Compare commits

..

423 Commits

Author SHA1 Message Date
Blake Blackshear
3ad75a441d remove redundant error output 2020-12-20 08:04:54 -06:00
Blake Blackshear
f006e9be8d use CACHE_DIR constant 2020-12-20 08:04:54 -06:00
Blake Blackshear
03f3ba8008 enable mounting tmpfs volume on start 2020-12-20 08:04:54 -06:00
Blake Blackshear
96a44eb7bf docs and issue template 2020-12-20 07:37:44 -06:00
Blake Blackshear
006782fe3d update process clip for latest changes 2020-12-20 07:37:44 -06:00
Blake Blackshear
ff3e95bbf7 publish event updates on zone change 2020-12-20 07:37:44 -06:00
Blake Blackshear
4b95a37e65 readme updates 2020-12-20 07:37:44 -06:00
Blake Blackshear
38c661b3a8 handle scenario with empty cache 2020-12-20 07:37:44 -06:00
Blake Blackshear
0d6e4f6a66 add qsv support to amd64 image 2020-12-20 07:37:44 -06:00
Blake Blackshear
1ad2219f1c add num_threads fixes #322 2020-12-20 07:37:44 -06:00
Blake Blackshear
dfcdd289c3 optimize clips fixes #299 2020-12-20 07:37:44 -06:00
Blake Blackshear
32f5f2cca9 add post_capture option 2020-12-20 07:37:44 -06:00
Blake Blackshear
24bfe9f3e8 re-crop to the object rather than the region 2020-12-20 07:37:44 -06:00
Blake Blackshear
004667dc99 allow runtime drawing settings for mjpeg and latest 2020-12-20 07:37:44 -06:00
Blake Blackshear
9d785dc781 allow the mask to be a list of masks 2020-12-20 07:37:44 -06:00
Blake Blackshear
cbba5a7af0 adding version endpoint 2020-12-20 07:37:44 -06:00
Blake Blackshear
29b29ee349 configurable motion and detect settings 2020-12-20 07:37:44 -06:00
Blake Blackshear
9ad53e09af update gitignore 2020-12-20 07:37:44 -06:00
Blake Blackshear
c9278991c9 fix test 2020-12-20 07:37:44 -06:00
Blake Blackshear
729de48934 switch default threshold to .7 2020-12-20 07:37:44 -06:00
Blake Blackshear
7476bff5fb allow process clips to output a csv of scores 2020-12-20 07:37:44 -06:00
Blake Blackshear
1e9eae8d9a allow db path to be customized 2020-12-20 07:37:44 -06:00
Blake Blackshear
8113a53381 add telegram example 2020-12-20 07:37:44 -06:00
Blake Blackshear
72833686f1 fix process clip 2020-12-20 07:37:44 -06:00
Blake Blackshear
096c21f105 handle empty string args 2020-12-20 07:37:44 -06:00
Blake Blackshear
181f66357b allow region to extend beyond the frame 2020-12-20 07:37:44 -06:00
tubalainen
a54fbc483c Updated file
ref: https://github.com/blakeblackshear/frigate/issues/373
2020-12-12 10:38:02 -06:00
Blake Blackshear
92d5a002d3 swap width and height to reduce confusion 2020-12-10 19:22:03 -06:00
Blake Blackshear
f9184903d7 updating compose example to reduce confusion 2020-12-10 19:02:08 -06:00
Blake Blackshear
91cde6ce7b allow defining model shape and switch to mobiledet as default model 2020-12-09 07:22:26 -06:00
Blake Blackshear
186a4587c7 add model dimensions to config 2020-12-09 07:22:26 -06:00
Patrick Decat
6049acb1f3 Document beta addon host 2020-12-08 07:25:13 -06:00
Blake Blackshear
2d2ebf313c make shm consistent with compose 2020-12-08 07:24:37 -06:00
tubalainen
3d329dcb52 Updated docker command line...
...to correspond with 0.8.0 feature set.
