Files
gpt4free/g4f/models.py
kqlio67 241b0fb8b2 feat: add Blackboxapi provider and update model configurations
- Add new Blackboxapi provider class extending OpenaiTemplate
- Configure Blackboxapi with BlackBox API endpoint and default Llama 3.1 70B model
- Import Blackboxapi in Provider __init__.py
- Add Blackboxapi to default model provider list
- Update llama_3_1_70b model to use IterListProvider with Blackboxapi and LMArena
- Reorder default model providers to prioritize OIVSCodeSer variants
- Add LMArena to default model provider list
2025-05-28 00:14:45 +03:00

1488 lines
34 KiB
Python

from __future__ import annotations
import sys
import inspect
from dataclasses import dataclass, field
from typing import Dict, List, Optional, Set, Type
from .Provider import IterListProvider, ProviderType
from .Provider import (
### No Auth Required ###
ARTA,
Blackbox,
Blackboxapi,
Chatai,
ChatGLM,
Cloudflare,
Copilot,
DDG,
DeepInfraChat,
DocsBot,
Dynaspark,
Free2GPT,
FreeGpt,
HuggingSpace,
Grok,
DeepseekAI_JanusPro7b,
DeepSeekAPI,
ImageLabs,
LambdaChat,
LMArena,
OIVSCodeSer2,
OIVSCodeSer5,
OIVSCodeSer0501,
OpenAIFM,
PerplexityLabs,
Pi,
PollinationsAI,
PollinationsImage,
TeachAnything,
Websim,
WeWordle,
Yqcloud,
### Needs Auth ###
BingCreateImages,
CopilotAccount,
Gemini,
GeminiPro,
HailuoAI,
HuggingChat,
HuggingFace,
HuggingFaceAPI,
MetaAI,
MicrosoftDesigner,
OpenaiAccount,
OpenaiChat,
Reka,
)
class ModelRegistry:
"""Central registry for all models with automatic discovery"""
_models: Dict[str, 'Model'] = {}
_aliases: Dict[str, str] = {}
_discovered: bool = False
@classmethod
def register(cls, model: 'Model', aliases: List[str] = None):
"""Register a model and optional aliases"""
if model.name:
cls._models[model.name] = model
if aliases:
for alias in aliases:
cls._aliases[alias] = model.name
@classmethod
def get(cls, name: str) -> Optional['Model']:
"""Get model by name or alias"""
cls._ensure_discovered()
if name in cls._models:
return cls._models[name]
if name in cls._aliases:
return cls._models[cls._aliases[name]]
return None
@classmethod
def all_models(cls) -> Dict[str, 'Model']:
"""Get all registered models"""
cls._ensure_discovered()
return cls._models.copy()
@classmethod
def _ensure_discovered(cls):
"""Ensure models have been discovered"""
if not cls._discovered:
cls._discover_models()
@classmethod
def _discover_models(cls):
"""Automatically discover all Model instances in current module"""
if cls._discovered:
return
current_module = sys.modules[__name__]
# Find all Model instances (not classes)
for name in dir(current_module):
if name.startswith('_'):
continue
obj = getattr(current_module, name)
# Check if it's a Model instance (not a class)
if isinstance(obj, Model) and not inspect.isclass(obj):
cls.register(obj)
# Register special aliases
cls._aliases["gemini"] = "gemini-2.0" # Special case for gemini
cls._discovered = True
@classmethod
def refresh(cls):
"""Force refresh of model registry"""
cls._models.clear()
cls._aliases.clear()
cls._discovered = False
cls._discover_models()
@dataclass(unsafe_hash=True)
class Model:
"""
Represents a machine learning model configuration.
Attributes:
name (str): Name of the model.
base_provider (str): Default provider for the model.
best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
"""
name: str
base_provider: str
best_provider: ProviderType = None
_registered: bool = field(default=False, init=False, repr=False)
def __post_init__(self):
"""Auto-register model after initialization"""
if not self._registered and self.name:
ModelRegistry.register(self)
self._registered = True
@staticmethod
def __all__() -> list[str]:
"""Returns a list of all model names."""
