mirror of
https://github.com/xtekky/gpt4free.git
synced 2025-10-05 08:16:58 +08:00
Show only free providers by default
This commit is contained in:
@@ -123,9 +123,6 @@ class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
if model not in cls.image_models:
|
||||
raise
|
||||
|
||||
if not cache and seed is None:
|
||||
seed = random.randint(1000, 999999)
|
||||
|
||||
if model in cls.image_models:
|
||||
async for chunk in cls._generate_image(
|
||||
model=model,
|
||||
@@ -134,6 +131,7 @@ class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
width=width,
|
||||
height=height,
|
||||
seed=seed,
|
||||
cache=cache,
|
||||
nologo=nologo,
|
||||
private=private,
|
||||
enhance=enhance,
|
||||
@@ -165,11 +163,14 @@ class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
width: int,
|
||||
height: int,
|
||||
seed: Optional[int],
|
||||
cache: bool,
|
||||
nologo: bool,
|
||||
private: bool,
|
||||
enhance: bool,
|
||||
safe: bool
|
||||
) -> AsyncResult:
|
||||
if not cache and seed is None:
|
||||
seed = random.randint(9999, 99999999)
|
||||
params = {
|
||||
"seed": str(seed) if seed is not None else None,
|
||||
"width": str(width),
|
||||
@@ -207,6 +208,8 @@ class PollinationsAI(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
seed: Optional[int],
|
||||
cache: bool
|
||||
) -> AsyncResult:
|
||||
if not cache and seed is None:
|
||||
seed = random.randint(9999, 99999999)
|
||||
json_mode = False
|
||||
if response_format and response_format.get("type") == "json_object":
|
||||
json_mode = True
|
||||
|
@@ -28,6 +28,7 @@ class PollinationsImage(PollinationsAI):
|
||||
width: int = 1024,
|
||||
height: int = 1024,
|
||||
seed: Optional[int] = None,
|
||||
cache: bool = False,
|
||||
nologo: bool = True,
|
||||
private: bool = False,
|
||||
enhance: bool = False,
|
||||
@@ -41,6 +42,7 @@ class PollinationsImage(PollinationsAI):
|
||||
width=width,
|
||||
height=height,
|
||||
seed=seed,
|
||||
cache=cache,
|
||||
nologo=nologo,
|
||||
private=private,
|
||||
enhance=enhance,
|
||||
|
@@ -8,7 +8,8 @@ import base64
|
||||
from typing import AsyncIterator
|
||||
|
||||
try:
|
||||
from curl_cffi.requests import Session, CurlMime
|
||||
from curl_cffi.requests import Session
|
||||
from curl_cffi import CurlMime
|
||||
has_curl_cffi = True
|
||||
except ImportError:
|
||||
has_curl_cffi = False
|
||||
|
@@ -4,6 +4,7 @@ from ...providers.types import Messages
|
||||
from ...typing import ImagesType
|
||||
from ...requests import StreamSession, raise_for_status
|
||||
from ...errors import ModelNotSupportedError
|
||||
from ...providers.helper import get_last_user_message
|
||||
from ..template.OpenaiTemplate import OpenaiTemplate
|
||||
from .models import model_aliases, vision_models, default_vision_model
|
||||
from .HuggingChat import HuggingChat
|
||||
@@ -22,7 +23,7 @@ class HuggingFaceAPI(OpenaiTemplate):
|
||||
vision_models = vision_models
|
||||
model_aliases = model_aliases
|
||||
|
||||
pipeline_tag: dict[str, str] = {}
|
||||
pipeline_tags: dict[str, str] = {}
|
||||
|
||||
@classmethod
|
||||
def get_models(cls, **kwargs):
|
||||
@@ -36,8 +37,8 @@ class HuggingFaceAPI(OpenaiTemplate):
|
||||
|
||||
@classmethod
|
||||
async def get_pipline_tag(cls, model: str, api_key: str = None):
|
||||
if model in cls.pipeline_tag:
|
||||
return cls.pipeline_tag[model]
|
||||
if model in cls.pipeline_tags:
|
||||
return cls.pipeline_tags[model]
|
||||
async with StreamSession(
|
||||
timeout=30,
|
||||
headers=cls.get_headers(False, api_key),
|
||||
@@ -45,8 +46,8 @@ class HuggingFaceAPI(OpenaiTemplate):
