mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-09-26 20:31:14 +08:00
1075 lines
25 KiB
Python
1075 lines
25 KiB
Python
from __future__ import annotations
|
|
|
|
from dataclasses import dataclass
|
|
from typing import Dict, List, Optional
|
|
|
|
from .Provider import IterListProvider, ProviderType
|
|
from .Provider import (
|
|
### No Auth Required ###
|
|
Blackbox,
|
|
Chatai,
|
|
Cloudflare,
|
|
Copilot,
|
|
DeepInfra,
|
|
HuggingSpace,
|
|
Grok,
|
|
DeepseekAI_JanusPro7b,
|
|
GLM,
|
|
Kimi,
|
|
LambdaChat,
|
|
Mintlify,
|
|
OIVSCodeSer2,
|
|
OIVSCodeSer0501,
|
|
OperaAria,
|
|
Startnest,
|
|
OpenAIFM,
|
|
PerplexityLabs,
|
|
PollinationsAI,
|
|
PollinationsImage,
|
|
Qwen,
|
|
TeachAnything,
|
|
Together,
|
|
WeWordle,
|
|
Yqcloud,
|
|
|
|
### Needs Auth ###
|
|
Azure,
|
|
BingCreateImages,
|
|
CopilotAccount,
|
|
Gemini,
|
|
GeminiCLI,
|
|
GeminiPro,
|
|
HuggingChat,
|
|
HuggingFace,
|
|
HuggingFaceMedia,
|
|
HuggingFaceAPI,
|
|
LMArena,
|
|
Groq,
|
|
MetaAI,
|
|
MicrosoftDesigner,
|
|
OpenaiAccount,
|
|
OpenaiChat,
|
|
OpenRouter,
|
|
)
|
|
|
|
class ModelRegistry:
|
|
"""Simplified registry for automatic model discovery"""
|
|
_models: Dict[str, 'Model'] = {}
|
|
_aliases: Dict[str, str] = {}
|
|
|
|
@classmethod
|
|
def register(cls, model: 'Model', aliases: List[str] = None):
|
|
"""Register a model and optional aliases"""
|
|
if model.name:
|
|
cls._models[model.name] = model
|
|
if aliases:
|
|
for alias in aliases:
|
|
cls._aliases[alias] = model.name
|
|
|
|
@classmethod
|
|
def get(cls, name: str) -> Optional['Model']:
|
|
"""Get model by name or alias"""
|
|
if name in cls._models:
|
|
return cls._models[name]
|
|
if name in cls._aliases:
|
|
return cls._models[cls._aliases[name]]
|
|
return None
|
|
|
|
@classmethod
|
|
def all_models(cls) -> Dict[str, 'Model']:
|
|
"""Get all registered models"""
|
|
return cls._models.copy()
|
|
|
|
@classmethod
|
|
def clear(cls):
|
|
"""Clear registry (for testing)"""
|
|
cls._models.clear()
|
|
cls._aliases.clear()
|
|
|
|
@classmethod
|
|
def list_models_by_provider(cls, provider_name: str) -> List[str]:
|
|
"""List all models that use specific provider"""
|
|
return [name for name, model in cls._models.items()
|
|
if provider_name in str(model.best_provider)]
|
|
|
|
@classmethod
|
|
def validate_all_models(cls) -> Dict[str, List[str]]:
|
|
"""Validate all models and return issues"""
|
|
issues = {}
|
|
for name, model in cls._models.items():
|
|
model_issues = []
|
|
if not model.name:
|
|
model_issues.append("Empty name")
|
|
if not model.base_provider:
|
|
model_issues.append("Empty base_provider")
|
|
if model.best_provider is None:
|
|
model_issues.append("No best_provider")
|
|
if model_issues:
|
|
issues[name] = model_issues
|
|
return issues
|
|
|
|
@dataclass(unsafe_hash=True)
|
|
class Model:
|
|
"""
|
|
Represents a machine learning model configuration.
|
|
|
|
Attributes:
|
|
name (str): Name of the model.
|
|
base_provider (str): Default provider for the model.