return list(ModelRegistry.all_models().keys())
class ImageModel(Model):
pass
class AudioModel(Model):
pass
class VideoModel(Model):
pass
class VisionModel(Model):
pass
### Default ###
default = Model(
name = "",
base_provider = "",
best_provider = IterListProvider([
OIVSCodeSer5,
OIVSCodeSer0501,
OIVSCodeSer2,
Blackbox,
Blackboxapi,
DDG,
Copilot,
DeepInfraChat,
LambdaChat,
PollinationsAI,
Free2GPT,
FreeGpt,
Dynaspark,
Chatai,
WeWordle,
DocsBot,
LMArena,
OpenaiChat,
Cloudflare,
])
)
default_vision = VisionModel(
name = "",
base_provider = "",
best_provider = IterListProvider([
Blackbox,
DeepInfraChat,
OIVSCodeSer2,
OIVSCodeSer5,
OIVSCodeSer0501,
PollinationsAI,
Dynaspark,
DocsBot,
HuggingSpace,
GeminiPro,
HuggingFaceAPI,
CopilotAccount,
OpenaiAccount,
Gemini,
], shuffle=False)
)
##########################
### Text//Audio/Vision ###
##########################
### OpenAI ###
# gpt-3.5
gpt_3_5_turbo = Model(
name = 'gpt-3.5-turbo',
base_provider = 'OpenAI',
best_provider = LMArena
)
# gpt-4
gpt_4 = Model(
name = 'gpt-4',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, DDG, PollinationsAI, Copilot, Yqcloud, WeWordle, LMArena, OpenaiChat])
)
gpt_4_turbo = Model(
name = 'gpt-4-turbo',
base_provider = 'OpenAI',
best_provider = LMArena
)
# gpt-4o
gpt_4o = VisionModel(
name = 'gpt-4o',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, PollinationsAI, DocsBot, LMArena, OpenaiChat])
)
gpt_4o_mini = Model(
name = 'gpt-4o-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, DDG, OIVSCodeSer2, PollinationsAI, Chatai, LMArena, OpenaiChat])
)
gpt_4o_mini_audio = AudioModel(
name = 'gpt-4o-mini-audio',
base_provider = 'OpenAI',
best_provider = PollinationsAI
)
gpt_4o_mini_tts = AudioModel(
name = 'gpt-4o-mini-tts',
base_provider = 'OpenAI',
best_provider = OpenAIFM
)
# o1
o1 = Model(
name = 'o1',
base_provider = 'OpenAI',
best_provider = IterListProvider([Copilot, LMArena, OpenaiAccount])
)
o1_mini = Model(
name = 'o1-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([LMArena, OpenaiAccount])
)
# o3
o3 = Model(
name = 'o3',
base_provider = 'OpenAI',
best_provider = LMArena
)
o3_mini = Model(
name = 'o3-mini',
base_provider = 'OpenAI',
best_provider = LMArena
)
o3_mini_high = Model(
name = 'o3-mini-high',
base_provider = 'OpenAI',
best_provider = OpenaiAccount
)
# o4
o4_mini = Model(
name = 'o4-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsAI, LMArena, OpenaiChat])
)
o4_mini_high = Model(
name = 'o4-mini-high',
base_provider = 'OpenAI',
best_provider = OpenaiChat
)
# gpt-4.1
gpt_4_1 = Model(
name = 'gpt-4.1',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsAI, LMArena, OpenaiChat])
)
gpt_4_1_mini = Model(
name = 'gpt-4.1-mini',
base_provider = 'OpenAI',
best_provider = IterListProvider([OIVSCodeSer5, OIVSCodeSer0501, PollinationsAI, LMArena])
)
gpt_4_1_nano = Model(
name = 'gpt-4.1-nano',
base_provider = 'OpenAI',
best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena])
)
gpt_4_5 = Model(
name = 'gpt-4.5',
base_provider = 'OpenAI',
best_provider = OpenaiChat
)
# dall-e
dall_e_3 = ImageModel(
name = 'dall-e-3',
base_provider = 'OpenAI',
best_provider = IterListProvider([PollinationsImage, CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages])
)
gpt_image = ImageModel(
name = 'gpt-image',
base_provider = 'OpenAI',
best_provider = PollinationsImage
)
### Meta ###
meta = Model(
name = "meta-ai",
base_provider = "Meta",
best_provider = MetaAI
)
# llama
llama_13b = Model(
name = "llama-13b",
base_provider = "Meta Llama",
best_provider = LMArena
)
# codellama
codellama_34b = Model(
name = "codellama-34b",
base_provider = "Meta Llama",
best_provider = LMArena
)
# llama 2
llama_2_7b = Model(
name = "llama-2-7b",