2020-12-08 07:24:37 -06:00
Blake Blackshear
06854fc34f readme cleanup fixes #332 2020-12-07 18:00:12 -06:00
Blake Blackshear
e01e14d866 handle and warn if roles dont match enabled features 2020-12-07 08:07:35 -06:00
Blake Blackshear
3dfd251ebb camera recommendations 2020-12-07 07:36:29 -06:00
Blake Blackshear
dcea807f77 catch all psutil errors 2020-12-07 07:16:48 -06:00
Blake Blackshear
87d83ff33a clarify height width and fps 2020-12-07 07:16:28 -06:00
Blake Blackshear
1d31cbdf0d readme updates 2020-12-06 14:25:28 -06:00
Blake Blackshear
e05b27b8dc tweak screenshots 2020-12-06 08:27:03 -06:00
Blake Blackshear
7111bd208e readme updates 2020-12-06 08:25:25 -06:00
Blake Blackshear
04a80280da set ffmpeg image versions 2020-12-06 07:09:14 -06:00
Blake Blackshear
3bda092140 comment you zeroconf 2020-12-06 07:05:45 -06:00
Blake Blackshear
9086820479 fix flask logger config 2020-12-05 19:05:03 -06:00
Blake Blackshear
d1da57aedc fix graceful exits 2020-12-05 12:06:07 -06:00
Blake Blackshear
6ded12c566 better exception handling 2020-12-05 12:06:07 -06:00
Blake Blackshear
70352566a7 fix default args 2020-12-05 12:06:07 -06:00
Blake Blackshear
cf5cc86588 fix fontconfig issue 2020-12-05 08:48:46 -06:00
Blake Blackshear
e41db49ab8 doc updates 2020-12-05 08:48:46 -06:00
Blake Blackshear
1b7effafee update some default config values 2020-12-05 08:48:46 -06:00
Blake Blackshear
69e9e0b0bf log level configuration 2020-12-05 08:48:46 -06:00
Blake Blackshear
89624df411 no need to write jpg disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1a7405211 dont delete the recordings directory 2020-12-05 08:48:46 -06:00
Blake Blackshear
040f8c7c20 default save_clips objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
6d7acabf4c add logging for directory creation 2020-12-05 08:48:46 -06:00
Blake Blackshear
45a8b42157 exit on config errors 2020-12-05 08:48:46 -06:00
Blake Blackshear
8785be24b7 add zeroconf discovery 2020-12-05 08:48:46 -06:00
Blake Blackshear
cc0812540c optional android notification aspect ratio 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cf38ca4f7 reduce min timestamp size 2020-12-05 08:48:46 -06:00
Blake Blackshear
7e4395c30e publish object counts rather than on/off 2020-12-05 08:48:46 -06:00
Blake Blackshear
598d3aeda2 make directories constants 2020-12-05 08:48:46 -06:00
Blake Blackshear
012dbf81f7 cleanup empty directories 2020-12-05 08:48:46 -06:00
Blake Blackshear
f869def12e serve up recordings with nginx 2020-12-05 08:48:46 -06:00
Blake Blackshear
31f7666337 add recording maintenance 2020-12-05 08:48:46 -06:00
Blake Blackshear
9e339acbca add record settings to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
8f8054a299 fix log timeout 2020-12-05 08:48:46 -06:00
Blake Blackshear
f7021eec4c ensure zones dont have the same name as a camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
c124153da4 graceful exit of subprocesses 2020-12-05 08:48:46 -06:00
Blake Blackshear
706c2f921e add multiple streams per camera 2020-12-05 08:48:46 -06:00
Blake Blackshear
de1d66bcb9 fix fontconfig error 2020-12-05 08:48:46 -06:00
Blake Blackshear
4502ca8e80 add support for rebroadcasting as rtmp 2020-12-05 08:48:46 -06:00
Blake Blackshear
32a66fe5e8 avoid null error 2020-12-05 08:48:46 -06:00
Blake Blackshear
e1251aafdb minimize logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
587494068c oops 2020-12-05 08:48:46 -06:00
Blake Blackshear
7a4d90a47a only publish end events for true positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
d06b587d33 ensure all events are cleaned up 2020-12-05 08:48:46 -06:00
Blake Blackshear
eef70e434b publish events like a change feed 2020-12-05 08:48:46 -06:00
Blake Blackshear
b39da3ee01 pull from memory if event in progress 2020-12-05 08:48:46 -06:00
Blake Blackshear
e07c4e0d8c add endpoint for event thumbnail 2020-12-05 08:48:46 -06:00
Blake Blackshear
2f41ba6f77 add service to get by id 2020-12-05 08:48:46 -06:00
Blake Blackshear
bf95af0f22 add zones to summary data 2020-12-05 08:48:46 -06:00
