 'gemini-2.0-flash-thinking',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([PollinationsAI, LMArena, Gemini])
 | |
| )
 | |
| 
 | |
| gemini_2_0_flash_thinking_with_apps = Model(
 | |
|     name          = 'gemini-2.0-flash-thinking-with-apps',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = Gemini
 | |
| )
 | |
| 
 | |
| # gemini-2.5
 | |
| gemini_2_5_flash = Model(
 | |
|     name          = 'gemini-2.5-flash',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([PollinationsAI, LMArena, Gemini])
 | |
| )
 | |
| 
 | |
| gemini_2_5_pro = Model(
 | |
|     name          = 'gemini-2.5-pro',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([LMArena, Gemini])
 | |
| )
 | |
| 
 | |
| # gemma-2
 | |
| gemma_2_2b = Model(
 | |
|     name          = 'gemma-2-2b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| gemma_2_9b = Model(
 | |
|     name          = 'gemma-2-9b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| gemma_2_27b = Model(
 | |
|     name          = 'gemma-2-27b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # gemma-3
 | |
| gemma_3_1b = Model(
 | |
|     name          = 'gemma-3-1b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| gemma_3_4b = Model(
 | |
|     name          = 'gemma-3-4b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| gemma_3_12b = Model(
 | |
|     name          = 'gemma-3-12b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
 | |
| )
 | |
| 
 | |
| gemma_3_27b = Model(
 | |
|     name          = 'gemma-3-27b',
 | |
|     base_provider = 'Google',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
 | |
| )
 | |
| 
 | |
| ### Anthropic ###
 | |
| # claude 3
 | |
| claude_3_haiku = Model(
 | |
|     name          = 'claude-3-haiku',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = IterListProvider([LMArena, DDG])
 | |
| )
 | |
| 
 | |
| claude_3_sonnet = Model(
 | |
|     name          = 'claude-3-sonnet',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| claude_3_opus = Model(
 | |
|     name          = 'claude-3-opus',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # claude 3.5
 | |
| claude_3_5_haiku = Model(
 | |
|     name          = 'claude-3.5-haiku',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| claude_3_5_sonnet = Model(
 | |
|     name          = 'claude-3.5-sonnet',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| # claude 3.7
 | |
| claude_3_7_sonnet = Model(
 | |
|     name          = 'claude-3.7-sonnet',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| claude_3_7_sonnet_thinking = Model(
 | |
|     name          = 'claude-3.7-sonnet-thinking',
 | |
|     base_provider = 'Anthropic',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### Reka AI ###
 | |
| reka_core = Model(
 | |
|     name = 'reka-core',
 | |
|     base_provider = 'Reka AI',
 | |
|     best_provider = IterListProvider([LMArena, Reka])
 | |
| )
 | |
| 
 | |
| reka_flash = Model(
 | |
|     name = 'reka-flash',
 | |
|     base_provider = 'Reka AI',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| ### Blackbox AI ###
 | |
| blackboxai = Model(
 | |
|     name = 'blackboxai',
 | |
|     base_provider = 'Blackbox AI',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### CohereForAI ###
 | |
| command_r = Model(
 | |
|     name = 'command-r',
 | |
|     base_provider = 'CohereForAI',
 | |
|     best_provider = IterListProvider([HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| command_r_plus = Model(
 | |
|     name = 'command-r-plus',
 | |
|     base_provider = 'CohereForAI',
 | |
|     best_provider = IterListProvider([PollinationsAI, HuggingSpace, LMArena, HuggingChat])
 | |
| )
 | |
| 
 | |
| command_r7b = Model(
 | |
|     name = 'command-r7b',
 | |
|     base_provider = 'CohereForAI',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| command_a = Model(
 | |
|     name = 'command-a',
 | |
|     base_provider = 'CohereForAI',
 | |
|     best_provider = IterListProvider([HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| ### Qwen ###
 | |
| # qwen
 | |
| qwen_plus = Model(
 | |
|     name = 'qwen-plus',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_max = Model(
 | |
|     name = 'qwen-max',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_vl_max = Model(
 | |
|     name = 'qwen-vl-max',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_14b = Model(
 | |
|     name = 'qwen-14b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # qwen-1.5
 | |
| qwen_1_5_4b = Model(
 | |
|     name = 'qwen-1.5-4b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_1_5_7b = Model(
 | |
|     name = 'qwen-1.5-7b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([LMArena, Cloudflare])
