Files
gocv/objdetect_test.go
diegohce 47b74f755d Roadmap: face detector yn face recognizer sf (#1232)
objdetect: FaceDetectorYN + FaceRecognizerSF
2024-10-02 20:33:11 +02:00

483 lines
11 KiB
Go

package gocv
import (
"image"
"image/color"
"os"
"testing"
)
func TestCascadeClassifier(t *testing.T) {
img := IMRead("images/face.jpg", IMReadColor)
if img.Empty() {
t.Error("Invalid Mat in CascadeClassifier test")
}
defer img.Close()
// load classifier to recognize faces
classifier := NewCascadeClassifier()
defer classifier.Close()
classifier.Load("data/haarcascade_frontalface_default.xml")
rects := classifier.DetectMultiScale(img)
if len(rects) != 1 {
t.Error("Error in TestCascadeClassifier test")
}
}
func TestCascadeClassifierWithParams(t *testing.T) {
img := IMRead("images/face.jpg", IMReadColor)
if img.Empty() {
t.Error("Invalid Mat in CascadeClassifierWithParams test")
}
defer img.Close()
// load classifier to recognize faces
classifier := NewCascadeClassifier()
defer classifier.Close()
classifier.Load("data/haarcascade_frontalface_default.xml")
rects := classifier.DetectMultiScaleWithParams(img, 1.1, 3, 0, image.Pt(0, 0), image.Pt(0, 0))
if len(rects) != 1 {
t.Errorf("Error in CascadeClassifierWithParams test: %v", len(rects))
}
}
func TestHOGDescriptor(t *testing.T) {
img := IMRead("images/face.jpg", IMReadColor)
if img.Empty() {
t.Error("Invalid Mat in HOGDescriptor test")
}
defer img.Close()
// load HOGDescriptor to recognize people
hog := NewHOGDescriptor()
defer hog.Close()
d := HOGDefaultPeopleDetector()
defer d.Close()
hog.SetSVMDetector(d)
rects := hog.DetectMultiScale(img)
if len(rects) != 1 {
t.Errorf("Error in TestHOGDescriptor test: %d", len(rects))
}
}
func TestHOGDescriptorWithParams(t *testing.T) {
img := IMRead("images/face.jpg", IMReadColor)
if img.Empty() {
t.Error("Invalid Mat in HOGDescriptorWithParams test")
}
defer img.Close()
// load HOGDescriptor to recognize people
hog := NewHOGDescriptor()
defer hog.Close()
d := HOGDefaultPeopleDetector()
defer d.Close()
hog.SetSVMDetector(d)
rects := hog.DetectMultiScaleWithParams(img, 0, image.Pt(0, 0), image.Pt(0, 0),
1.05, 2.0, false)
if len(rects) != 1 {
t.Errorf("Error in TestHOGDescriptorWithParams test: %d", len(rects))
}
}
func TestGroupRectangles(t *testing.T) {
rects := []image.Rectangle{
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 30, 30),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
image.Rect(10, 10, 35, 35),
}
results := GroupRectangles(rects, 1, 0.2)
if len(results) != 2 {
t.Errorf("Error in TestGroupRectangles test: %d", len(results))
}
}
func TestQRCodeDetector(t *testing.T) {
img := IMRead("images/qrcode.png", IMReadColor)
if img.Empty() {
t.Error("Invalid Mat in QRCodeDetector test")
}
defer img.Close()
// load QRCodeDetector to QR codes
detector := NewQRCodeDetector()
defer detector.Close()
bbox := NewMat()
qr := NewMat()
defer bbox.Close()
defer qr.Close()
res := detector.Detect(img, &bbox)
if !res {
t.Errorf("Error in TestQRCodeDetector test: res == false")
}
res2 := detector.Decode(img, bbox, &qr)
res3 := detector.DetectAndDecode(img, &bbox, &qr)
if res2 != res3 {
t.Errorf("Error in TestQRCodeDetector res2: %s != res3: %s", res2, res3)
}
// multi
img2 := IMRead("images/multi_qrcodes.png", IMReadColor)
defer img2.Close()
if img2.Empty() {
t.Error("Invalid Mat in QRCodeDetector test")
}
multiBox := NewMat()
defer multiBox.Close()
res4 := detector.DetectMulti(img2, &multiBox)
if !res4 {
t.Errorf("Error in TestQRCodeDetector Multi test: res == false")
}
if multiBox.Rows() != 2 {