Blake Blackshear
2e15847f86 sleep in the right place 2020-12-05 08:48:46 -06:00
Blake Blackshear
5992e85dc8 manage events for unlisted cameras 2020-12-05 08:48:46 -06:00
Blake Blackshear
24d416b869 add event cleanup thread 2020-12-05 08:48:46 -06:00
Blake Blackshear
5dbf368c4b add clip retention to config 2020-12-05 08:48:46 -06:00
Blake Blackshear
7d56fe105f use localtime in group by 2020-12-05 08:48:46 -06:00
Blake Blackshear
e9327aa18c new http endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
df56e079de add parameters to event query 2020-12-05 08:48:46 -06:00
Blake Blackshear
8c5bfbd187 only save events when a clip is created 2020-12-05 08:48:46 -06:00
Blake Blackshear
2613e74f97 add bas64 encoded thumbnail to the database 2020-12-05 08:48:46 -06:00
Blake Blackshear
9a7fb96357 check for None value thumbnail_data 2020-12-05 08:48:46 -06:00
Blake Blackshear
37f9dfed92 only set thumbnail data if object is a true positive 2020-12-05 08:48:46 -06:00
Blake Blackshear
68c1544808 add some debug logging to frame cache 2020-12-05 08:48:46 -06:00
Blake Blackshear
2b3d3c5824 dont use a property 2020-12-05 08:48:46 -06:00
Blake Blackshear
efea87a3ea attempt to fix missing thumbs 2020-12-05 08:48:46 -06:00
Blake Blackshear
977785fb10 better frame handling for best images 2020-12-05 08:48:46 -06:00
Blake Blackshear
4e113e62c0 cleanup false_positive attribute 2020-12-05 08:48:46 -06:00
Blake Blackshear
5080b2d781 ensure some valid thumbnail is available 2020-12-05 08:48:46 -06:00
Blake Blackshear
5cfd6d1edb don't save thumbnails for false positives 2020-12-05 08:48:46 -06:00
Blake Blackshear
27ae4d8ab0 cleanup 2020-12-05 08:48:46 -06:00
Blake Blackshear
3db33302ec reduce logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
f2910d48e0 fixes 2020-12-05 08:48:46 -06:00
Blake Blackshear
cf0f8892e2 update nginx config 2020-12-05 08:48:46 -06:00
Blake Blackshear
4d22e172ff stop writing json file to disk 2020-12-05 08:48:46 -06:00
Blake Blackshear
8874a55b0f create tracked object class and save thumbnails 2020-12-05 08:48:46 -06:00
Blake Blackshear
24b703a875 maintain thumbnail frames for tracked objects 2020-12-05 08:48:46 -06:00
Blake Blackshear
8b8f5b5c40 sort imports 2020-12-05 08:48:46 -06:00
Blake Blackshear
eac81136d2 naming threads and processes for logs 2020-12-05 08:48:46 -06:00
Blake Blackshear
d1e27b43ea use a queue for logging 2020-12-05 08:48:46 -06:00
Blake Blackshear
105dcb7094 create typed config classes 2020-12-05 08:48:46 -06:00
Blake Blackshear
c0a16efdc1 add nginx and change default file locations 2020-12-05 08:48:46 -06:00
Blake Blackshear
2800c54743 config setup 2020-12-05 08:48:46 -06:00
Blake Blackshear
2a24e8abcb add watchdog 2020-12-05 08:48:46 -06:00
Blake Blackshear
37ee746ebb add back all endpoints 2020-12-05 08:48:46 -06:00
Blake Blackshear
7ee6bfe855 add event processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
40f57a8754 add capture processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
e0da462223 add camera processors 2020-12-05 08:48:46 -06:00
Blake Blackshear
47a9fc4292 add detected_frames_processor 2020-12-05 08:48:46 -06:00
Blake Blackshear
03fe5158db add detector processes 2020-12-05 08:48:46 -06:00
Blake Blackshear
72be6b480d init db/http/mqtt 2020-12-05 08:48:46 -06:00
Blake Blackshear
a8964dcc1f app container and config schema 2020-12-05 08:48:46 -06:00
Blake Blackshear
732e91ee42 move primary script into the module 2020-12-05 08:48:46 -06:00
Blake Blackshear
27da080ce6 saving events and simple endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
075d06b108 basic database model and api endpoint 2020-12-05 08:48:46 -06:00
Blake Blackshear
95dc17ffcd store events in tinydb 2020-12-05 08:48:46 -06:00
Blake Blackshear
408b53f8b4 update events model 2020-12-05 08:48:46 -06:00
Marc Seeger
3ef68a297a Add support for AMD Ryzen iGPU (fixes #311)
This package will add support for the iGPU of AMD Ryzen and presumably a few more AMD cards.