 | |
| )
 | |
| 
 | |
| qwen_1_5_14b = Model(
 | |
|     name = 'qwen-1.5-14b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_1_5_32b = Model(
 | |
|     name = 'qwen-1.5-32b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_1_5_72b = Model(
 | |
|     name = 'qwen-1.5-72b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| qwen_1_5_110b = Model(
 | |
|     name = 'qwen-1.5-110b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # qwen-2
 | |
| qwen_2_72b = Model(
 | |
|     name = 'qwen-2-72b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([DeepInfraChat, HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_2_vl_7b = VisionModel(
 | |
|     name = "qwen-2-vl-7b",
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingFaceAPI
 | |
| )
 | |
| 
 | |
| # qwen-2.5
 | |
| qwen_2_5 = Model(
 | |
|     name = 'qwen-2.5',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| qwen_2_5_7b = Model(
 | |
|     name = 'qwen-2.5-7b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| qwen_2_5_72b = Model(
 | |
|     name = 'qwen-2.5-72b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_2_5_coder_32b = Model(
 | |
|     name = 'qwen-2.5-coder-32b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([Blackbox, PollinationsAI, LambdaChat, LMArena, HuggingChat])
 | |
| )
 | |
| 
 | |
| qwen_2_5_1m = Model(
 | |
|     name = 'qwen-2.5-1m',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| qwen_2_5_max = Model(
 | |
|     name = 'qwen-2.5-max',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_2_5_vl_3b = Model(
 | |
|     name = 'qwen-2.5-vl-3b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| qwen_2_5_vl_7b = Model(
 | |
|     name = 'qwen-2.5-vl-7b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| qwen_2_5_vl_32b = Model(
 | |
|     name = 'qwen-2.5-vl-32b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_2_5_vl_72b = Model(
 | |
|     name = 'qwen-2.5-vl-72b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_2_5_plus = Model(
 | |
|     name = 'qwen-2.5-plus',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # qwen3
 | |
| qwen_3_235b = Model(
 | |
|     name = 'qwen-3-235b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([DeepInfraChat, LMArena, HuggingSpace])
 | |
| )
 | |
| 
 | |
| qwen_3_32b = Model(
 | |
|     name = 'qwen-3-32b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([DeepInfraChat, HuggingSpace, LMArena])
 | |
| )
 | |
| 
 | |
| qwen_3_30b = Model(
 | |
|     name = 'qwen-3-30b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([DeepInfraChat, LMArena, HuggingSpace])
 | |
| )
 | |
| 
 | |
| qwen_3_14b = Model(
 | |
|     name = 'qwen-3-14b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
 | |
| )
 | |
| 
 | |
| qwen_3_4b = Model(
 | |
|     name = 'qwen-3-4b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| qwen_3_1_7b = Model(
 | |
|     name = 'qwen-3-1.7b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| qwen_3_0_6b = Model(
 | |
|     name = 'qwen-3-0.6b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| ### qwq/qvq ###
 | |
| qwq_32b = Model(
 | |
|     name = 'qwq-32b',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI, LMArena, HuggingChat])
 | |
| )
 | |
| 
 | |
| qwq_32b_preview = Model(
 | |
|     name = 'qwq-32b-preview',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| qwq_32b_arliai = Model(
 | |
|     name = 'qwq-32b-arliai',
 | |
|     base_provider = 'Qwen',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Inflection ###
 | |
| pi = Model(
 | |
|     name = 'pi',
 | |
|     base_provider = 'Inflection',
 | |
|     best_provider = Pi
 | |
| )
 | |
| 
 | |
| ### DeepSeek ###
 | |
| # deepseek
 | |
| deepseek_67b = Model(
 | |
|     name = 'deepseek-67b',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # deepseek-v3
 | |
| deepseek_v3 = Model(
 | |
|     name = 'deepseek-v3',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = IterListProvider([DeepInfraChat, PollinationsAI, LMArena])
 | |
| )
 | |
| 
 | |
| # deepseek-r1
 | |
| deepseek_r1 = Model(
 | |
|     name = 'deepseek-r1',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, LambdaChat, PollinationsAI, LMArena, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| deepseek_r1_zero = Model(
 | |
|     name = 'deepseek-r1-zero',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| deepseek_r1_turbo = Model(
 | |
|     name = 'deepseek-r1-turbo',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| deepseek_r1_distill_llama_70b = Model(
 | |
|     name = 'deepseek-r1-distill-llama-70b',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI])
 | |
| )
 | |
| 
 | |