|
|
best_provider (ProviderType): The preferred provider for the model, typically with retry logic.
|
|
"""
|
|
name: str
|
|
base_provider: str
|
|
best_provider: ProviderType = None
|
|
long_name: Optional[str] = None
|
|
|
|
def get_long_name(self) -> str:
|
|
"""Get the long name of the model, if available."""
|
|
return self.long_name if self.long_name else self.name
|
|
|
|
def __post_init__(self):
|
|
"""Auto-register model after initialization"""
|
|
if self.name:
|
|
ModelRegistry.register(self)
|
|
|
|
@staticmethod
|
|
def __all__() -> list[str]:
|
|
"""Returns a list of all model names."""
|
|
return list(ModelRegistry.all_models().keys())
|
|
|
|
class ImageModel(Model):
|
|
pass
|
|
|
|
class AudioModel(Model):
|
|
pass
|
|
|
|
class VideoModel(Model):
|
|
pass
|
|
|
|
class VisionModel(Model):
|
|
pass
|
|
|
|
### Default ###
|
|
default = Model(
|
|
name = "",
|
|
base_provider = "",
|
|
best_provider = IterListProvider([
|
|
OIVSCodeSer0501,
|
|
OIVSCodeSer2,
|
|
Blackbox,
|
|
Copilot,
|
|
DeepInfra,
|
|
OperaAria,
|
|
Startnest,
|
|
GLM,
|
|
Kimi,
|
|
PollinationsAI,
|
|
Qwen,
|
|
Together,
|
|
Chatai,
|
|
WeWordle,
|
|
Mintlify,
|
|
TeachAnything,
|
|
OpenaiChat,
|
|
Cloudflare,
|
|
])
|
|
)
|
|
|
|
default_vision = VisionModel(
|
|
name = "",
|
|
base_provider = "",
|
|
best_provider = IterListProvider([
|
|
Blackbox,
|
|
DeepInfra,
|
|
OIVSCodeSer0501,
|
|
OIVSCodeSer2,
|
|
PollinationsAI,
|
|
OperaAria,
|
|
Startnest,
|
|
Together,
|
|
HuggingSpace,
|
|
GeminiPro,
|
|
HuggingFaceAPI,
|
|
CopilotAccount,
|
|
OpenaiAccount,
|
|
Gemini,
|
|
], shuffle=False)
|
|
)
|
|
|
|
# gpt-4
|
|
gpt_4 = Model(
|
|
name = 'gpt-4',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Blackbox, Copilot, Yqcloud, WeWordle, OpenaiChat])
|
|
)
|
|
|
|
# gpt-4o
|
|
gpt_4o = VisionModel(
|
|
name = 'gpt-4o',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Blackbox, OpenaiChat])
|
|
)
|
|
|
|
gpt_4o_mini = Model(
|
|
name = 'gpt-4o-mini',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Blackbox, Chatai, OIVSCodeSer2, Startnest, OpenaiChat])
|
|
)
|
|
|
|
gpt_4o_mini_audio = AudioModel(
|
|
name = 'gpt-4o-mini-audio-preview',
|
|
base_provider = 'OpenAI',
|
|
best_provider = PollinationsAI
|
|
)
|
|
|
|
gpt_4o_mini_tts = AudioModel(
|
|
name = 'gpt-4o-mini-tts',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenAIFM
|
|
)
|
|
|
|
# o1
|
|
o1 = Model(
|
|
name = 'o1',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Copilot, OpenaiAccount])
|
|
)
|
|
|
|
o1_mini = Model(
|
|
name = 'o1-mini',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiAccount
|
|
)
|
|
|
|
# o3
|
|
o3_mini = Model(
|
|
name = 'o3-mini',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiChat
|
|
)
|
|
|
|
o3_mini_high = Model(
|
|
name = 'o3-mini-high',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiAccount
|
|
)
|
|
|
|
# o4
|
|
o4_mini = Model(
|
|
name = 'o4-mini',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiChat
|
|
)
|
|
|
|
o4_mini_high = Model(
|
|
name = 'o4-mini-high',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiChat
|
|
)
|
|
|
|
# gpt-4.1
|
|
gpt_4_1 = Model(
|
|
name = 'gpt-4.1',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([OpenaiChat])
|
|
)
|
|
|
|
gpt_4_1_mini = Model(
|
|
name = 'gpt-4.1-mini',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Blackbox, OIVSCodeSer0501])