See details of the package here: https://packages.ubuntu.com/focal/mesa-va-drivers
It also adds support for the open source Nvidia Nouveau driver according to https://wiki.debian.org/HardwareVideoAcceleration
2020-12-05 07:00:07 -06:00
Michael Wei
3e9b3711dc Use cv2.bitwise_and instead of numpy.where 2020-12-05 06:59:28 -06:00
Gerard Escalante
a1cc9ad1f0 Revert one other change 2020-11-17 10:50:38 -06:00
Gerard Escalante
29e8aa4020 Remove unnecessary install; fix default env var value 2020-11-17 10:50:38 -06:00
Gerard Escalante
777aff403f Fix errors when using nvidia images 2020-11-17 10:50:38 -06:00
Blake Blackshear
4b3b702459 Update bug_report.md 2020-11-15 14:51:20 -06:00
Michael Wei
893e6b40a7 nvidia ffmpeg support 2020-11-08 16:42:17 -06:00
Michael Wei
a85d780020 lock libedgetpu1 to 15.0, update tflite_runtime 2020-11-08 16:40:01 -06:00
Blake Blackshear
34439699ae tweak logo 2020-10-26 10:05:26 -05:00
Blake Blackshear
64b63142b1 start the frame rate tracker 2020-10-26 08:01:18 -05:00
Blake Blackshear
cee1ab000b make ffmpeg pid available for cache maintenance (fixes #271) 2020-10-26 08:01:18 -05:00
Blake Blackshear
3ff98770c1 link to mjpeg documentation 2020-10-26 06:36:03 -05:00
tubalainen
244203463d Update on where to find the draw_zones 2020-10-26 06:36:03 -05:00
Blake Blackshear
b6f7940b10 hwaccel docs 2020-10-25 14:30:36 -05:00
Blake Blackshear
75312602aa add support for iHD driver 2020-10-25 14:30:36 -05:00
Blake Blackshear
75977128f0 ensure dummy frame is in yuv shape 2020-10-25 14:30:36 -05:00
Blake Blackshear
eafde6c677 capture ffmpeg in a dedicated process 2020-10-25 14:30:36 -05:00
Blake Blackshear
da0598baef disable flask warning 2020-10-25 14:30:36 -05:00
Blake Blackshear
35ba5e2f7c improve frame memory management 2020-10-25 14:30:36 -05:00
Blake Blackshear
49258d6dbe tweaks for recent issues 2020-10-24 08:52:40 -05:00
Blake Blackshear
5a081e4f00 docs rewrite 2020-10-24 08:23:16 -05:00
Blake Blackshear
4feae472e9 reformatting and fixing typos 2020-10-23 06:56:06 -05:00
tubalainen
4e83239258 Updated information on poly mask 2020-10-23 06:56:06 -05:00
tubalainen
c4cccf44a5 poly example image 2020-10-23 06:38:41 -05:00
jacobgibbs
64e7cbcc62 Update README.md
Update attributes name to pull through the FPS
2020-10-19 15:04:34 -05:00
Blake Blackshear
dd86e4f317 fix clips path and check for symlinks 2020-10-19 07:01:31 -05:00
Blake Blackshear
4db285a875 remove reference to stable 2020-10-18 14:12:25 -05:00
Blake Blackshear
939d1ba091 use global and ensure dirs exist 2020-10-18 13:47:13 -05:00
Blake Blackshear
0fe8d486d9 make cache/clips dirs configurable 2020-10-18 13:47:13 -05:00
Blake Blackshear
a3cb02af5c sync arch names with hassio 2020-10-18 13:47:13 -05:00
Blake Blackshear
45a6b8452c allow config file to be specified by env var and allow json 2020-10-18 13:47:13 -05:00
Blake Blackshear
9d594cc640 allow setting config file location via env var 2020-10-18 13:47:13 -05:00
Blake Blackshear
59e41ae1ac update sample config 2020-10-18 13:47:13 -05:00
Blake Blackshear
c6ed16465b move the timestamp to bottom 2020-10-18 13:47:13 -05:00
Blake Blackshear
8f14b36f5a tweak size 2020-10-18 13:47:13 -05:00
Blake Blackshear
b6c2491e3b use the actual original shape 2020-10-18 13:47:13 -05:00
