mirror of
				https://github.com/hybridgroup/gocv
				synced 2025-08-25 08:41:04 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			286 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			286 lines
		
	
	
		
			9.1 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package gocv
 | |
| 
 | |
| /*
 | |
| #include <stdlib.h>
 | |
| #include "objdetect.h"
 | |
| */
 | |
| import "C"
 | |
| import (
 | |
| 	"image"
 | |
| 	"unsafe"
 | |
| )
 | |
| 
 | |
| // CascadeClassifier is a cascade classifier class for object detection.
 | |
| //
 | |
| // For further details, please see:
 | |
| // http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html
 | |
| //
 | |
| type CascadeClassifier struct {
 | |
| 	p C.CascadeClassifier
 | |
| }
 | |
| 
 | |
| // NewCascadeClassifier returns a new CascadeClassifier.
 | |
| func NewCascadeClassifier() CascadeClassifier {
 | |
| 	return CascadeClassifier{p: C.CascadeClassifier_New()}
 | |
| }
 | |
| 
 | |
| // Close deletes the CascadeClassifier's pointer.
 | |
| func (c *CascadeClassifier) Close() error {
 | |
| 	C.CascadeClassifier_Close(c.p)
 | |
| 	c.p = nil
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // Load cascade classifier from a file.
 | |
| //
 | |
| // For further details, please see:
 | |
| // http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#a1a5884c8cc749422f9eb77c2471958bc
 | |
| //
 | |
| func (c *CascadeClassifier) Load(name string) bool {
 | |
| 	cName := C.CString(name)
 | |
| 	defer C.free(unsafe.Pointer(cName))
 | |
| 	return C.CascadeClassifier_Load(c.p, cName) != 0
 | |
| }
 | |
| 
 | |
| // DetectMultiScale detects objects of different sizes in the input Mat image.
 | |
| // The detected objects are returned as a slice of image.Rectangle structs.
 | |
| //
 | |
| // For further details, please see:
 | |
| // http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
 | |
| //
 | |
| func (c *CascadeClassifier) DetectMultiScale(img Mat) []image.Rectangle {
 | |
| 	ret := C.CascadeClassifier_DetectMultiScale(c.p, img.p)
 | |
| 	defer C.Rects_Close(ret)
 | |
| 
 | |
| 	return toRectangles(ret)
 | |
| }
 | |
| 
 | |
| // DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
 | |
| // to values other than just the defaults.
 | |
| //
 | |
| // For further details, please see:
 | |
| // http://docs.opencv.org/master/d1/de5/classcv_1_1CascadeClassifier.html#aaf8181cb63968136476ec4204ffca498
 | |
| //
 | |
| func (c *CascadeClassifier) DetectMultiScaleWithParams(img Mat, scale float64,
 | |
| 	minNeighbors, flags int, minSize, maxSize image.Point) []image.Rectangle {
 | |
| 
 | |
| 	minSz := C.struct_Size{
 | |
| 		width:  C.int(minSize.X),
 | |
| 		height: C.int(minSize.Y),
 | |
| 	}
 | |
| 
 | |
| 	maxSz := C.struct_Size{
 | |
| 		width:  C.int(maxSize.X),
 | |
| 		height: C.int(maxSize.Y),
 | |
| 	}
 | |
| 
 | |
| 	ret := C.CascadeClassifier_DetectMultiScaleWithParams(c.p, img.p, C.double(scale),
 | |
| 		C.int(minNeighbors), C.int(flags), minSz, maxSz)
 | |
| 	defer C.Rects_Close(ret)
 | |
| 
 | |
| 	return toRectangles(ret)
 | |
| }
 | |
| 
 | |
| // HOGDescriptor is a Histogram Of Gradiants (HOG) for object detection.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a723b95b709cfd3f95cf9e616de988fc8
 | |
| //
 | |
| type HOGDescriptor struct {
 | |
| 	p C.HOGDescriptor
 | |
| }
 | |
| 
 | |
| // NewHOGDescriptor returns a new HOGDescriptor.
 | |
| func NewHOGDescriptor() HOGDescriptor {
 | |
| 	return HOGDescriptor{p: C.HOGDescriptor_New()}
 | |
| }
 | |
| 
 | |
| // Close deletes the HOGDescriptor's pointer.