|
|
)
|
|
|
|
gpt_4_1_nano = Model(
|
|
name = 'gpt-4.1-nano',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Blackbox, PollinationsAI])
|
|
)
|
|
|
|
gpt_4_5 = Model(
|
|
name = 'gpt-4.5',
|
|
base_provider = 'OpenAI',
|
|
best_provider = OpenaiChat
|
|
)
|
|
|
|
gpt_oss_120b = Model(
|
|
name = 'gpt-oss-120b',
|
|
long_name = 'openai/gpt-oss-120b',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([Together, DeepInfra, HuggingFace, OpenRouter, Groq])
|
|
)
|
|
|
|
# dall-e
|
|
dall_e_3 = ImageModel(
|
|
name = 'dall-e-3',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([CopilotAccount, OpenaiAccount, MicrosoftDesigner, BingCreateImages])
|
|
)
|
|
|
|
gpt_image = ImageModel(
|
|
name = 'gpt-image',
|
|
base_provider = 'OpenAI',
|
|
best_provider = IterListProvider([PollinationsImage])
|
|
)
|
|
|
|
### Meta ###
|
|
meta = Model(
|
|
name = "meta-ai",
|
|
base_provider = "Meta",
|
|
best_provider = MetaAI
|
|
)
|
|
|
|
# llama 2
|
|
llama_2_7b = Model(
|
|
name = "llama-2-7b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([Cloudflare])
|
|
)
|
|
|
|
llama_2_70b = Model(
|
|
name = "llama-2-70b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = Together
|
|
)
|
|
|
|
# llama-3
|
|
llama_3_8b = Model(
|
|
name = "llama-3-8b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([Together, Cloudflare])
|
|
)
|
|
|
|
llama_3_70b = Model(
|
|
name = "llama-3-70b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([Together])
|
|
)
|
|
|
|
# llama-3.1
|
|
llama_3_1_8b = Model(
|
|
name = "llama-3.1-8b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([DeepInfra, Together, Cloudflare])
|
|
)
|
|
|
|
llama_3_1_70b = Model(
|
|
name = "llama-3.1-70b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = Together
|
|
)
|
|
|
|
llama_3_1_405b = Model(
|
|
name = "llama-3.1-405b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = Together
|
|
)
|
|
|
|
# llama-3.2
|
|
llama_3_2_1b = Model(
|
|
name = "llama-3.2-1b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = Cloudflare
|
|
)
|
|
|
|
llama_3_2_3b = Model(
|
|
name = "llama-3.2-3b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = Together
|
|
)
|
|
|
|
llama_3_2_11b = VisionModel(
|
|
name = "llama-3.2-11b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
llama_3_2_90b = Model(
|
|
name = "llama-3.2-90b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([DeepInfra, Together])
|
|
)
|
|
|
|
# llama-3.3
|
|
llama_3_3_70b = Model(
|
|
name = "llama-3.3-70b",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([DeepInfra, LambdaChat, Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
# llama-4
|
|
llama_4_scout = Model(
|
|
name = "llama-4-scout",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([DeepInfra, PollinationsAI, Together, Cloudflare])
|
|
)
|
|
|
|
llama_4_maverick = Model(
|
|
name = "llama-4-maverick",
|
|
base_provider = "Meta Llama",
|
|
best_provider = IterListProvider([DeepInfra, Together])
|
|
)
|
|
|
|
### MistralAI ###
|
|
mistral_7b = Model(
|
|
name = "mistral-7b",
|
|
base_provider = "Mistral AI",
|
|
best_provider = Together
|
|
)
|
|
|
|
mixtral_8x7b = Model(
|
|
name = "mixtral-8x7b",
|
|
base_provider = "Mistral AI",
|
|
best_provider = Together
|
|
)
|
|
|
|
mistral_nemo = Model(
|
|
name = "mistral-nemo",
|
|
base_provider = "Mistral AI",
|
|
best_provider = IterListProvider([HuggingChat, HuggingFace])