Blake Blackshear
8e31d04d90 scale font of timestamp dynamically 2020-10-18 13:47:13 -05:00
Blake Blackshear
bf93fbb357 add ability to draw bounding boxes/timestamps on snapshots 2020-10-18 13:47:13 -05:00
Blake Blackshear
c064b244db handle empty best frames 2020-10-18 13:47:13 -05:00
Blake Blackshear
0280610e96 fix detector cleanup 2020-10-18 13:47:13 -05:00
Blake Blackshear
4363623c45 reduce zone filter bouncing 2020-10-18 13:47:13 -05:00
Blake Blackshear
c960914ec3 prevent the camera process from hanging 2020-10-18 13:47:13 -05:00
Blake Blackshear
9ecc80b443 syntax error 2020-10-18 13:47:13 -05:00
Blake Blackshear
3e146de0a2 update docs 2020-10-18 13:47:13 -05:00
Blake Blackshear
bee54c39dc update default detectors 2020-10-18 13:47:13 -05:00
Blake Blackshear
623d138d60 use dictionary for detectors for sensors 2020-10-18 13:47:13 -05:00
Blake Blackshear
76befc1249 only draw during debug 2020-10-18 13:47:13 -05:00
Dejan Zelic
51251b9fb0 Added Healthcheck to Docker Compose
Frigate provides an HTTP server that can be used to detect if frigate is running or not. Using the docker-compose "healthcheck" feature we can set automations to restart the service if it stops working.
2020-10-18 13:47:13 -05:00
Radegast
8c45076bb6 Fix error in the docker run command
I have very little experience with Docker, but it seems the command in the README has two mistakes in it:

- unknown shorthand flag: 'n' in -name
- docker: Error response from daemon: Invalid container name (blakeblackshear/frigate:stable), only [a-zA-Z0-9][a-zA-Z0-9_.-] are allowed.

I am running Docker version 19.03.13-ce, build 4484c46d9d on Arch linux.
2020-10-18 13:47:13 -05:00
Blake Blackshear
7d683ef399 cleanup frame queue 2020-10-18 13:47:13 -05:00
Blake Blackshear
e4da3822b1 cleanup detection shms 2020-10-18 13:47:13 -05:00
Blake Blackshear
12c4cd77c5 only convert pix_fmt when necessary 2020-10-18 13:47:13 -05:00
Blake Blackshear
a611cbb942 use yuv420p pixel format for motion 2020-10-18 13:47:13 -05:00
Blake Blackshear
f946813ccb support multiple coral devices (fixes #100) 2020-10-18 13:47:13 -05:00
Blake Blackshear
49fca1b839 print stacktraceon segfaults 2020-10-18 13:47:13 -05:00
Blake Blackshear
54cb4a2180 prevent frame from being deleted while in use 2020-10-18 13:47:13 -05:00
Blake Blackshear
9954e3b11e build ffmpeg in separate container 2020-10-18 13:47:13 -05:00
Blake Blackshear
82692b0ddc arm64 ffmpeg cleanup 2020-10-18 13:47:13 -05:00
Blake Blackshear
9d4fdec12f arm64 ffmpeg build 2020-10-18 13:47:13 -05:00
Blake Blackshear
ed72c995ef ffmpeg 4.3.1 build for amd64 2020-10-18 13:47:13 -05:00
Blake Blackshear
66c77d1157 base image build cleanup 2020-10-18 13:47:13 -05:00
Blake Blackshear
40c322ad47 arm64 support 2020-10-18 13:47:13 -05:00
Blake Blackshear
83f1e0d713 add rpi dockerfile 2020-10-18 13:47:13 -05:00
Blake Blackshear
2d89044bd3 update dockerfiles for amd64 2020-10-18 13:47:13 -05:00
Blake Blackshear
dc4d24c2b9 Base dockerfile for building wheels 2020-10-18 13:47:13 -05:00
Blake Blackshear
d5fb20c524 refactor dockerfile 2020-10-18 13:47:13 -05:00
Blake Blackshear
7e92e8bfe8 fix shared memory store usage for events 2020-10-18 13:47:13 -05:00
Blake Blackshear
efdcfcef97 cleanup 2020-10-18 13:47:13 -05:00