base_provider = "Meta Llama",
best_provider = IterListProvider([LMArena, Cloudflare])
)
llama_2_13b = Model(
name = "llama-2-13b",
base_provider = "Meta Llama",
best_provider = LMArena
)
llama_2_70b = Model(
name = "llama-2-70b",
base_provider = "Meta Llama",
best_provider = LMArena
)
# llama-3
llama_3_8b = Model(
name = "llama-3-8b",
base_provider = "Meta Llama",
best_provider = IterListProvider([LMArena, Cloudflare])
)
llama_3_70b = Model(
name = "llama-3-70b",
base_provider = "Meta Llama",
best_provider = LMArena
)
# llama-3.1
llama_3_1_8b = Model(
name = "llama-3.1-8b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena, Cloudflare])
)
llama_3_1_70b = Model(
name = "llama-3.1-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackboxapi, LMArena])
)
llama_3_1_405b = Model(
name = "llama-3.1-405b",
base_provider = "Meta Llama",
best_provider = LMArena
)
# llama-3.2
llama_3_2_1b = Model(
name = "llama-3.2-1b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, LMArena, Cloudflare])
)
llama_3_2_3b = Model(
name = "llama-3.2-3b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, LMArena])
)
llama_3_2_11b = VisionModel(
name = "llama-3.2-11b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, HuggingChat, HuggingFace])
)
llama_3_2_90b = Model(
name = "llama-3.2-90b",
base_provider = "Meta Llama",
best_provider = DeepInfraChat
)
# llama-3.3
llama_3_3_70b = Model(
name = "llama-3.3-70b",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat, LambdaChat, PollinationsAI, LMArena, HuggingChat, HuggingFace])
)
# llama-4
llama_4_scout = Model(
name = "llama-4-scout",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena, Cloudflare])
)
llama_4_maverick = Model(
name = "llama-4-maverick",
base_provider = "Meta Llama",
best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
)
### MistralAI ###
mistral_7b = Model(
name = "mistral-7b",
base_provider = "Mistral AI",
best_provider = IterListProvider([Blackbox, LMArena])
)
mixtral_8x7b = Model(
name = "mixtral-8x7b",
base_provider = "Mistral AI",
best_provider = LMArena
)
mixtral_8x22b = Model(
name = "mixtral-8x22b",
base_provider = "Mistral AI",
best_provider = IterListProvider([DeepInfraChat, LMArena])
)
mistral_nemo = Model(
name = "mistral-nemo",
base_provider = "Mistral AI",
best_provider = IterListProvider([Blackbox, HuggingChat, HuggingFace])
)
mistral_small = Model(
name = "mistral-small",
base_provider = "Mistral AI",
best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat])
)
mistral_small_24b = Model(
name = "mistral-small-24b",
base_provider = "Mistral AI",
best_provider = IterListProvider([Blackbox, DDG, DeepInfraChat, LMArena])
)
mistral_small_3_1_24b = Model(
name = "mistral-small-3.1-24b",
base_provider = "Mistral AI",
best_provider = IterListProvider([Blackbox, PollinationsAI, LMArena])
)
mistral_large = Model(
name = "mistral-large",
base_provider = "Mistral AI",
best_provider = LMArena
)
mistral_medium = Model(
name = "mistral-medium",
base_provider = "Mistral AI",
best_provider = LMArena
)
mistral_next = Model(
name = "mistral-next",
base_provider = "Mistral AI",
best_provider = LMArena
)
# pixtral
pixtral_large = Model(
name = "pixtral-large",
base_provider = "Mistral AI",
best_provider = LMArena
)
# codestral
codestral = Model(
name = "codestral",
base_provider = "Mistral AI",
best_provider = LMArena
)
### NousResearch ###
# hermes-2
hermes_2_dpo = Model(
name = "hermes-2-dpo",
base_provider = "NousResearch",
best_provider = LMArena
)
# hermes-3
hermes_3_405b = Model(
name = "hermes-3-405b",
base_provider = "NousResearch",
best_provider = LambdaChat
)
# deephermes-3
deephermes_3_8b = Model(
name = "deephermes-3-8b",
base_provider = "NousResearch",
best_provider = Blackbox