|
|
)
|
|
|
|
mistral_small_24b = Model(
|
|
name = "mistral-small-24b",
|
|
base_provider = "Mistral AI",
|
|
best_provider = Together
|
|
)
|
|
|
|
mistral_small_3_1_24b = Model(
|
|
name = "mistral-small-3.1-24b",
|
|
base_provider = "Mistral AI",
|
|
best_provider = IterListProvider([DeepInfra, PollinationsAI])
|
|
)
|
|
|
|
### NousResearch ###
|
|
# hermes-2
|
|
hermes_2_dpo = Model(
|
|
name = "hermes-2-dpo",
|
|
base_provider = "NousResearch",
|
|
best_provider = Together
|
|
)
|
|
|
|
# phi-3.5
|
|
phi_3_5_mini = Model(
|
|
name = "phi-3.5-mini",
|
|
base_provider = "Microsoft",
|
|
best_provider = HuggingChat
|
|
)
|
|
|
|
# phi-4
|
|
phi_4 = Model(
|
|
name = "phi-4",
|
|
base_provider = "Microsoft",
|
|
best_provider = IterListProvider([DeepInfra, HuggingSpace])
|
|
)
|
|
|
|
phi_4_multimodal = VisionModel(
|
|
name = "phi-4-multimodal",
|
|
base_provider = "Microsoft",
|
|
best_provider = IterListProvider([DeepInfra, HuggingSpace])
|
|
)
|
|
|
|
phi_4_reasoning_plus = Model(
|
|
name = "phi-4-reasoning-plus",
|
|
base_provider = "Microsoft",
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# wizardlm
|
|
wizardlm_2_7b = Model(
|
|
name = 'wizardlm-2-7b',
|
|
base_provider = 'Microsoft',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
wizardlm_2_8x22b = Model(
|
|
name = 'wizardlm-2-8x22b',
|
|
base_provider = 'Microsoft',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
### Google DeepMind ###
|
|
# gemini
|
|
gemini = Model(
|
|
name = 'gemini-2.0',
|
|
base_provider = 'Google',
|
|
best_provider = Gemini
|
|
)
|
|
|
|
# gemini-2.0
|
|
gemini_2_0_flash = Model(
|
|
name = 'gemini-2.0-flash',
|
|
base_provider = 'Google',
|
|
best_provider = IterListProvider([Gemini, GeminiPro])
|
|
)
|
|
|
|
gemini_2_0_flash_thinking = Model(
|
|
name = 'gemini-2.0-flash-thinking',
|
|
base_provider = 'Google',
|
|
best_provider = IterListProvider([Gemini, GeminiPro])
|
|
)
|
|
|
|
gemini_2_0_flash_thinking_with_apps = Model(
|
|
name = 'gemini-2.0-flash-thinking-with-apps',
|
|
base_provider = 'Google',
|
|
best_provider = Gemini
|
|
)
|
|
|
|
# gemini-2.5
|
|
gemini_2_5_flash = Model(
|
|
name = 'gemini-2.5-flash',
|
|
base_provider = 'Google',
|
|
best_provider = IterListProvider([Gemini, GeminiPro, GeminiCLI])
|
|
)
|
|
|
|
gemini_2_5_pro = Model(
|
|
name = 'gemini-2.5-pro',
|
|
base_provider = 'Google',
|
|
best_provider = IterListProvider([Gemini, GeminiPro, GeminiCLI])
|
|
)
|
|
|
|
# codegemma
|
|
codegemma_7b = Model(
|
|
name = 'codegemma-7b',
|
|
base_provider = 'Google',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# gemma
|
|
gemma_2b = Model(
|
|
name = 'gemma-2b',
|
|
base_provider = 'Google',
|
|
best_provider = Together
|
|
)
|
|
|
|
# gemma-1
|
|
gemma_1_1_7b = Model(
|
|
name = 'gemma-1.1-7b',
|
|
base_provider = 'Google',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# gemma-2
|
|
gemma_2_9b = Model(
|
|
name = 'gemma-2-9b',
|
|
base_provider = 'Google',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
gemma_2_27b = Model(
|
|
name = 'gemma-2-27b',
|
|
base_provider = 'Google',
|
|
best_provider = Together
|
|
)
|
|
|
|
# gemma-3
|
|
gemma_3_4b = Model(
|
|
name = 'gemma-3-4b',
|
|
base_provider = 'Google',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
gemma_3_12b = Model(
|
|
name = 'gemma-3-12b',
|
|