 | |
| func (h *HOGDescriptor) Close() error {
 | |
| 	C.HOGDescriptor_Close(h.p)
 | |
| 	h.p = nil
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // DetectMultiScale detects objects in the input Mat image.
 | |
| // The detected objects are returned as a slice of image.Rectangle structs.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
 | |
| //
 | |
| func (h *HOGDescriptor) DetectMultiScale(img Mat) []image.Rectangle {
 | |
| 	ret := C.HOGDescriptor_DetectMultiScale(h.p, img.p)
 | |
| 	defer C.Rects_Close(ret)
 | |
| 
 | |
| 	return toRectangles(ret)
 | |
| }
 | |
| 
 | |
| // DetectMultiScaleWithParams calls DetectMultiScale but allows setting parameters
 | |
| // to values other than just the defaults.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
 | |
| //
 | |
| func (h *HOGDescriptor) DetectMultiScaleWithParams(img Mat, hitThresh float64,
 | |
| 	winStride, padding image.Point, scale, finalThreshold float64, useMeanshiftGrouping bool) []image.Rectangle {
 | |
| 	wSz := C.struct_Size{
 | |
| 		width:  C.int(winStride.X),
 | |
| 		height: C.int(winStride.Y),
 | |
| 	}
 | |
| 
 | |
| 	pSz := C.struct_Size{
 | |
| 		width:  C.int(padding.X),
 | |
| 		height: C.int(padding.Y),
 | |
| 	}
 | |
| 
 | |
| 	ret := C.HOGDescriptor_DetectMultiScaleWithParams(h.p, img.p, C.double(hitThresh),
 | |
| 		wSz, pSz, C.double(scale), C.double(finalThreshold), C.bool(useMeanshiftGrouping))
 | |
| 	defer C.Rects_Close(ret)
 | |
| 
 | |
| 	return toRectangles(ret)
 | |
| }
 | |
| 
 | |
| // HOGDefaultPeopleDetector returns a new Mat with the HOG DefaultPeopleDetector.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a660e5cd036fd5ddf0f5767b352acd948
 | |
| //
 | |
| func HOGDefaultPeopleDetector() Mat {
 | |
| 	return newMat(C.HOG_GetDefaultPeopleDetector())
 | |
| }
 | |
| 
 | |
| // SetSVMDetector sets the data for the HOGDescriptor.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d33/structcv_1_1HOGDescriptor.html#a09e354ad701f56f9c550dc0385dc36f1
 | |
| //
 | |
| func (h *HOGDescriptor) SetSVMDetector(det Mat) error {
 | |
| 	C.HOGDescriptor_SetSVMDetector(h.p, det.p)
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // GroupRectangles groups the object candidate rectangles.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/d5/d54/group__objdetect.html#ga3dba897ade8aa8227edda66508e16ab9
 | |
| //
 | |
| func GroupRectangles(rects []image.Rectangle, groupThreshold int, eps float64) []image.Rectangle {
 | |
| 	cRectArray := make([]C.struct_Rect, len(rects))
 | |
| 	for i, r := range rects {
 | |
| 		cRect := C.struct_Rect{
 | |
| 			x:      C.int(r.Min.X),
 | |
| 			y:      C.int(r.Min.Y),
 | |
| 			width:  C.int(r.Size().X),
 | |
| 			height: C.int(r.Size().Y),
 | |
| 		}
 | |
| 		cRectArray[i] = cRect
 | |
| 	}
 | |
| 	cRects := C.struct_Rects{
 | |
| 		rects:  (*C.Rect)(&cRectArray[0]),
 | |
| 		length: C.int(len(rects)),
 | |
| 	}
 | |
| 
 | |
| 	ret := C.GroupRectangles(cRects, C.int(groupThreshold), C.double(eps))
 | |
| 
 | |
| 	return toRectangles(ret)
 | |
| }
 | |
| 
 | |
| // QRCodeDetector groups the object candidate rectangles.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html
 | |
| //
 | |
| type QRCodeDetector struct {
 | |
| 	p C.QRCodeDetector
 | |
| }
 | |
| 
 | |
| // newQRCodeDetector returns a new QRCodeDetector from a C QRCodeDetector
 | |
| func newQRCodeDetector(p C.QRCodeDetector) QRCodeDetector {
 | |
| 	return QRCodeDetector{p: p}
 | |
| }
 | |
| 
 | |
| func NewQRCodeDetector() QRCodeDetector {
 | |
| 	return newQRCodeDetector(C.QRCodeDetector_New())
 | |
| }
 | |
| 
 | |
| func (a *QRCodeDetector) Close() error {
 | |
| 	C.QRCodeDetector_Close(a.p)
 | |
| 	a.p = nil
 | |
| 	return nil
 | |
| }
 | |
| 
 | |
| // DetectAndDecode Both detects and decodes QR code.