)
### Microsoft ###
# phi-3
phi_3_small = Model(
name = "phi-3-small",
base_provider = "Microsoft",
best_provider = LMArena
)
phi_3_mini = Model(
name = "phi-3-mini",
base_provider = "Microsoft",
best_provider = LMArena
)
phi_3_medium = Model(
name = "phi-3-medium",
base_provider = "Microsoft",
best_provider = LMArena
)
# phi-3.5
phi_3_5_mini = Model(
name = "phi-3.5-mini",
base_provider = "Microsoft",
best_provider = HuggingChat
)
# phi-4
phi_4 = Model(
name = "phi-4",
base_provider = "Microsoft",
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, HuggingSpace, LMArena])
)
phi_4_multimodal = VisionModel(
name = "phi-4-multimodal",
base_provider = "Microsoft",
best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
)
phi_4_reasoning_plus = Model(
name = "phi-4-reasoning-plus",
base_provider = "Microsoft",
best_provider = DeepInfraChat
)
# wizardlm
wizardlm_2_7b = Model(
name = 'wizardlm-2-7b',
base_provider = 'Microsoft',
best_provider = DeepInfraChat
)
wizardlm_2_8x22b = Model(
name = 'wizardlm-2-8x22b',
base_provider = 'Microsoft',
best_provider = DeepInfraChat
)
### Google DeepMind ###
# gemini
gemini = Model(
name = 'gemini-2.0',
base_provider = 'Google',
best_provider = Gemini
)
# gemini-1.5
gemini_1_5_flash = Model(
name = 'gemini-1.5-flash',
base_provider = 'Google',
best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, LMArena, Dynaspark, GeminiPro])
)
gemini_1_5_pro = Model(
name = 'gemini-1.5-pro',
base_provider = 'Google',
best_provider = IterListProvider([Free2GPT, FreeGpt, TeachAnything, Websim, LMArena, GeminiPro])
)
# gemini-2.0
gemini_2_0_pro = Model(
name = 'gemini-2.0-pro',
base_provider = 'Google',
best_provider = LMArena
)
gemini_2_0_flash = Model(
name = 'gemini-2.0-flash',
base_provider = 'Google',
best_provider = IterListProvider([Blackbox, LMArena, Dynaspark, GeminiPro, Gemini])
)
gemini_2_0_flash_thinking = Model(
name = 'gemini-2.0-flash-thinking',
base_provider = 'Google',
best_provider = IterListProvider([PollinationsAI, LMArena, Gemini])
)
gemini_2_0_flash_thinking_with_apps = Model(
name = 'gemini-2.0-flash-thinking-with-apps',
base_provider = 'Google',
best_provider = Gemini
)
# gemini-2.5
gemini_2_5_flash = Model(
name = 'gemini-2.5-flash',
base_provider = 'Google',
best_provider = IterListProvider([PollinationsAI, LMArena, Gemini])
)
gemini_2_5_pro = Model(
name = 'gemini-2.5-pro',
base_provider = 'Google',
best_provider = IterListProvider([LMArena, Gemini])
)
# gemma-2
gemma_2_2b = Model(
name = 'gemma-2-2b',
base_provider = 'Google',
best_provider = LMArena
)
gemma_2_9b = Model(
name = 'gemma-2-9b',
base_provider = 'Google',
best_provider = IterListProvider([Blackbox, LMArena])
)
gemma_2_27b = Model(
name = 'gemma-2-27b',
base_provider = 'Google',
best_provider = LMArena
)
# gemma-3
gemma_3_1b = Model(
name = 'gemma-3-1b',
base_provider = 'Google',
best_provider = Blackbox
)
gemma_3_4b = Model(
name = 'gemma-3-4b',
base_provider = 'Google',
best_provider = IterListProvider([Blackbox, LMArena])
)
gemma_3_12b = Model(
name = 'gemma-3-12b',
base_provider = 'Google',
best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
)
gemma_3_27b = Model(
name = 'gemma-3-27b',
base_provider = 'Google',
best_provider = IterListProvider([Blackbox, DeepInfraChat, LMArena])
)
### Anthropic ###
# claude 3
claude_3_haiku = Model(
name = 'claude-3-haiku',
base_provider = 'Anthropic',
best_provider = IterListProvider([LMArena, DDG])
)
claude_3_sonnet = Model(
name = 'claude-3-sonnet',
base_provider = 'Anthropic',
best_provider = LMArena
)
claude_3_opus = Model(
name = 'claude-3-opus',
base_provider = 'Anthropic',
best_provider = LMArena
)
# claude 3.5
claude_3_5_haiku = Model(
name = 'claude-3.5-haiku',