| deepseek_r1_distill_qwen_14b = Model(
 | |
|     name = 'deepseek-r1-distill-qwen-14b',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| deepseek_r1_distill_qwen_32b = Model(
 | |
|     name = 'deepseek-r1-distill-qwen-32b',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI])
 | |
| )
 | |
| 
 | |
| # deepseek-v2
 | |
| deepseek_v2 = Model(
 | |
|     name = 'deepseek-v2',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| deepseek_coder_v2 = Model(
 | |
|     name = 'deepseek-coder-v2',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| deepseek_prover_v2 = Model(
 | |
|     name = 'deepseek-prover-v2',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| deepseek_prover_v2_671b = Model(
 | |
|     name = 'deepseek-prover-v2-671b',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| # deepseek-v2.5
 | |
| deepseek_v2_5 = Model(
 | |
|     name = 'deepseek-v2.5',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # deepseek-v3-0324
 | |
| deepseek_v3_0324 = Model(
 | |
|     name = 'deepseek-v3-0324',
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = IterListProvider([DeepInfraChat, PollinationsAI, LMArena])
 | |
| )
 | |
| 
 | |
| # janus
 | |
| janus_pro_7b = VisionModel(
 | |
|     name = DeepseekAI_JanusPro7b.default_model,
 | |
|     base_provider = 'DeepSeek',
 | |
|     best_provider = DeepseekAI_JanusPro7b
 | |
| )
 | |
| 
 | |
| ### x.ai ###
 | |
| grok_2 = Model(
 | |
|     name = 'grok-2',
 | |
|     base_provider = 'x.ai',
 | |
|     best_provider = IterListProvider([LMArena, Grok])
 | |
| )
 | |
| 
 | |
| grok_2_mini = Model(
 | |
|     name = 'grok-2-mini',
 | |
|     base_provider = 'x.ai',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| grok_3 = Model(
 | |
|     name = 'grok-3',
 | |
|     base_provider = 'x.ai',
 | |
|     best_provider = IterListProvider([LMArena, Grok])
 | |
| )
 | |
| 
 | |
| grok_3_mini = Model(
 | |
|     name = 'grok-3-mini',
 | |
|     base_provider = 'x.ai',
 | |
|     best_provider = PollinationsAI
 | |
| )
 | |
| 
 | |
| grok_3_r1 = Model(
 | |
|     name = 'grok-3-r1',
 | |
|     base_provider = 'x.ai',
 | |
|     best_provider = Grok
 | |
| )
 | |
| 
 | |
| ### Perplexity AI ### 
 | |
| sonar = Model(
 | |
|     name = 'sonar',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = PerplexityLabs
 | |
| )
 | |
| 
 | |
| sonar_pro = Model(
 | |
|     name = 'sonar-pro',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = PerplexityLabs
 | |
| )
 | |
| 
 | |
| sonar_reasoning = Model(
 | |
|     name = 'sonar-reasoning',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = PerplexityLabs
 | |
| )
 | |
| 
 | |
| sonar_reasoning_pro = Model(
 | |
|     name = 'sonar-reasoning-pro',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = PerplexityLabs
 | |
| )
 | |
| 
 | |
| r1_1776 = Model(
 | |
|     name = 'r1-1776',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = PerplexityLabs
 | |
| )
 | |
| 
 | |
| pplx_7b_online = Model(
 | |
|     name = 'pplx-7b-online',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| pplx_70b_online = Model(
 | |
|     name = 'pplx-70b-online',
 | |
|     base_provider = 'Perplexity AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### Nvidia ### 
 | |
| nemotron_49b = Model(
 | |
|     name = 'nemotron-49b',
 | |
|     base_provider = 'Nvidia',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| nemotron_51b = Model(
 | |
|     name = 'nemotron-51b',
 | |
|     base_provider = 'Nvidia',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| nemotron_70b = Model(
 | |
|     name = 'nemotron-70b',
 | |
|     base_provider = 'Nvidia',
 | |
|     best_provider = IterListProvider([LambdaChat, LMArena, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| nemotron_253b = Model(
 | |
|     name = 'nemotron-253b',
 | |
|     base_provider = 'Nvidia',
 | |
|     best_provider = IterListProvider([Blackbox, LMArena])
 | |
| )
 | |
| 
 | |
| nemotron_4_340b = Model(
 | |
|     name = 'nemotron-4-340b',
 | |
|     base_provider = 'Nvidia',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### THUDM ### 
 | |
| glm_4 = Model(
 | |
|     name = 'glm-4',
 | |
|     base_provider = 'THUDM',
 | |
|     best_provider = IterListProvider([ChatGLM, LMArena])
 | |
| )
 | |
| 
 | |
| glm_4_plus = Model(
 | |
|     name = 'glm-4-plus',
 | |
|     base_provider = 'THUDM',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### MiniMax ###
 | |
| mini_max = Model(
 | |
|     name = "minimax",
 | |
|     base_provider = "MiniMax",
 | |
|     best_provider = HailuoAI
 | |
| )
 | |
| 
 | |
| ### Cognitive Computations ###
 | |
| # dolphin-2
 | |
| dolphin_2_6 = Model(
 | |
