mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-25 09:10:32 +08:00
Support reasoning tokens by default
Add new default HuggingFace provider Add format_image_prompt and get_last_user_message helper Add stop_browser callable to get_nodriver function Fix content type response in images route
This commit is contained in:
215
g4f/Provider/hf/HuggingFaceInference.py
Normal file
215
g4f/Provider/hf/HuggingFaceInference.py
Normal file
@@ -0,0 +1,215 @@
|
||||
from __future__ import annotations
|
||||
|
||||
import json
|
||||
import base64
|
||||
import random
|
||||
import requests
|
||||
|
||||
from ...typing import AsyncResult, Messages
|
||||
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, format_prompt
|
||||
from ...errors import ModelNotFoundError, ModelNotSupportedError, ResponseError
|
||||
from ...requests import StreamSession, raise_for_status
|
||||
from ...providers.response import FinishReason
|
||||
from ...image import ImageResponse
|
||||
from ..helper import format_image_prompt
|
||||
from .models import default_model, default_image_model, model_aliases, fallback_models
|
||||
from ... import debug
|
||||
|
||||
class HuggingFaceInference(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
url = "https://huggingface.co"
|
||||
working = True
|
||||
|
||||
default_model = default_model
|
||||
default_image_model = default_image_model
|
||||
model_aliases = model_aliases
|
||||
|
||||
@classmethod
|
||||
def get_models(cls) -> list[str]:
|
||||
if not cls.models:
|
||||
models = fallback_models.copy()
|
||||
url = "https://huggingface.co/api/models?inference=warm&pipeline_tag=text-generation"
|
||||
extra_models = [model["id"] for model in requests.get(url).json()]
|
||||
extra_models.sort()
|
||||
models.extend([model for model in extra_models if model not in models])
|
||||
if not cls.image_models:
|
||||
url = "https://huggingface.co/api/models?pipeline_tag=text-to-image"
|
||||
cls.image_models = [model["id"] for model in requests.get(url).json() if model["trendingScore"] >= 20]
|
||||
cls.image_models.sort()
|
||||
models.extend([model for model in cls.image_models if model not in models])
|
||||
cls.models = models
|
||||
return cls.models
|
||||
|
||||
@classmethod
|
||||
async def create_async_generator(
|
||||
cls,
|
||||
model: str,
|
||||
messages: Messages,
|
||||
stream: bool = True,
|
||||
proxy: str = None,
|
||||
api_base: str = "https://api-inference.huggingface.co",
|
||||
api_key: str = None,
|
||||
max_tokens: int = 1024,
|
||||
temperature: float = None,
|
||||
prompt: str = None,
|
||||
action: str = None,
|
||||
extra_data: dict = {},
|
||||
**kwargs
|
||||
) -> AsyncResult:
|
||||
try:
|
||||
model = cls.get_model(model)
|
||||
except ModelNotSupportedError:
|
||||
pass
|
||||
headers = {
|
||||
'accept': '*/*',
|
||||
'accept-language': 'en',
|
||||
'cache-control': 'no-cache',
|
||||
'origin': 'https://huggingface.co',
|
||||
'pragma': 'no-cache',
|
||||
'priority': 'u=1, i',
|
||||
'referer': 'https://huggingface.co/chat/',
|
||||
'sec-ch-ua': '"Not)A;Brand";v="99", "Google Chrome";v="127", "Chromium";v="127"',
|
||||
'sec-ch-ua-mobile': '?0',
|
||||
'sec-ch-ua-platform': '"macOS"',
|
||||
'sec-fetch-dest': 'empty',
|
||||
'sec-fetch-mode': 'cors',
|
||||
'sec-fetch-site': 'same-origin',
|
||||
'user-agent': 'Mozilla/5.0 (Macintosh; Intel Mac OS X 10_15_7) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/127.0.0.0 Safari/537.36',
|
||||
}
|
||||
if api_key is not None:
|
||||
headers["Authorization"] = f"Bearer {api_key}"
|
||||
payload = None
|
||||
if cls.get_models() and model in cls.image_models:
|
||||
stream = False
|
||||
prompt = format_image_prompt(messages, prompt)
|
||||
payload = {"inputs": prompt, "parameters": {"seed": random.randint(0, 2**32), **extra_data}}
|
||||
else:
|
||||
params = {
|
||||
"return_full_text": False,
|
||||
"max_new_tokens": max_tokens,
|
||||
"temperature": temperature,
|
||||
**extra_data
|
||||
}
|
||||
do_continue = action == "continue"
|
||||
async with StreamSession(
|
||||
headers=headers,
|
||||
proxy=proxy,
|
||||
timeout=600
|
||||
) as session:
|
||||
if payload is None:
|
||||
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
|
||||
if response.status == 404:
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
||||
await raise_for_status(response)
|
||||
model_data = await response.json()
|
||||
model_type = None
|
||||
if "config" in model_data and "model_type" in model_data["config"]:
|
||||
model_type = model_data["config"]["model_type"]
|
||||
debug.log(f"Model type: {model_type}")
|
||||
inputs = get_inputs(messages, model_data, model_type, do_continue)
|
||||
debug.log(f"Inputs len: {len(inputs)}")
|
||||
if len(inputs) > 4096:
|
||||
if len(messages) > 6:
|
||||
messages = messages[:3] + messages[-3:]
|
||||
else:
|
||||
messages = [m for m in messages if m["role"] == "system"] + [messages[-1]]
|
||||
inputs = get_inputs(messages, model_data, model_type, do_continue)