base_provider = 'Anthropic',
best_provider = LMArena
)
claude_3_5_sonnet = Model(
name = 'claude-3.5-sonnet',
base_provider = 'Anthropic',
best_provider = IterListProvider([Blackbox, LMArena])
)
# claude 3.7
claude_3_7_sonnet = Model(
name = 'claude-3.7-sonnet',
base_provider = 'Anthropic',
best_provider = IterListProvider([Blackbox, LMArena])
)
claude_3_7_sonnet_thinking = Model(
name = 'claude-3.7-sonnet-thinking',
base_provider = 'Anthropic',
best_provider = LMArena
)
### Reka AI ###
reka_core = Model(
name = 'reka-core',
base_provider = 'Reka AI',
best_provider = IterListProvider([LMArena, Reka])
)
reka_flash = Model(
name = 'reka-flash',
base_provider = 'Reka AI',
best_provider = IterListProvider([Blackbox, LMArena])
)
### Blackbox AI ###
blackboxai = Model(
name = 'blackboxai',
base_provider = 'Blackbox AI',
best_provider = Blackbox
)
### CohereForAI ###
command_r = Model(
name = 'command-r',
base_provider = 'CohereForAI',
best_provider = IterListProvider([HuggingSpace, LMArena])
)
command_r_plus = Model(
name = 'command-r-plus',
base_provider = 'CohereForAI',
best_provider = IterListProvider([PollinationsAI, HuggingSpace, LMArena, HuggingChat])
)
command_r7b = Model(
name = 'command-r7b',
base_provider = 'CohereForAI',
best_provider = HuggingSpace
)
command_a = Model(
name = 'command-a',
base_provider = 'CohereForAI',
best_provider = IterListProvider([HuggingSpace, LMArena])
)
### Qwen ###
# qwen
qwen_plus = Model(
name = 'qwen-plus',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_max = Model(
name = 'qwen-max',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_vl_max = Model(
name = 'qwen-vl-max',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_14b = Model(
name = 'qwen-14b',
base_provider = 'Qwen',
best_provider = LMArena
)
# qwen-1.5
qwen_1_5_4b = Model(
name = 'qwen-1.5-4b',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_1_5_7b = Model(
name = 'qwen-1.5-7b',
base_provider = 'Qwen',
best_provider = IterListProvider([LMArena, Cloudflare])
)
qwen_1_5_14b = Model(
name = 'qwen-1.5-14b',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_1_5_32b = Model(
name = 'qwen-1.5-32b',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_1_5_72b = Model(
name = 'qwen-1.5-72b',
base_provider = 'Qwen',
best_provider = LMArena
)
qwen_1_5_110b = Model(
name = 'qwen-1.5-110b',
base_provider = 'Qwen',
best_provider = LMArena
)
# qwen-2
qwen_2_72b = Model(
name = 'qwen-2-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace, LMArena])
)
qwen_2_vl_7b = VisionModel(
name = "qwen-2-vl-7b",
base_provider = 'Qwen',
best_provider = HuggingFaceAPI
)
# qwen-2.5
qwen_2_5 = Model(
name = 'qwen-2.5',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_2_5_7b = Model(
name = 'qwen-2.5-7b',
base_provider = 'Qwen',
best_provider = Blackbox
)
qwen_2_5_72b = Model(
name = 'qwen-2.5-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, LMArena])
)
qwen_2_5_coder_32b = Model(
name = 'qwen-2.5-coder-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, PollinationsAI, LambdaChat, LMArena, HuggingChat])
)
qwen_2_5_1m = Model(
name = 'qwen-2.5-1m',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_2_5_max = Model(
name = 'qwen-2.5-max',
base_provider = 'Qwen',
best_provider = IterListProvider([HuggingSpace, LMArena])
)
qwen_2_5_vl_3b = Model(
name = 'qwen-2.5-vl-3b',
base_provider = 'Qwen',
best_provider = Blackbox
)
qwen_2_5_vl_7b = Model(
name = 'qwen-2.5-vl-7b',
base_provider = 'Qwen',
best_provider = Blackbox
)
qwen_2_5_vl_32b = Model(
name = 'qwen-2.5-vl-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, LMArena])
)
qwen_2_5_vl_72b = Model(
name = 'qwen-2.5-vl-72b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, LMArena])
)