|     name = "dolphin-2.6",
 | |
|     base_provider = "Cognitive Computations",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| dolphin_2_9 = Model(
 | |
|     name = "dolphin-2.9",
 | |
|     base_provider = "Cognitive Computations",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| # dolphin-3
 | |
| dolphin_3_0_24b = Model(
 | |
|     name = "dolphin-3.0-24b",
 | |
|     base_provider = "Cognitive Computations",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| dolphin_3_0_r1_24b = Model(
 | |
|     name = "dolphin-3.0-r1-24b",
 | |
|     base_provider = "Cognitive Computations",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### DeepInfra ###
 | |
| airoboros_70b = Model(
 | |
|     name = "airoboros-70b",
 | |
|     base_provider = "DeepInfra",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| ### Lizpreciatior ###
 | |
| lzlv_70b = Model(
 | |
|     name = "lzlv-70b",
 | |
|     base_provider = "Lizpreciatior",
 | |
|     best_provider = DeepInfraChat
 | |
| )
 | |
| 
 | |
| ### Ai2 ###
 | |
| molmo_7b = Model(
 | |
|     name = "molmo-7b",
 | |
|     base_provider = "Ai2",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Liquid AI ###
 | |
| lfm_40b = Model(
 | |
|     name = "lfm-40b",
 | |
|     base_provider = "Liquid AI",
 | |
|     best_provider = LambdaChat
 | |
| )
 | |
| 
 | |
| ### Agentica ###
 | |
| deepcode_14b = Model(
 | |
|     name = "deepcoder-14b",
 | |
|     base_provider = "Agentica",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Moonshot AI ###
 | |
| kimi_vl_thinking = Model(
 | |
|     name = "kimi-vl-thinking",
 | |
|     base_provider = "Moonshot AI",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| moonlight_16b = Model(
 | |
|     name = "moonlight-16b",
 | |
|     base_provider = "Moonshot AI",
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Featherless Serverless LLM ### 
 | |
| qwerky_72b = Model(
 | |
|     name = 'qwerky-72b',
 | |
|     base_provider = 'Featherless Serverless LLM',
 | |
|     best_provider = Blackbox
 | |
| )
 | |
| 
 | |
| ### Allen AI ### 
 | |
| # tulu-2
 | |
| tulu_2_70b = Model(
 | |
|     name = 'tulu-2-70b',
 | |
|     base_provider = 'Allen AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| # tulu-3
 | |
| tulu_3_8b = Model(
 | |
|     name = 'tulu-3-8b',
 | |
|     base_provider = 'Allen AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| tulu_3_70b = Model(
 | |
|     name = 'tulu-3-70b',
 | |
|     base_provider = 'Allen AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### Teknium ### 
 | |
| openhermes_2_5_7b = Model(
 | |
|     name = 'openhermes-2.5-7b',
 | |
|     base_provider = 'Allen AI',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### Databricks ### 
 | |
| dbrx_instruct = Model(
 | |
|     name = 'dbrx-instruct',
 | |
|     base_provider = 'Databricks',
 | |
|     best_provider = LMArena
 | |
| )
 | |
| 
 | |
| ### Uncensored AI ### 
 | |
| evil = Model(
 | |
|     name = 'evil',
 | |
|     base_provider = 'Evil Mode - Experimental',
 | |
|     best_provider = PollinationsAI
 | |
| )
 | |
| 
 | |
| ### Stability AI ###
 | |
| sdxl_turbo = ImageModel(
 | |
|     name = 'sdxl-turbo',
 | |
|     base_provider = 'Stability AI',
 | |
|     best_provider = IterListProvider([PollinationsImage, ImageLabs])
 | |
| )
 | |
| 
 | |
| sd_3_5_large = ImageModel(
 | |
|     name = 'sd-3.5-large',
 | |
|     base_provider = 'Stability AI',
 | |
|     best_provider = HuggingSpace
 | |
| )
 | |
| 
 | |
| ### Black Forest Labs ###
 | |
| flux = ImageModel(
 | |
|     name = 'flux',
 | |
|     base_provider = 'Black Forest Labs',
 | |
|     best_provider = IterListProvider([PollinationsImage, Websim, HuggingSpace, ARTA])
 | |
| )
 | |
| 
 | |
| flux_pro = ImageModel(
 | |
|     name = 'flux-pro',
 | |
|     base_provider = 'Black Forest Labs',
 | |
|     best_provider = PollinationsImage
 | |
| )
 | |
| 
 | |
| flux_dev = ImageModel(
 | |
|     name = 'flux-dev',
 | |
|     base_provider = 'Black Forest Labs',
 | |
|     best_provider = IterListProvider([PollinationsImage, HuggingSpace, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| flux_schnell = ImageModel(
 | |
|     name = 'flux-schnell',
 | |
|     base_provider = 'Black Forest Labs',
 | |
|     best_provider = IterListProvider([PollinationsImage, HuggingChat, HuggingFace])
 | |
| )
 | |
| 
 | |
| ### Midjourney ###
 | |
| midjourney = ImageModel(
 | |
|     name = 'midjourney',
 | |
|     base_provider = 'Midjourney',
 | |
|     best_provider = PollinationsImage
 | |
| )
 | |
| 
 | |
| class ModelUtils:
 | |
|     """
 | |
|     Utility class for mapping string identifiers to Model instances.