t.Errorf("Error in TestQRCodeDetector Multi test: number of Rows = %d", multiBox.Rows())
}
multiBox2 := NewMat()
defer multiBox2.Close()
decoded := []string{}
qrCodes := make([]Mat, 0)
defer func() {
for _, q := range qrCodes {
q.Close()
}
}()
success := detector.DetectAndDecodeMulti(img2, decoded, &multiBox2, qrCodes)
if !success {
t.Errorf("Error in TestQRCodeDetector Multi test: returned false")
}
tmpPoints := NewMat()
defer tmpPoints.Close()
tmpQr := NewMat()
defer tmpQr.Close()
var tmpDecoded string
for i, s := range decoded {
tmpInput := padQr(&(qrCodes[i]))
defer tmpInput.Close()
tmpDecoded = detector.Decode(tmpInput, tmpPoints, &tmpQr)
if tmpDecoded != s {
t.Errorf("Error in TestQRCodeDetector Multi test: decoded straight QR code=%s, decoded[%d] = %s", tmpDecoded, i, s)
}
}
emptyMat := NewMatWithSize(100, 200, MatTypeCV8UC3)
success = detector.DetectAndDecodeMulti(emptyMat, decoded, &multiBox2, qrCodes)
if success {
t.Errorf("Error in TestQRCodeDetector Multi test: empty Mat returned success=true")
}
emptyMat.Close()
}
func padQr(qr *Mat) Mat {
l := 101
d := 10
L := l + 2*d
out := NewMatWithSizeFromScalar(NewScalar(255, 255, 255, 255), L, L, MatTypeCV8UC3)
qrCodes0 := NewMat()
defer qrCodes0.Close()
qr.ConvertTo(&qrCodes0, MatTypeCV8UC3)
Resize(qrCodes0, &qrCodes0, image.Point{L, L}, 0, 0, InterpolationArea)
CopyMakeBorder(qrCodes0, &out, d, d, d, d, BorderConstant, color.RGBA{255, 255, 255, 255})
return out
}
func TestFaceDetectorYN(t *testing.T) {
img := IMRead("images/face.jpg", IMReadAnyColor)
defer img.Close()
s := image.Pt(img.Size()[1], img.Size()[0])
faces := NewMat()
defer faces.Close()
fd := NewFaceDetectorYN("testdata/face_detection_yunet_2023mar.onnx", "", s)
defer fd.Close()
sz := fd.GetInputSize()
if sz.X != 640 && sz.Y != 480 {
t.Error("error on FaceDetectorYN.GetInputSize()")
}
fd.SetInputSize(sz)
t1 := fd.GetMNSThreshold()
fd.SetNMSThreshold(t1)
t2 := fd.GetScoreThreshold()
fd.SetScoreThreshold(t2)
topK := fd.GetTopK()
fd.SetTopK(topK)
fd.Detect(img, &faces)
facesCount := faces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
}
func TestFaceDetectorYNWithParams(t *testing.T) {
img := IMRead("images/face.jpg", IMReadAnyColor)
defer img.Close()
s := image.Pt(img.Size()[1], img.Size()[0])
faces := NewMat()
defer faces.Close()
fd := NewFaceDetectorYNWithParams("testdata/face_detection_yunet_2023mar.onnx", "", s, 0.9, 0.3, 5000, 0, 0)
defer fd.Close()
sz := fd.GetInputSize()
if sz.X != 640 && sz.Y != 480 {
t.Error("error on FaceDetectorYN.GetInputSize()")
}
fd.SetInputSize(sz)
t1 := fd.GetMNSThreshold()
fd.SetNMSThreshold(t1)
t2 := fd.GetScoreThreshold()
fd.SetScoreThreshold(t2)
topK := fd.GetTopK()
fd.SetTopK(topK)
fd.Detect(img, &faces)
facesCount := faces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
}
func TestFaceDetectorYNFromBytes(t *testing.T) {
modelBuffer, err := os.ReadFile("testdata/face_detection_yunet_2023mar.onnx")
if err != nil {
t.Errorf("%s reading testdata/face_detection_yunet_2023mar.onnx", err.Error())
}
img := IMRead("images/face.jpg", IMReadAnyColor)
defer img.Close()
s := image.Pt(img.Size()[1], img.Size()[0])
faces := NewMat()
defer faces.Close()
fd := NewFaceDetectorYNFromBytes("onnx", modelBuffer, []byte(""), s)
defer fd.Close()
sz := fd.GetInputSize()
if sz.X != 640 && sz.Y != 480 {
t.Error("error on FaceDetectorYN.GetInputSize()")
}
fd.SetInputSize(sz)
t1 := fd.GetMNSThreshold()
fd.SetNMSThreshold(t1)
t2 := fd.GetScoreThreshold()
fd.SetScoreThreshold(t2)
topK := fd.GetTopK()
fd.SetTopK(topK)