base_provider = 'Google',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
gemma_3_27b = Model(
|
|
name = 'gemma-3-27b',
|
|
base_provider = 'Google',
|
|
best_provider = IterListProvider([DeepInfra, Together])
|
|
)
|
|
|
|
gemma_3n_e4b = Model(
|
|
name = 'gemma-3n-e4b',
|
|
base_provider = 'Google',
|
|
best_provider = Together
|
|
)
|
|
|
|
### Blackbox AI ###
|
|
blackboxai = Model(
|
|
name = 'blackboxai',
|
|
base_provider = 'Blackbox AI',
|
|
best_provider = Blackbox
|
|
)
|
|
|
|
### CohereForAI ###
|
|
command_r = Model(
|
|
name = 'command-r',
|
|
base_provider = 'CohereForAI',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
command_r_plus = Model(
|
|
name = 'command-r-plus',
|
|
base_provider = 'CohereForAI',
|
|
best_provider = IterListProvider([HuggingSpace, HuggingChat])
|
|
)
|
|
|
|
command_r7b = Model(
|
|
name = 'command-r7b',
|
|
base_provider = 'CohereForAI',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
command_a = Model(
|
|
name = 'command-a',
|
|
base_provider = 'CohereForAI',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
### Qwen ###
|
|
# qwen-1.5
|
|
qwen_1_5_7b = Model(
|
|
name = 'qwen-1.5-7b',
|
|
base_provider = 'Qwen',
|
|
best_provider = Cloudflare
|
|
)
|
|
|
|
# qwen-2
|
|
qwen_2_72b = Model(
|
|
name = 'qwen-2-72b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([HuggingSpace, Together])
|
|
)
|
|
|
|
qwen_2_vl_7b = VisionModel(
|
|
name = "qwen-2-vl-7b",
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingFaceAPI
|
|
)
|
|
|
|
qwen_2_vl_72b = VisionModel(
|
|
name = "qwen-2-vl-72b",
|
|
base_provider = 'Qwen',
|
|
best_provider = Together
|
|
)
|
|
|
|
# qwen-2.5
|
|
qwen_2_5 = Model(
|
|
name = 'qwen-2.5',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
qwen_2_5_7b = Model(
|
|
name = 'qwen-2.5-7b',
|
|
base_provider = 'Qwen',
|
|
best_provider = Together
|
|
)
|
|
|
|
qwen_2_5_72b = Model(
|
|
name = 'qwen-2.5-72b',
|
|
base_provider = 'Qwen',
|
|
best_provider = Together
|
|
)
|
|
|
|
qwen_2_5_coder_32b = Model(
|
|
name = 'qwen-2.5-coder-32b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([PollinationsAI, Together, HuggingChat])
|
|
)
|
|
|
|
qwen_2_5_1m = Model(
|
|
name = 'qwen-2.5-1m',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
qwen_2_5_max = Model(
|
|
name = 'qwen-2.5-max',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
qwen_2_5_vl_72b = Model(
|
|
name = 'qwen-2.5-vl-72b',
|
|
base_provider = 'Qwen',
|
|
best_provider = Together
|
|
)
|
|
|
|
# qwen3
|
|
qwen_3_235b = Model(
|
|
name = 'qwen-3-235b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([DeepInfra, Together, HuggingSpace])
|
|
)
|
|
|
|
qwen_3_32b = Model(
|
|
name = 'qwen-3-32b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([DeepInfra, LambdaChat, Together, HuggingSpace])
|
|
)
|
|
|
|
qwen_3_30b = Model(
|
|
name = 'qwen-3-30b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([DeepInfra, HuggingSpace])
|
|
)
|
|
|
|
qwen_3_14b = Model(
|
|
name = 'qwen-3-14b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([DeepInfra, HuggingSpace])
|
|
)
|
|
|
|
qwen_3_4b = Model(
|
|
name = 'qwen-3-4b',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
qwen_3_1_7b = Model(
|
|
name = 'qwen-3-1.7b',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
qwen_3_0_6b = Model(
|
|
name = 'qwen-3-0.6b',
|
|
base_provider = 'Qwen',
|
|
best_provider = HuggingSpace
|
|
)
|
|