 | |
| //
 | |
| // Returns true as long as some QR code was detected even in case where the decoding failed
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a7290bd6a5d59b14a37979c3a14fbf394
 | |
| //
 | |
| func (a *QRCodeDetector) DetectAndDecode(input Mat, points *Mat, straight_qrcode *Mat) string {
 | |
| 	goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
 | |
| 	return string(goResult)
 | |
| }
 | |
| 
 | |
| // Detect detects QR code in image and returns the quadrangle containing the code.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a64373f7d877d27473f64fe04bb57d22b
 | |
| //
 | |
| func (a *QRCodeDetector) Detect(input Mat, points *Mat) bool {
 | |
| 	result := C.QRCodeDetector_Detect(a.p, input.p, points.p)
 | |
| 	return bool(result)
 | |
| }
 | |
| 
 | |
| // Decode decodes QR code in image once it's found by the detect() method. Returns UTF8-encoded output string or empty string if the code cannot be decoded.
 | |
| //
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a4172c2eb4825c844fb1b0ae67202d329
 | |
| //
 | |
| func (a *QRCodeDetector) Decode(input Mat, points Mat, straight_qrcode *Mat) string {
 | |
| 	goResult := C.GoString(C.QRCodeDetector_DetectAndDecode(a.p, input.p, points.p, straight_qrcode.p))
 | |
| 	return string(goResult)
 | |
| }
 | |
| 
 | |
| // Detects QR codes in image and finds of the quadrangles containing the codes.
 | |
| //
 | |
| // Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
 | |
| // Returns true if QR code was detected
 | |
| // For usage please see TestQRCodeDetector
 | |
| // For further details, please see:
 | |
| // https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#aaf2b6b2115b8e8fbc9acf3a8f68872b6
 | |
| func (a *QRCodeDetector) DetectMulti(input Mat, points *Mat) bool {
 | |
| 	result := C.QRCodeDetector_DetectMulti(a.p, input.p, points.p)
 | |
| 	return bool(result)
 | |
| }
 | |
| 
 | |
| // Detects QR codes in image, finds the quadrangles containing the codes, and decodes the QRCodes to strings.
 | |
| //
 | |
| // Each quadrangle would be returned as a row in the `points` Mat and each point is a Vecf.
 | |
| // Returns true as long as some QR code was detected even in case where the decoding failed
 | |
| // For usage please see TestQRCodeDetector
 | |
| // For further details, please see:
 | |
| //https://docs.opencv.org/master/de/dc3/classcv_1_1QRCodeDetector.html#a188b63ffa17922b2c65d8a0ab7b70775
 | |
| func (a *QRCodeDetector) DetectAndDecodeMulti(input Mat, decoded *[]string, points *Mat, qrCodes *[]Mat) bool {
 | |
| 	cDecoded := C.CStrings{}
 | |
| 	defer C.CStrings_Close(cDecoded)
 | |
| 	cQrCodes := C.struct_Mats{}
 | |
| 	defer C.Mats_Close(cQrCodes)
 | |
| 	success := C.QRCodeDetector_DetectAndDecodeMulti(a.p, input.p, &cDecoded, points.p, &cQrCodes)
 | |
| 	if !success {
 | |
| 		return bool(success)
 | |
| 	}
 | |
| 
 | |
| 	tmpCodes := make([]Mat, cQrCodes.length)
 | |
| 	for i := C.int(0); i < cQrCodes.length; i++ {
 | |
| 		tmpCodes[i].p = C.Mats_get(cQrCodes, i)
 | |
| 	}
 | |
| 
 | |
| 	for _, qr := range tmpCodes {
 | |
| 		*qrCodes = append(*qrCodes, qr)
 | |
| 	}
 | |
| 
 | |
| 	for _, s := range toGoStrings(cDecoded) {
 | |
| 		*decoded = append(*decoded, s)
 | |
| 	}
 | |
| 	return bool(success)
 | |
| }
 | 