|
||||
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
|
||||
await raise_for_status(response)
|
||||
model_data = await response.json()
|
||||
cls.pipeline_tag[model] = model_data.get("pipeline_tag")
|
||||
return cls.pipeline_tag[model]
|
||||
cls.pipeline_tags[model] = model_data.get("pipeline_tag")
|
||||
return cls.pipeline_tags[model]
|
||||
|
||||
@classmethod
|
||||
async def create_async_generator(
|
||||
@@ -73,10 +74,11 @@ class HuggingFaceAPI(OpenaiTemplate):
|
||||
if len(messages) > 6:
|
||||
messages = messages[:3] + messages[-3:]
|
||||
if calculate_lenght(messages) > max_inputs_lenght:
|
||||
last_user_message = [{"role": "user", "content": get_last_user_message(messages)}]
|
||||
if len(messages) > 2:
|
||||
messages = [m for m in messages if m["role"] == "system"] + messages[-1:]
|
||||
messages = [m for m in messages if m["role"] == "system"] + last_user_message
|
||||
if len(messages) > 1 and calculate_lenght(messages) > max_inputs_lenght:
|
||||
messages = [messages[-1]]
|
||||
messages = last_user_message
|
||||
debug.log(f"Messages trimmed from: {start} to: {calculate_lenght(messages)}")
|
||||
async for chunk in super().create_async_generator(model, messages, api_base=api_base, api_key=api_key, max_tokens=max_tokens, images=images, **kwargs):
|
||||
yield chunk
|
||||
|
@@ -7,7 +7,7 @@ import requests
|
||||
|
||||
from ...typing import AsyncResult, Messages
|
||||
from ..base_provider import AsyncGeneratorProvider, ProviderModelMixin, format_prompt
|
||||
from ...errors import ModelNotFoundError, ModelNotSupportedError, ResponseError
|
||||
from ...errors import ModelNotSupportedError, ResponseError
|
||||
from ...requests import StreamSession, raise_for_status
|
||||
from ...providers.response import FinishReason, ImageResponse
|
||||
from ..helper import format_image_prompt, get_last_user_message
|
||||
@@ -24,6 +24,8 @@ class HuggingFaceInference(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
model_aliases = model_aliases
|
||||
image_models = image_models
|
||||
|
||||
model_data: dict[str, dict] = {}
|
||||
|
||||
@classmethod
|
||||
def get_models(cls) -> list[str]:
|
||||
if not cls.models:
|
||||
@@ -43,6 +45,17 @@ class HuggingFaceInference(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
cls.models = models
|
||||
return cls.models
|
||||
|
||||
@classmethod
|
||||
async def get_model_data(cls, session: StreamSession, model: str) -> str:
|
||||
if model in cls.model_data:
|
||||
return cls.model_data[model]
|
||||
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
|
||||
if response.status == 404:
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
||||
await raise_for_status(response)
|
||||
cls.model_data[model] = await response.json()
|
||||
return cls.model_data[model]
|
||||
|
||||
@classmethod
|
||||
async def create_async_generator(
|
||||
cls,
|
||||
@@ -96,41 +109,37 @@ class HuggingFaceInference(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
timeout=600
|
||||
) as session:
|
||||
if payload is None:
|
||||
async with session.get(f"https://huggingface.co/api/models/{model}") as response:
|
||||
if response.status == 404:
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__}")
|
||||
await raise_for_status(response)
|
||||
model_data = await response.json()
|
||||
pipeline_tag = model_data.get("pipeline_tag")
|
||||
if pipeline_tag == "text-to-image":
|
||||
stream = False
|
||||
inputs = format_image_prompt(messages, prompt)
|
||||
payload = {"inputs": inputs, "parameters": {"seed": random.randint(0, 2**32) if seed is None else seed, **extra_data}}