|
|
### qwq/qvq ###
|
|
qwq_32b = Model(
|
|
name = 'qwq-32b',
|
|
base_provider = 'Qwen',
|
|
best_provider = IterListProvider([DeepInfra, Together, HuggingChat])
|
|
)
|
|
|
|
### DeepSeek ###
|
|
# deepseek-v3
|
|
deepseek_v3 = Model(
|
|
name = 'deepseek-v3',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = IterListProvider([DeepInfra, Together])
|
|
)
|
|
|
|
# deepseek-r1
|
|
deepseek_r1 = Model(
|
|
name = 'deepseek-r1',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = IterListProvider([DeepInfra, PollinationsAI, Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
deepseek_r1_turbo = Model(
|
|
name = 'deepseek-r1-turbo',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
deepseek_r1_distill_llama_70b = Model(
|
|
name = 'deepseek-r1-distill-llama-70b',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = IterListProvider([DeepInfra, Together])
|
|
)
|
|
|
|
deepseek_r1_distill_qwen_1_5b = Model(
|
|
name = 'deepseek-r1-distill-qwen-1.5b',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = Together
|
|
)
|
|
|
|
deepseek_r1_distill_qwen_14b = Model(
|
|
name = 'deepseek-r1-distill-qwen-14b',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = Together
|
|
)
|
|
|
|
deepseek_r1_distill_qwen_32b = Model(
|
|
name = 'deepseek-r1-distill-qwen-32b',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = IterListProvider([DeepInfra])
|
|
)
|
|
|
|
# deepseek-v2
|
|
deepseek_prover_v2 = Model(
|
|
name = 'deepseek-prover-v2',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
deepseek_prover_v2_671b = Model(
|
|
name = 'deepseek-prover-v2-671b',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# deepseek-v3-0324
|
|
deepseek_v3_0324 = Model(
|
|
name = 'deepseek-v3-0324',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
deepseek_v3_0324_turbo = Model(
|
|
name = 'deepseek-v3-0324-turbo',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# deepseek-r1-0528
|
|
deepseek_r1_0528 = Model(
|
|
name = 'deepseek-r1-0528',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = IterListProvider([DeepInfra, PollinationsAI])
|
|
)
|
|
|
|
deepseek_r1_0528_turbo = Model(
|
|
name = 'deepseek-r1-0528-turbo',
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
# janus
|
|
janus_pro_7b = VisionModel(
|
|
name = DeepseekAI_JanusPro7b.default_model,
|
|
base_provider = 'DeepSeek',
|
|
best_provider = DeepseekAI_JanusPro7b
|
|
)
|
|
|
|
### x.ai ###
|
|
grok_2 = Model(
|
|
name = 'grok-2',
|
|
base_provider = 'x.ai',
|
|
best_provider = Grok
|
|
)
|
|
|
|
grok_3 = Model(
|
|
name = 'grok-3',
|
|
base_provider = 'x.ai',
|
|
best_provider = Grok
|
|
)
|
|
|
|
grok_3_r1 = Model(
|
|
name = 'grok-3-r1',
|
|
base_provider = 'x.ai',
|
|
best_provider = Grok
|
|
)
|
|
|
|
kimi = Model(
|
|
name = 'kimi-k2',
|
|
base_provider = 'kimi.com',
|
|
best_provider = IterListProvider([Kimi, HuggingFace, DeepInfra, Groq]),
|
|
long_name = "moonshotai/Kimi-K2-Instruct"
|
|
)
|
|
|
|
### Perplexity AI ###
|
|
sonar = Model(
|
|
name = 'sonar',
|
|
base_provider = 'Perplexity AI',
|
|
best_provider = PerplexityLabs
|
|
)
|
|
|
|
sonar_pro = Model(
|
|
name = 'sonar-pro',
|
|
base_provider = 'Perplexity AI',
|
|
best_provider = PerplexityLabs
|
|
)
|
|
|
|
sonar_reasoning = Model(
|
|
name = 'sonar-reasoning',
|
|
base_provider = 'Perplexity AI',
|
|
best_provider = PerplexityLabs
|
|
)
|
|
|
|
sonar_reasoning_pro = Model(