 | |
|     Now uses automatic discovery instead of manual mapping.
 | |
|     """
 | |
|     convert: Dict[str, Model] = {}  # Will be populated after model discovery
 | |
|     
 | |
|     @classmethod
 | |
|     def refresh(cls):
 | |
|         """Refresh the model registry and update convert"""
 | |
|         ModelRegistry.refresh()
 | |
|         cls.convert = ModelRegistry.all_models()
 | |
|     
 | |
|     @classmethod
 | |
|     def get_model(cls, name: str) -> Optional[Model]:
 | |
|         """Get model by name or alias"""
 | |
|         return ModelRegistry.get(name)
 | |
|     
 | |
|     @classmethod
 | |
|     def register_alias(cls, alias: str, model_name: str):
 | |
|         """Register an alias for a model"""
 | |
|         ModelRegistry._aliases[alias] = model_name
 | |
| 
 | |
| # Ensure models are discovered when module is imported
 | |
| ModelRegistry._discover_models()
 | |
| 
 | |
| # Update ModelUtils.convert with discovered models
 | |
| ModelUtils.convert = ModelRegistry.all_models()
 | |
| 
 | |
| # Demo models configuration
 | |
| demo_models = {
 | |
|     llama_3_2_11b.name: [llama_3_2_11b, [HuggingChat]],
 | |
|     qwen_2_vl_7b.name: [qwen_2_vl_7b, [HuggingFaceAPI]],
 | |
|     deepseek_r1.name: [deepseek_r1, [HuggingFace, PollinationsAI]],
 | |
|     janus_pro_7b.name: [janus_pro_7b, [HuggingSpace]],
 | |
|     command_r.name: [command_r, [HuggingSpace]],
 | |
|     command_r_plus.name: [command_r_plus, [HuggingSpace]],
 | |
|     command_r7b.name: [command_r7b, [HuggingSpace]],
 | |
|     qwen_2_5_coder_32b.name: [qwen_2_5_coder_32b, [HuggingFace]],
 | |
|     qwq_32b.name: [qwq_32b, [HuggingFace]],
 | |
|     llama_3_3_70b.name: [llama_3_3_70b, [HuggingFace]],
 | |
|     sd_3_5_large.name: [sd_3_5_large, [HuggingSpace, HuggingFace]],
 | |
|     flux_dev.name: [flux_dev, [PollinationsImage, HuggingFace, HuggingSpace]],
 | |
|     flux_schnell.name: [flux_schnell, [PollinationsImage, HuggingFace, HuggingSpace]],
 | |
| }
 | |
| 
 | |
| # Create a list of all models and their providers
 | |
| def _get_working_providers(model: Model) -> List:
 | |
|     """Get list of working providers for a model"""
 | |
|     if model.best_provider is None:
 | |
|         return []
 | |
|     
 | |
|     if isinstance(model.best_provider, IterListProvider):
 | |
|         return [p for p in model.best_provider.providers if p.working]
 | |
|     
 | |
|     return [model.best_provider] if model.best_provider.working else []
 | |
| 
 | |
| # Generate __models__ using the auto-discovered models
 | |
| __models__ = {
 | |
|     name: (model, _get_working_providers(model))
 | |
|     for name, model in ModelRegistry.all_models().items()
 | |
|     if name and _get_working_providers(model)
 | |
| }
 | |
| 
 | |
| # Generate _all_models list
 | |
| _all_models = list(__models__.keys())
 | |
| 
 | |
| # Backward compatibility - ensure Model.__all__() returns the correct list
 | |
| Model.__all__ = staticmethod(lambda: _all_models)
 |