|
||||
elif pipeline_tag in ("text-generation", "image-text-to-text"):
|
||||
model_type = None
|
||||
if "config" in model_data and "model_type" in model_data["config"]:
|
||||
model_type = model_data["config"]["model_type"]
|
||||
debug.log(f"Model type: {model_type}")
|
||||
model_data = await cls.get_model_data(session, model)
|
||||
pipeline_tag = model_data.get("pipeline_tag")
|
||||
if pipeline_tag == "text-to-image":
|
||||
stream = False
|
||||
inputs = format_image_prompt(messages, prompt)
|
||||
payload = {"inputs": inputs, "parameters": {"seed": random.randint(0, 2**32) if seed is None else seed, **extra_data}}
|
||||
elif pipeline_tag in ("text-generation", "image-text-to-text"):
|
||||
model_type = None
|
||||
if "config" in model_data and "model_type" in model_data["config"]:
|
||||
model_type = model_data["config"]["model_type"]
|
||||
debug.log(f"Model type: {model_type}")
|
||||
inputs = get_inputs(messages, model_data, model_type, do_continue)
|
||||
debug.log(f"Inputs len: {len(inputs)}")
|
||||
if len(inputs) > 4096:
|
||||
if len(messages) > 6:
|
||||
messages = messages[:3] + messages[-3:]
|
||||
else:
|
||||
messages = [m for m in messages if m["role"] == "system"] + [{"role": "user", "content": get_last_user_message(messages)}]
|
||||
inputs = get_inputs(messages, model_data, model_type, do_continue)
|
||||
debug.log(f"Inputs len: {len(inputs)}")
|
||||
if len(inputs) > 4096:
|
||||
if len(messages) > 6:
|
||||
messages = messages[:3] + messages[-3:]
|
||||
else:
|
||||
messages = [m for m in messages if m["role"] == "system"] + [get_last_user_message(messages)]
|
||||
inputs = get_inputs(messages, model_data, model_type, do_continue)
|
||||
debug.log(f"New len: {len(inputs)}")
|
||||
if model_type == "gpt2" and max_tokens >= 1024:
|
||||
params["max_new_tokens"] = 512
|
||||
if seed is not None:
|
||||
params["seed"] = seed
|
||||
payload = {"inputs": inputs, "parameters": params, "stream": stream}
|
||||
else:
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__} pipeline_tag: {pipeline_tag}")
|
||||
debug.log(f"New len: {len(inputs)}")
|
||||
if model_type == "gpt2" and max_tokens >= 1024:
|
||||
params["max_new_tokens"] = 512
|
||||
if seed is not None:
|
||||
params["seed"] = seed
|
||||
payload = {"inputs": inputs, "parameters": params, "stream": stream}
|
||||
else:
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model} in: {cls.__name__} pipeline_tag: {pipeline_tag}")
|
||||
|
||||
async with session.post(f"{api_base.rstrip('/')}/models/{model}", json=payload) as response:
|
||||
if response.status == 404:
|
||||
raise ModelNotFoundError(f"Model is not supported: {model}")
|
||||
raise ModelNotSupportedError(f"Model is not supported: {model}")
|
||||
await raise_for_status(response)
|
||||
if stream:
|
||||
first = True
|
||||
|
@@ -36,7 +36,7 @@ class HuggingFace(AsyncGeneratorProvider, ProviderModelMixin):
|
||||
messages: Messages,
|
||||
**kwargs
|
||||
) -> AsyncResult:
|
||||
if "api_key" not in kwargs and "images" not in kwargs and random.random() >= 0.5:
|
||||
if "images" not in kwargs and "deepseek" in model or random.random() >= 0.5:
|
||||
try:
|
||||
is_started = False
|
||||
async for chunk in HuggingFaceInference.create_async_generator(model, messages, **kwargs):
|
||||
|
@@ -13,7 +13,6 @@ from ...errors import MissingAuthError
|
||||
from ...requests import get_args_from_nodriver, get_nodriver
|
||||
from ...providers.response import AuthResult, RequestLogin, Reasoning, JsonConversation, FinishReason
|
||||
from ...typing import AsyncResult, Messages