fd.Detect(img, &faces)
facesCount := faces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
}
func TestFaceDetectorYNFromBytesWithParams(t *testing.T) {
modelBuffer, err := os.ReadFile("testdata/face_detection_yunet_2023mar.onnx")
if err != nil {
t.Errorf("%s reading testdata/face_detection_yunet_2023mar.onnx", err.Error())
}
img := IMRead("images/face.jpg", IMReadAnyColor)
defer img.Close()
s := image.Pt(img.Size()[1], img.Size()[0])
faces := NewMat()
defer faces.Close()
fd := NewFaceDetectorYNFromBytesWithParams("onnx", modelBuffer, []byte(""), s, 0.9, 0.3, 5000, 0, 0)
defer fd.Close()
sz := fd.GetInputSize()
if sz.X != 640 && sz.Y != 480 {
t.Error("error on FaceDetectorYN.GetInputSize()")
}
fd.SetInputSize(sz)
t1 := fd.GetMNSThreshold()
fd.SetNMSThreshold(t1)
t2 := fd.GetScoreThreshold()
fd.SetScoreThreshold(t2)
topK := fd.GetTopK()
fd.SetTopK(topK)
fd.Detect(img, &faces)
facesCount := faces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
}
func TestFaceRecognizerSF(t *testing.T) {
rons := IMRead("images/face.jpg", IMReadUnchanged)
defer rons.Close()
ronsImgSz := rons.Size()
s := image.Pt(ronsImgSz[1], ronsImgSz[0])
fd := NewFaceDetectorYN("testdata/face_detection_yunet_2023mar.onnx", "", s)
defer fd.Close()
ronsFaces := NewMat()
defer ronsFaces.Close()
detectRv := fd.Detect(rons, &ronsFaces)
t.Log("detect rv is", detectRv)
facesCount := ronsFaces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
ronsFaceX0 := ronsFaces.GetFloatAt(0, 0)
ronsFaceY0 := ronsFaces.GetFloatAt(0, 1)
ronsFaceX1 := ronsFaces.GetFloatAt(0, 0) + ronsFaces.GetFloatAt(0, 2)
ronsFaceY1 := ronsFaces.GetFloatAt(0, 1) + ronsFaces.GetFloatAt(0, 3)
ronsFace := rons.Region(image.Rect(int(ronsFaceX0), int(ronsFaceY0), int(ronsFaceX1), int(ronsFaceY1)))
defer ronsFace.Close()
fr := NewFaceRecognizerSF("testdata/face_recognition_sface_2021dec.onnx", "")
defer fr.Close()
ronsAligned := NewMat()
defer ronsAligned.Close()
fr.AlignCrop(rons, ronsFace, &ronsAligned)
if ronsAligned.Empty() {
t.Error("aligned is empty")
}
ronsFaceFeature := NewMat()
defer ronsFaceFeature.Close()
fr.Feature(ronsAligned, &ronsFaceFeature)
match := fr.Match(ronsFaceFeature, ronsFaceFeature)
t.Log("face feature match: ", match)
}
func TestFaceRecognizerSFWithParams(t *testing.T) {
rons := IMRead("images/face.jpg", IMReadUnchanged)
defer rons.Close()
ronsImgSz := rons.Size()
s := image.Pt(ronsImgSz[1], ronsImgSz[0])
fd := NewFaceDetectorYN("testdata/face_detection_yunet_2023mar.onnx", "", s)
defer fd.Close()
ronsFaces := NewMat()
defer ronsFaces.Close()
detectRv := fd.Detect(rons, &ronsFaces)
t.Log("detect rv is", detectRv)
facesCount := ronsFaces.Rows()
if facesCount < 1 {
t.Error("no face detected")
}
ronsFaceX0 := ronsFaces.GetFloatAt(0, 0)
ronsFaceY0 := ronsFaces.GetFloatAt(0, 1)
ronsFaceX1 := ronsFaces.GetFloatAt(0, 0) + ronsFaces.GetFloatAt(0, 2)
ronsFaceY1 := ronsFaces.GetFloatAt(0, 1) + ronsFaces.GetFloatAt(0, 3)
ronsFace := rons.Region(image.Rect(int(ronsFaceX0), int(ronsFaceY0), int(ronsFaceX1), int(ronsFaceY1)))
defer ronsFace.Close()
fr := NewFaceRecognizerSFWithParams("testdata/face_recognition_sface_2021dec.onnx", "", 0, 0)
defer fr.Close()
ronsAligned := NewMat()
defer ronsAligned.Close()
fr.AlignCrop(rons, ronsFace, &ronsAligned)
if ronsAligned.Empty() {
t.Error("aligned is empty")
}
ronsFaceFeature := NewMat()
defer ronsFaceFeature.Close()
fr.Feature(ronsAligned, &ronsFaceFeature)
match := fr.MatchWithParams(ronsFaceFeature, ronsFaceFeature, FaceRecognizerSFDisTypeCosine)
t.Log("face feature match: ", match)
}