qwen_2_5_plus = Model(
name = 'qwen-2.5-plus',
base_provider = 'Qwen',
best_provider = LMArena
)
# qwen3
qwen_3_235b = Model(
name = 'qwen-3-235b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, LMArena, HuggingSpace])
)
qwen_3_32b = Model(
name = 'qwen-3-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace, LMArena])
)
qwen_3_30b = Model(
name = 'qwen-3-30b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, LMArena, HuggingSpace])
)
qwen_3_14b = Model(
name = 'qwen-3-14b',
base_provider = 'Qwen',
best_provider = IterListProvider([DeepInfraChat, HuggingSpace])
)
qwen_3_4b = Model(
name = 'qwen-3-4b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_3_1_7b = Model(
name = 'qwen-3-1.7b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
qwen_3_0_6b = Model(
name = 'qwen-3-0.6b',
base_provider = 'Qwen',
best_provider = HuggingSpace
)
### qwq/qvq ###
qwq_32b = Model(
name = 'qwq-32b',
base_provider = 'Qwen',
best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI, LMArena, HuggingChat])
)
qwq_32b_preview = Model(
name = 'qwq-32b-preview',
base_provider = 'Qwen',
best_provider = Blackbox
)
qwq_32b_arliai = Model(
name = 'qwq-32b-arliai',
base_provider = 'Qwen',
best_provider = Blackbox
)
### Inflection ###
pi = Model(
name = 'pi',
base_provider = 'Inflection',
best_provider = Pi
)
### DeepSeek ###
# deepseek
deepseek_67b = Model(
name = 'deepseek-67b',
base_provider = 'DeepSeek',
best_provider = LMArena
)
# deepseek-v3
deepseek_v3 = Model(
name = 'deepseek-v3',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, LMArena])
)
# deepseek-r1
deepseek_r1 = Model(
name = 'deepseek-r1',
base_provider = 'DeepSeek',
best_provider = IterListProvider([Blackbox, DeepInfraChat, LambdaChat, PollinationsAI, LMArena, HuggingChat, HuggingFace])
)
deepseek_r1_zero = Model(
name = 'deepseek-r1-zero',
base_provider = 'DeepSeek',
best_provider = Blackbox
)
deepseek_r1_turbo = Model(
name = 'deepseek-r1-turbo',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
deepseek_r1_distill_llama_70b = Model(
name = 'deepseek-r1-distill-llama-70b',
base_provider = 'DeepSeek',
best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI])
)
deepseek_r1_distill_qwen_14b = Model(
name = 'deepseek-r1-distill-qwen-14b',
base_provider = 'DeepSeek',
best_provider = Blackbox
)
deepseek_r1_distill_qwen_32b = Model(
name = 'deepseek-r1-distill-qwen-32b',
base_provider = 'DeepSeek',
best_provider = IterListProvider([Blackbox, DeepInfraChat, PollinationsAI])
)
# deepseek-v2
deepseek_v2 = Model(
name = 'deepseek-v2',
base_provider = 'DeepSeek',
best_provider = LMArena
)
deepseek_coder_v2 = Model(
name = 'deepseek-coder-v2',
base_provider = 'DeepSeek',
best_provider = LMArena
)
deepseek_prover_v2 = Model(
name = 'deepseek-prover-v2',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
deepseek_prover_v2_671b = Model(
name = 'deepseek-prover-v2-671b',
base_provider = 'DeepSeek',
best_provider = DeepInfraChat
)
# deepseek-v2.5
deepseek_v2_5 = Model(
name = 'deepseek-v2.5',
base_provider = 'DeepSeek',
best_provider = LMArena
)
# deepseek-v3-0324
deepseek_v3_0324 = Model(
name = 'deepseek-v3-0324',
base_provider = 'DeepSeek',
best_provider = IterListProvider([DeepInfraChat, PollinationsAI, LMArena])
)
# janus
janus_pro_7b = VisionModel(
name = DeepseekAI_JanusPro7b.default_model,
base_provider = 'DeepSeek',
best_provider = DeepseekAI_JanusPro7b
)
### x.ai ###
grok_2 = Model(
name = 'grok-2',
base_provider = 'x.ai',
best_provider = IterListProvider([LMArena, Grok])
)
grok_2_mini = Model(
name = 'grok-2-mini',
base_provider = 'x.ai',
best_provider = LMArena
)
grok_3 = Model(
name = 'grok-3',
base_provider = 'x.ai',
best_provider = IterListProvider([LMArena, Grok])
)
grok_3_mini = Model(