|
||||
from ... import debug
|
||||
try:
|
||||
from curl_cffi import requests
|
||||
from dsk.api import DeepSeekAPI, AuthenticationError, DeepSeekPOW
|
||||
|
@@ -5,3 +5,4 @@ from .OpenaiChat import OpenaiChat
|
||||
class OpenaiAccount(OpenaiChat):
|
||||
needs_auth = True
|
||||
parent = "OpenaiChat"
|
||||
use_nodriver = False # Show (Auth) in the model name
|
@@ -65,7 +65,7 @@ class OpenaiTemplate(AsyncGeneratorProvider, ProviderModelMixin, RaiseErrorMixin
|
||||
prompt: str = None,
|
||||
headers: dict = None,
|
||||
impersonate: str = None,
|
||||
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "", "reasoning_effort", "logit_bias"],
|
||||
extra_parameters: list[str] = ["tools", "parallel_tool_calls", "tool_choice", "reasoning_effort", "logit_bias"],
|
||||
extra_data: dict = {},
|
||||
**kwargs
|
||||
) -> AsyncResult:
|
||||
|
@@ -365,7 +365,7 @@ class Images:
|
||||
break
|
||||
except Exception as e:
|
||||
error = e
|
||||
debug.error(e, name=f"{provider.__name__} {type(e).__name__}")
|
||||
debug.error(f"{provider.__name__} {type(e).__name__}: {e}")
|
||||
else:
|
||||
response = await self._generate_image_response(provider_handler, provider_name, model, prompt, **kwargs)
|
||||
|
||||
@@ -460,7 +460,7 @@ class Images:
|
||||
break
|
||||
except Exception as e:
|
||||
error = e
|
||||
debug.error(e, name=f"{provider.__name__} {type(e).__name__}")
|
||||
debug.error(f"{provider.__name__} {type(e).__name__}: {e}")
|
||||
else:
|
||||
response = await self._generate_image_response(provider_handler, provider_name, model, prompt, **kwargs)
|
||||
|
||||
|
@@ -1932,7 +1932,7 @@ const load_provider_option = (input, provider_name) => {
|
||||
providerSelect.querySelectorAll(`option[data-parent="${provider_name}"]`).forEach(
|
||||
(el) => el.removeAttribute("disabled")
|
||||
);
|
||||
settings.querySelector(`.field:has(#${provider_name}-api_key)`)?.classList.remove("hidden");
|
||||
//settings.querySelector(`.field:has(#${provider_name}-api_key)`)?.classList.remove("hidden");
|
||||
} else {
|
||||
modelSelect.querySelectorAll(`option[data-providers*="${provider_name}"]`).forEach(
|
||||
(el) => {
|
||||
@@ -1947,7 +1947,7 @@ const load_provider_option = (input, provider_name) => {
|
||||
providerSelect.querySelectorAll(`option[data-parent="${provider_name}"]`).forEach(
|
||||
(el) => el.setAttribute("disabled", "disabled")
|
||||
);
|
||||
settings.querySelector(`.field:has(#${provider_name}-api_key)`)?.classList.add("hidden");
|
||||
//settings.querySelector(`.field:has(#${provider_name}-api_key)`)?.classList.add("hidden");
|
||||
}
|
||||
};
|
||||
|
||||
@@ -2039,13 +2039,13 @@ async function on_api() {
|
||||
|
||||
if (provider.parent) {
|
||||
if (!login_urls[provider.parent]) {
|
||||
login_urls[provider.parent] = [provider.label, provider.login_url, [provider.name]];
|
||||
login_urls[provider.parent] = [provider.label, provider.login_url, [provider.name], provider.auth];
|
||||
} else {
|
||||
login_urls[provider.parent][2].push(provider.name);
|
||||
}
|
||||
} else if (provider.login_url) {
|
||||
if (!login_urls[provider.name]) {
|
||||
login_urls[provider.name] = [provider.label, provider.login_url, []];
|
||||
login_urls[provider.name] = [provider.label, provider.login_url, [], provider.auth];
|
||||
} else {
|
||||
login_urls[provider.name][0] = provider.label;
|
||||
login_urls[provider.name][1] = provider.login_url;
|
||||
@@ -2068,9 +2068,10 @@ async function on_api() {
|
||||
if (!provider.parent) {
|
||||
let option = document.createElement("div");
|
||||