|
|
name = 'sonar-reasoning-pro',
|
|
base_provider = 'Perplexity AI',
|
|
best_provider = PerplexityLabs
|
|
)
|
|
|
|
r1_1776 = Model(
|
|
name = 'r1-1776',
|
|
base_provider = 'Perplexity AI',
|
|
best_provider = IterListProvider([Together, PerplexityLabs])
|
|
)
|
|
|
|
### Nvidia ###
|
|
nemotron_70b = Model(
|
|
name = 'nemotron-70b',
|
|
base_provider = 'Nvidia',
|
|
best_provider = IterListProvider([Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
### Cognitive Computations ###
|
|
# dolphin-2
|
|
dolphin_2_6 = Model(
|
|
name = "dolphin-2.6",
|
|
base_provider = "Cognitive Computations",
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
dolphin_2_9 = Model(
|
|
name = "dolphin-2.9",
|
|
base_provider = "Cognitive Computations",
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
### DeepInfra ###
|
|
airoboros_70b = Model(
|
|
name = "airoboros-70b",
|
|
base_provider = "DeepInfra",
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
### Lizpreciatior ###
|
|
lzlv_70b = Model(
|
|
name = "lzlv-70b",
|
|
base_provider = "Lizpreciatior",
|
|
best_provider = DeepInfra
|
|
)
|
|
|
|
### Opera ###
|
|
aria = Model(
|
|
name = "aria",
|
|
base_provider = "Opera",
|
|
best_provider = OperaAria
|
|
)
|
|
|
|
### Uncensored AI ###
|
|
evil = Model(
|
|
name = 'evil',
|
|
base_provider = 'Evil Mode - Experimental',
|
|
best_provider = PollinationsAI
|
|
)
|
|
|
|
### Stability AI ###
|
|
sdxl_turbo = ImageModel(
|
|
name = 'sdxl-turbo',
|
|
base_provider = 'Stability AI',
|
|
best_provider = IterListProvider([HuggingFaceMedia, PollinationsImage])
|
|
)
|
|
|
|
sd_3_5_large = ImageModel(
|
|
name = 'sd-3.5-large',
|
|
base_provider = 'Stability AI',
|
|
best_provider = IterListProvider([HuggingFaceMedia, HuggingSpace])
|
|
)
|
|
|
|
### Black Forest Labs ###
|
|
flux = ImageModel(
|
|
name = 'flux',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = IterListProvider([HuggingFaceMedia, PollinationsImage, Together, HuggingSpace])
|
|
)
|
|
|
|
flux_pro = ImageModel(
|
|
name = 'flux-pro',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = IterListProvider([PollinationsImage, Together])
|
|
)
|
|
|
|
flux_dev = ImageModel(
|
|
name = 'flux-dev',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = IterListProvider([PollinationsImage, HuggingSpace, Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
flux_schnell = ImageModel(
|
|
name = 'flux-schnell',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = IterListProvider([PollinationsImage, Together, HuggingChat, HuggingFace])
|
|
)
|
|
|
|
flux_redux = ImageModel(
|
|
name = 'flux-redux',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = Together
|
|
)
|
|
|
|
flux_depth = ImageModel(
|
|
name = 'flux-depth',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = Together
|
|
)
|
|
|
|
flux_canny = ImageModel(
|
|
name = 'flux-canny',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = Together
|
|
)
|
|
|
|
flux_kontext_max = ImageModel(
|
|
name = 'flux-kontext',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = IterListProvider([PollinationsAI, Azure, LMArena, Together])
|
|
)
|
|
|
|
flux_dev_lora = ImageModel(
|
|
name = 'flux-dev-lora',
|
|
base_provider = 'Black Forest Labs',
|
|
best_provider = Together
|
|
)
|
|
|
|
class ModelUtils:
|
|
"""
|
|
Utility class for mapping string identifiers to Model instances.
