### G4F - Client API #### Introduction Welcome to the G4F Client API, a cutting-edge tool for seamlessly integrating advanced AI capabilities into your Python applications. This guide is designed to facilitate your transition from using the OpenAI client to the G4F Client, offering enhanced features while maintaining compatibility with the existing OpenAI API. #### Getting Started **Switching to G4F Client:** To begin using the G4F Client, simply update your import statement in your Python code: Old Import: ```python from openai import OpenAI ``` New Import: ```python from g4f.client import Client as OpenAI ``` The G4F Client preserves the same familiar API interface as OpenAI, ensuring a smooth transition process. ### Initializing the Client To utilize the G4F Client, create an new instance. Below is an example showcasing custom providers: ```python from g4f.client import Client from g4f.Provider import BingCreateImages, OpenaiChat, Gemini client = Client( provider=OpenaiChat, image_provider=Gemini, # Add any other necessary parameters ) ``` ## Configuration You can set an "api_key" for your provider in the client. And you also have the option to define a proxy for all outgoing requests: ```python from g4f.client import Client client = Client( api_key="...", proxies="http://user:pass@host", # Add any other necessary parameters ) ``` #### Usage Examples **Text Completions:** You can use the `ChatCompletions` endpoint to generate text completions as follows: ```python from g4f.client import Client client = Client() response = client.chat.completions.create( model="gpt-3.5-turbo", messages=[{"role": "user", "content": "Say this is a test"}], # Add any other necessary parameters ) print(response.choices[0].message.content) ``` Also streaming are supported: ```python from g4f.client import Client client = Client() stream = client.chat.completions.create( model="gpt-4", messages=[{"role": "user", "content": "Say this is a test"}], stream=True, ) for chunk in stream: if chunk.choices[0].delta.content: print(chunk.choices[0].delta.content or "", end="") ``` **Image Generation:** Generate images using a specified prompt: ```python from g4f.client import Client client = Client() response = client.images.generate( model="dall-e-3", prompt="a white siamese cat", # Add any other necessary parameters ) image_url = response.data[0].url print(f"Generated image URL: {image_url}") ``` **Creating Image Variations:** Create variations of an existing image: ```python from g4f.client import Client client = Client() response = client.images.create_variation( image=open("cat.jpg", "rb"), model="bing", # Add any other necessary parameters ) image_url = response.data[0].url print(f"Generated image URL: {image_url}") ``` Original / Variant: [![Original Image](/docs/cat.jpeg)](/docs/client.md) [![Variant Image](/docs/cat.webp)](/docs/client.md) #### Use a list of providers with RetryProvider ```python from g4f.client import Client from g4f.Provider import RetryProvider, Phind, FreeChatgpt, Liaobots import g4f.debug g4f.debug.logging = True g4f.debug.version_check = False client = Client( provider=RetryProvider([Phind, FreeChatgpt, Liaobots], shuffle=False) ) response = client.chat.completions.create( model="", messages=[{"role": "user", "content": "Hello"}], ) print(response.choices[0].message.content) ``` ``` Using RetryProvider provider Using Phind provider How can I assist you today? ``` #### Advanced example using GeminiProVision ```python from g4f.client import Client from g4f.Provider.GeminiPro import GeminiPro client = Client( api_key="...", provider=GeminiPro ) response = client.chat.completions.create( model="gemini-pro-vision", messages=[{"role": "user", "content": "What are on this image?"}], image=open("docs/waterfall.jpeg", "rb") ) print(response.choices[0].message.content) ``` ``` User: What are on this image? ``` ![Waterfall](/docs/waterfall.jpeg) ``` Bot: There is a waterfall in the middle of a jungle. There is a rainbow over... ``` ### Example: Using a Vision Model The following code snippet demonstrates how to use a vision model to analyze an image and generate a description based on the content of the image. This example shows how to fetch an image, send it to the model, and then process the response. ```python import g4f import requests from g4f.client import Client image = requests.get("https://raw.githubusercontent.com/xtekky/gpt4free/refs/heads/main/docs/cat.jpeg", stream=True).raw # Or: image = open("docs/cat.jpeg", "rb") client = Client() response = client.chat.completions.create( model=g4f.models.default, messages=[{"role": "user", "content": "What are on this image?"}], provider=g4f.Provider.Bing, image=image, # Add any other necessary parameters ) print(response.choices[0].message.content) ``` #### Advanced example: A command-line program ```python import g4f from g4f.client import Client # Initialize the GPT client with the desired provider client = Client() # Initialize an empty conversation history messages = [] while True: # Get user input user_input = input("You: ") # Check if the user wants to exit the chat if user_input.lower() == "exit": print("Exiting chat...") break # Exit the loop to end the conversation # Update the conversation history with the user's message messages.append({"role": "user", "content": user_input}) try: # Get GPT's response response = client.chat.completions.create( messages=messages, model=g4f.models.default, ) # Extract the GPT response and print it gpt_response = response.choices[0].message.content print(f"Bot: {gpt_response}") # Update the conversation history with GPT's response messages.append({"role": "assistant", "content": gpt_response}) except Exception as e: print(f"An error occurred: {e}") ``` [Return to Home](/)