option.classList.add("provider-item");
|
||||
let api_key = appStorage.getItem(`${provider.name}-api_key`);
|
||||
option.innerHTML = `
|
||||
<span class="label">Enable ${provider.label}</span>
|
||||
<input id="Provider${provider.name}" type="checkbox" name="Provider${provider.name}" value="${provider.name}" class="provider" checked="">
|
||||
<input id="Provider${provider.name}" type="checkbox" name="Provider${provider.name}" value="${provider.name}" class="provider" ${'checked="checked"' ? !provider.auth || api_key : ''}/>
|
||||
<label for="Provider${provider.name}" class="toogle" title="Remove provider from dropdown"></label>
|
||||
`;
|
||||
option.querySelector("input").addEventListener("change", (event) => load_provider_option(event.target, provider.name));
|
||||
@@ -2102,7 +2103,7 @@ async function on_api() {
|
||||
`;
|
||||
settings.querySelector(".paper").appendChild(providersListContainer);
|
||||
|
||||
for (let [name, [label, login_url, childs]] of Object.entries(login_urls)) {
|
||||
for (let [name, [label, login_url, childs, auth]] of Object.entries(login_urls)) {
|
||||
if (!login_url && !is_demo) {
|
||||
continue;
|
||||
}
|
||||
@@ -2113,6 +2114,13 @@ async function on_api() {
|
||||
<label for="${name}-api_key" class="label" title="">${label}:</label>
|
||||
<input type="text" id="${name}-api_key" name="${name}[api_key]" class="${childs}" placeholder="api_key" autocomplete="off"/>
|
||||
` + (login_url ? `<a href="${login_url}" target="_blank" title="Login to ${label}">Get API key</a>` : "");
|
||||
if (auth) {
|
||||
providerBox.querySelector("input").addEventListener("input", (event) => {
|
||||
const input = document.getElementById(`Provider${name}`);
|
||||
input.checked = !!event.target.value;
|
||||
load_provider_option(input, name);
|
||||
});
|
||||
}
|
||||
providersListContainer.querySelector(".collapsible-content").appendChild(providerBox);
|
||||
}
|
||||
|
||||
|
@@ -143,7 +143,7 @@ class Api:
|
||||
def decorated_log(text: str, file = None):
|
||||
debug.logs.append(text)
|
||||
if debug.logging:
|
||||
debug.log_handler(text, file)
|
||||
debug.log_handler(text, file=file)
|
||||
debug.log = decorated_log
|
||||
proxy = os.environ.get("G4F_PROXY")
|
||||
provider = kwargs.get("provider")
|
||||
@@ -187,7 +187,7 @@ class Api:
|
||||
yield self._format_json("conversation_id", conversation_id)
|
||||
elif isinstance(chunk, Exception):
|
||||
logger.exception(chunk)
|
||||
debug.error(e)
|
||||
debug.error(chunk)
|
||||
yield self._format_json('message', get_error_message(chunk), error=type(chunk).__name__)
|
||||
elif isinstance(chunk, PreviewResponse):
|
||||
yield self._format_json("preview", chunk.to_string())
|
||||
|
@@ -123,7 +123,7 @@ async def copy_images(
|
||||
return f"/images/{url_filename}{'?url=' + quote(image) if add_url and not image.startswith('data:') else ''}"
|
||||
|
||||
except (ClientError, IOError, OSError) as e:
|
||||
debug.error(f"Image processing failed: {type(e).__name__}: {e}")
|
||||
debug.error(f"Image copying failed: {type(e).__name__}: {e}")
|
||||
if target_path and os.path.exists(target_path):
|
||||
os.unlink(target_path)
|
||||
return get_source_url(image, image)
|
||||
|
@@ -105,7 +105,7 @@ class IterListProvider(BaseRetryProvider):
|
||||
return
|
||||
except Exception as e:
|
||||
exceptions[provider.__name__] = e
|
||||
debug.error(name=f"{provider.__name__} {type(e).__name__}: {e}")
|
||||
debug.error(f"{provider.__name__} {type(e).__name__}: {e}")
|
||||
if started:
|
||||
raise e
|
||||
yield e
|
||||
|
Reference in New Issue
Block a user