name = 'grok-3-mini',
base_provider = 'x.ai',
best_provider = PollinationsAI
)
grok_3_r1 = Model(
name = 'grok-3-r1',
base_provider = 'x.ai',
best_provider = Grok
)
### Perplexity AI ###
sonar = Model(
name = 'sonar',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_pro = Model(
name = 'sonar-pro',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_reasoning = Model(
name = 'sonar-reasoning',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
sonar_reasoning_pro = Model(
name = 'sonar-reasoning-pro',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
r1_1776 = Model(
name = 'r1-1776',
base_provider = 'Perplexity AI',
best_provider = PerplexityLabs
)
pplx_7b_online = Model(
name = 'pplx-7b-online',
base_provider = 'Perplexity AI',
best_provider = LMArena
)
pplx_70b_online = Model(
name = 'pplx-70b-online',
base_provider = 'Perplexity AI',
best_provider = LMArena
)
### Nvidia ###
nemotron_49b = Model(
name = 'nemotron-49b',
base_provider = 'Nvidia',
best_provider = IterListProvider([Blackbox, LMArena])
)
nemotron_51b = Model(
name = 'nemotron-51b',
base_provider = 'Nvidia',
best_provider = LMArena
)
nemotron_70b = Model(
name = 'nemotron-70b',
base_provider = 'Nvidia',
best_provider = IterListProvider([LambdaChat, LMArena, HuggingChat, HuggingFace])
)
nemotron_253b = Model(
name = 'nemotron-253b',
base_provider = 'Nvidia',
best_provider = IterListProvider([Blackbox, LMArena])
)
nemotron_4_340b = Model(
name = 'nemotron-4-340b',
base_provider = 'Nvidia',
best_provider = LMArena
)
### THUDM ###
glm_4 = Model(
name = 'glm-4',
base_provider = 'THUDM',
best_provider = IterListProvider([ChatGLM, LMArena])
)
glm_4_plus = Model(
name = 'glm-4-plus',
base_provider = 'THUDM',
best_provider = LMArena
)
### MiniMax ###
mini_max = Model(
name = "minimax",
base_provider = "MiniMax",
best_provider = HailuoAI
)
### Cognitive Computations ###
# dolphin-2
dolphin_2_6 = Model(
name = "dolphin-2.6",
base_provider = "Cognitive Computations",
best_provider = DeepInfraChat
)
dolphin_2_9 = Model(
name = "dolphin-2.9",
base_provider = "Cognitive Computations",
best_provider = DeepInfraChat
)
# dolphin-3
dolphin_3_0_24b = Model(
name = "dolphin-3.0-24b",
base_provider = "Cognitive Computations",
best_provider = Blackbox
)
dolphin_3_0_r1_24b = Model(
name = "dolphin-3.0-r1-24b",
base_provider = "Cognitive Computations",
best_provider = Blackbox
)
### DeepInfra ###
airoboros_70b = Model(
name = "airoboros-70b",
base_provider = "DeepInfra",
best_provider = DeepInfraChat
)
### Lizpreciatior ###
lzlv_70b = Model(
name = "lzlv-70b",
base_provider = "Lizpreciatior",
best_provider = DeepInfraChat
)
### Ai2 ###
molmo_7b = Model(
name = "molmo-7b",
base_provider = "Ai2",
best_provider = Blackbox
)
### Liquid AI ###
lfm_40b = Model(
name = "lfm-40b",
base_provider = "Liquid AI",
best_provider = LambdaChat
)
### Agentica ###
deepcode_14b = Model(
name = "deepcoder-14b",
base_provider = "Agentica",
best_provider = Blackbox
)
### Moonshot AI ###
kimi_vl_thinking = Model(
name = "kimi-vl-thinking",
base_provider = "Moonshot AI",
best_provider = Blackbox
)
moonlight_16b = Model(
name = "moonlight-16b",
base_provider = "Moonshot AI",
best_provider = Blackbox
)
### Featherless Serverless LLM ###
qwerky_72b = Model(
name = 'qwerky-72b',
base_provider = 'Featherless Serverless LLM',
best_provider = Blackbox
)
### Allen AI ###
# tulu-2
tulu_2_70b = Model(
name = 'tulu-2-70b',
base_provider = 'Allen AI',
best_provider = LMArena
)
# tulu-3
tulu_3_8b = Model(
name = 'tulu-3-8b',
base_provider = 'Allen AI',
best_provider = LMArena
)
tulu_3_70b = Model(
name = 'tulu-3-70b',
base_provider = 'Allen AI',
best_provider = LMArena
)
### Teknium ###
openhermes_2_5_7b = Model(