|
||||
debug.log(f"New len: {len(inputs)}")
|
||||
if model_type == "gpt2" and max_tokens >= 1024:
|
||||
params["max_new_tokens"] = 512
|
||||
payload = {"inputs": inputs, "parameters": params, "stream": stream}
|
||||
|
||||
async with session.post(f"{api_base.rstrip('/')}/models/{model}", json=payload) as response:
|
||||
if response.status == 404:
|
||||
raise ModelNotFoundError(f"Model is not supported: {model}")
|
||||
await raise_for_status(response)
|
||||
if stream:
|
||||
first = True
|
||||
is_special = False
|
||||
async for line in response.iter_lines():
|
||||
if line.startswith(b"data:"):
|
||||
data = json.loads(line[5:])
|
||||
if "error" in data:
|
||||
raise ResponseError(data["error"])
|
||||
if not data["token"]["special"]:
|
||||
chunk = data["token"]["text"]
|
||||
if first and not do_continue:
|
||||
first = False
|
||||
chunk = chunk.lstrip()
|
||||
if chunk:
|
||||
yield chunk
|
||||
else:
|
||||
is_special = True
|
||||
debug.log(f"Special token: {is_special}")
|
||||
yield FinishReason("stop" if is_special else "length")
|
||||
else:
|
||||
if response.headers["content-type"].startswith("image/"):
|
||||
base64_data = base64.b64encode(b"".join([chunk async for chunk in response.iter_content()]))
|
||||
url = f"data:{response.headers['content-type']};base64,{base64_data.decode()}"
|
||||
yield ImageResponse(url, prompt)
|
||||
else:
|
||||
yield (await response.json())[0]["generated_text"].strip()
|
||||
|
||||
def format_prompt_mistral(messages: Messages, do_continue: bool = False) -> str:
|
||||
system_messages = [message["content"] for message in messages if message["role"] == "system"]
|
||||
question = " ".join([messages[-1]["content"], *system_messages])
|
||||
history = "\n".join([
|
||||
f"<s>[INST]{messages[idx-1]['content']} [/INST] {message['content']}</s>"
|
||||
for idx, message in enumerate(messages)
|
||||
if message["role"] == "assistant"
|
||||
])
|
||||
if do_continue:
|
||||
return history[:-len('</s>')]
|
||||
return f"{history}\n<s>[INST] {question} [/INST]"
|
||||
|
||||
def format_prompt_qwen(messages: Messages, do_continue: bool = False) -> str:
|
||||
prompt = "".join([
|
||||
f"<|im_start|>{message['role']}\n{message['content']}\n<|im_end|>\n" for message in messages
|
||||
]) + ("" if do_continue else "<|im_start|>assistant\n")
|
||||
if do_continue:
|
||||
return prompt[:-len("\n<|im_end|>\n")]
|
||||
return prompt
|
||||
|
||||
def format_prompt_qwen2(messages: Messages, do_continue: bool = False) -> str:
|
||||
prompt = "".join([
|
||||
f"\u003C|{message['role'].capitalize()}|\u003E{message['content']}\u003C|end▁of▁sentence|\u003E" for message in messages
|
||||
]) + ("" if do_continue else "\u003C|Assistant|\u003E")
|
||||
if do_continue:
|
||||
return prompt[:-len("\u003C|Assistant|\u003E")]
|
||||
return prompt
|
||||
|
||||
def format_prompt_llama(messages: Messages, do_continue: bool = False) -> str:
|
||||
prompt = "<|begin_of_text|>" + "".join([
|
||||
f"<|start_header_id|>{message['role']}<|end_header_id|>\n\n{message['content']}\n<|eot_id|>\n" for message in messages
|
||||
]) + ("" if do_continue else "<|start_header_id|>assistant<|end_header_id|>\n\n")
|
||||
if do_continue:
|
||||
return prompt[:-len("\n<|eot_id|>\n")]
|
||||
return prompt
|
||||
|
||||
def format_prompt_custom(messages: Messages, end_token: str = "</s>", do_continue: bool = False) -> str:
|
||||
prompt = "".join([
|
||||
f"<|{message['role']}|>\n{message['content']}{end_token}\n" for message in messages
|
||||
]) + ("" if do_continue else "<|assistant|>\n")
|
||||
if do_continue:
|
||||
return prompt[:-len(end_token + "\n")]
|
||||
return prompt
|
||||
|
||||
def get_inputs(messages: Messages, model_data: dict, model_type: str, do_continue: bool = False) -> str:
|
||||
if model_type in ("gpt2", "gpt_neo", "gemma", "gemma2"):
|
||||
inputs = format_prompt(messages, do_continue=do_continue)
|
||||
elif model_type == "mistral" and model_data.get("author") == "mistralai":
|
||||
inputs = format_prompt_mistral(messages, do_continue)
|
||||
elif "config" in model_data and "tokenizer_config" in model_data["config"] and "eos_token" in model_data["config"]["tokenizer_config"]:
|
||||
eos_token = model_data["config"]["tokenizer_config"]["eos_token"]
|
||||
if eos_token in ("<|endoftext|>", "<eos>", "</s>"):
|
||||
inputs = format_prompt_custom(messages, eos_token, do_continue)
|
||||
elif eos_token == "<|im_end|>":
|
||||
inputs = format_prompt_qwen(messages, do_continue)
|
||||
elif "content" in eos_token and eos_token["content"] == "\u003C|end▁of▁sentence|\u003E":
|
||||
inputs = format_prompt_qwen2(messages, do_continue)
|
||||
elif eos_token == "<|eot_id|>":
|
||||
inputs = format_prompt_llama(messages, do_continue)
|
||||
else:
|
||||
inputs = format_prompt(messages, do_continue=do_continue)
|
||||
else:
|
||||
inputs = format_prompt(messages, do_continue=do_continue)
|
||||
return inputs
|
||||
Reference in New Issue
Block a user