|
|
Now uses automatic discovery instead of manual mapping.
|
|
"""
|
|
|
|
convert: Dict[str, Model] = {}
|
|
|
|
@classmethod
|
|
def refresh(cls):
|
|
"""Refresh the model registry and update convert"""
|
|
cls.convert = ModelRegistry.all_models()
|
|
|
|
@classmethod
|
|
def get_model(cls, name: str) -> Optional[Model]:
|
|
"""Get model by name or alias"""
|
|
return ModelRegistry.get(name)
|
|
|
|
@classmethod
|
|
def register_alias(cls, alias: str, model_name: str):
|
|
"""Register an alias for a model"""
|
|
ModelRegistry._aliases[alias] = model_name
|
|
|
|
# Register special aliases after all models are created
|
|
ModelRegistry._aliases["gemini"] = "gemini-2.0"
|
|
|
|
# Fill the convert dictionary
|
|
ModelUtils.convert = ModelRegistry.all_models()
|
|
|
|
# Demo models configuration
|
|
demo_models = {
|
|
llama_3_2_11b.name: [llama_3_2_11b, [HuggingChat]],
|
|
qwen_2_vl_7b.name: [qwen_2_vl_7b, [HuggingFaceAPI]],
|
|
deepseek_r1.name: [deepseek_r1, [HuggingFace, PollinationsAI]],
|
|
janus_pro_7b.name: [janus_pro_7b, [HuggingSpace]],
|
|
command_r.name: [command_r, [HuggingSpace]],
|
|
command_r_plus.name: [command_r_plus, [HuggingSpace]],
|
|
command_r7b.name: [command_r7b, [HuggingSpace]],
|
|
qwen_2_5_coder_32b.name: [qwen_2_5_coder_32b, [HuggingFace]],
|
|
qwq_32b.name: [qwq_32b, [HuggingFace]],
|
|
llama_3_3_70b.name: [llama_3_3_70b, [HuggingFace]],
|
|
sd_3_5_large.name: [sd_3_5_large, [HuggingSpace, HuggingFace]],
|
|
flux_dev.name: [flux_dev, [PollinationsImage, HuggingFace, HuggingSpace]],
|
|
flux_schnell.name: [flux_schnell, [PollinationsImage, HuggingFace, HuggingSpace]],
|
|
}
|
|
|
|
# Create a list of all models and their providers
|
|
def _get_working_providers(model: Model) -> List:
|
|
"""Get list of working providers for a model"""
|
|
if model.best_provider is None:
|
|
return []
|
|
|
|
if isinstance(model.best_provider, IterListProvider):
|
|
return [p for p in model.best_provider.providers if p.working]
|
|
|
|
return [model.best_provider] if model.best_provider.working else []
|
|
|
|
# Generate __models__ using the auto-discovered models
|
|
__models__ = {
|
|
name: (model, _get_working_providers(model))
|
|
for name, model in ModelRegistry.all_models().items()
|
|
if name and _get_working_providers(model)
|
|
}
|
|
|
|
# Generate _all_models list
|
|
_all_models = list(__models__.keys())
|
|
|
|
# Backward compatibility - ensure Model.__all__() returns the correct list
|
|
Model.__all__ = staticmethod(lambda: _all_models)
|