name = 'openhermes-2.5-7b',
base_provider = 'Allen AI',
best_provider = LMArena
)
### Databricks ###
dbrx_instruct = Model(
name = 'dbrx-instruct',
base_provider = 'Databricks',
best_provider = LMArena
)
### Uncensored AI ###
evil = Model(
name = 'evil',
base_provider = 'Evil Mode - Experimental',
best_provider = PollinationsAI
)
### Stability AI ###
sdxl_turbo = ImageModel(
name = 'sdxl-turbo',
base_provider = 'Stability AI',
best_provider = IterListProvider([PollinationsImage, ImageLabs])
)
sd_3_5_large = ImageModel(
name = 'sd-3.5-large',
base_provider = 'Stability AI',
best_provider = HuggingSpace
)
### Black Forest Labs ###
flux = ImageModel(
name = 'flux',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, Websim, HuggingSpace, ARTA])
)
flux_pro = ImageModel(
name = 'flux-pro',
base_provider = 'Black Forest Labs',
best_provider = PollinationsImage
)
flux_dev = ImageModel(
name = 'flux-dev',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, HuggingSpace, HuggingChat, HuggingFace])
)
flux_schnell = ImageModel(
name = 'flux-schnell',
base_provider = 'Black Forest Labs',
best_provider = IterListProvider([PollinationsImage, HuggingChat, HuggingFace])
)
### Midjourney ###
midjourney = ImageModel(
name = 'midjourney',
base_provider = 'Midjourney',
best_provider = PollinationsImage
)
class ModelUtils:
"""
Utility class for mapping string identifiers to Model instances.
Now uses automatic discovery instead of manual mapping.
"""
convert: Dict[str, Model] = {} # Will be populated after model discovery
@classmethod
def refresh(cls):
"""Refresh the model registry and update convert"""
ModelRegistry.refresh()
cls.convert = ModelRegistry.all_models()
@classmethod
def get_model(cls, name: str) -> Optional[Model]:
"""Get model by name or alias"""
return ModelRegistry.get(name)
@classmethod
def register_alias(cls, alias: str, model_name: str):
"""Register an alias for a model"""
ModelRegistry._aliases[alias] = model_name
# Ensure models are discovered when module is imported
ModelRegistry._discover_models()
# Update ModelUtils.convert with discovered models
ModelUtils.convert = ModelRegistry.all_models()
# Demo models configuration
demo_models = {
llama_3_2_11b.name: [llama_3_2_11b, [HuggingChat]],
qwen_2_vl_7b.name: [qwen_2_vl_7b, [HuggingFaceAPI]],
deepseek_r1.name: [deepseek_r1, [HuggingFace, PollinationsAI]],
janus_pro_7b.name: [janus_pro_7b, [HuggingSpace]],
command_r.name: [command_r, [HuggingSpace]],
command_r_plus.name: [command_r_plus, [HuggingSpace]],
command_r7b.name: [command_r7b, [HuggingSpace]],
qwen_2_5_coder_32b.name: [qwen_2_5_coder_32b, [HuggingFace]],
qwq_32b.name: [qwq_32b, [HuggingFace]],
llama_3_3_70b.name: [llama_3_3_70b, [HuggingFace]],
sd_3_5_large.name: [sd_3_5_large, [HuggingSpace, HuggingFace]],
flux_dev.name: [flux_dev, [PollinationsImage, HuggingFace, HuggingSpace]],
flux_schnell.name: [flux_schnell, [PollinationsImage, HuggingFace, HuggingSpace]],
}
# Create a list of all models and their providers
def _get_working_providers(model: Model) -> List:
"""Get list of working providers for a model"""
if model.best_provider is None:
return []
if isinstance(model.best_provider, IterListProvider):
return [p for p in model.best_provider.providers if p.working]
return [model.best_provider] if model.best_provider.working else []
# Generate __models__ using the auto-discovered models
__models__ = {
name: (model, _get_working_providers(model))
for name, model in ModelRegistry.all_models().items()
if name and _get_working_providers(model)
}
# Generate _all_models list
_all_models = list(__models__.keys())
# Backward compatibility - ensure Model.__all__() returns the correct list
Model.__all__ = staticmethod(lambda: _all_models)