Blake Blackshear
574ee2a46f update detection handoff to use shared memory 2020-10-18 13:47:13 -05:00
Blake Blackshear
ec4d048905 upgrade to python3.8 and switch from plasma store to shared_memory 2020-10-18 13:47:13 -05:00
Blake Blackshear
b063099b2a fix zone filters fixes #218 2020-10-11 11:38:32 -05:00
Blake Blackshear
2937dac4c3 update config merging and example config 2020-10-11 11:38:32 -05:00
Blake Blackshear
7c283a1805 remove affiliate links 2020-10-08 07:26:02 -05:00
Blake Blackshear
309c0dcda3 proper handling of crop param (fixes #208) 2020-09-20 20:58:10 -05:00
Blake Blackshear
b35cc01035 allow the best image timeout to be configurable 2020-09-18 07:14:44 -05:00
Blake Blackshear
6e79a5402e Readme updates 2020-09-17 07:37:27 -05:00
Blake Blackshear
a989f8daaf update readme 2020-09-17 07:37:27 -05:00
Blake Blackshear
7880d24b29 prevent the cache from growing indefinitely 2020-09-17 07:37:27 -05:00
Blake Blackshear
fdc8bbf72d move zone config under each camera 2020-09-17 07:37:27 -05:00
Blake Blackshear
005e188d38 continue if frames not in frame manager 2020-09-17 07:37:27 -05:00
Blake Blackshear
adcc3e9b98 copy obj so crop doesnt change 2020-09-17 07:37:27 -05:00
Blake Blackshear
5fe201da25 avoid processing broken frames 2020-09-17 07:37:27 -05:00
Blake Blackshear
974f7bd0df fix mqtt snapshot 2020-09-17 07:37:27 -05:00
Blake Blackshear
780ae7cd4f allow specifying labels to save clips for 2020-09-17 07:37:27 -05:00
Blake Blackshear
50e568b84c allow setting size and cropping of snapshots and best.jpg endpoint 2020-09-17 07:37:27 -05:00
Blake Blackshear
1ce993051e add support for polygon masks 2020-09-17 07:37:27 -05:00
Blake Blackshear
69406343ee allow setting the camera fps if needed 2020-09-17 07:37:27 -05:00
Blake Blackshear
1c33b8acb2 handle mask files that failed to read 2020-09-17 07:37:27 -05:00
Blake Blackshear
5e77436d39 fix coral fps value 2020-09-17 07:37:27 -05:00
Blake Blackshear
e26308a05b print score info 2020-09-17 07:37:27 -05:00
Blake Blackshear
c16ee3186f fix masks 2020-09-17 07:37:27 -05:00
Blake Blackshear
fedeeab561 fix watchdog 2020-09-17 07:37:27 -05:00
Blake Blackshear
bfcaabecfa fix var name 2020-09-17 07:37:27 -05:00
Blake Blackshear
606fa6f6d5 once a true positive always a true positive 2020-09-17 07:37:27 -05:00
Blake Blackshear
6a8d8bf53d dont trigger zones for false positives 2020-09-17 07:37:27 -05:00
Blake Blackshear
1f81cba706 only save a clip if its not a false positive 2020-09-17 07:37:27 -05:00
Blake Blackshear
5db7b242aa another fix 2020-09-17 07:37:27 -05:00
Blake Blackshear
0b7f65e227 fixes 2020-09-17 07:37:27 -05:00
Blake Blackshear
2f758af097 allow setting specific edgetpu in config 2020-09-17 07:37:27 -05:00
Blake Blackshear
f64320a464 remove invalid tests 2020-09-17 07:37:27 -05:00
Blake Blackshear
3e87ef6426 update pip 2020-09-17 07:37:27 -05:00
Blake Blackshear
acb75fa02d refactor and reduce false positives 2020-09-17 07:37:27 -05:00
Blake Blackshear
ea4ecae27c Refactor with a working false positive test 2020-09-17 07:37:27 -05:00
Carl Elkins
a8556a729b Added support for PCIe TPU, as well as USB
Also added message showing which found
2020-09-04 20:56:16 -05:00
Blake Blackshear
068df3ef2d Update bug_report.md 2020-08-22 06:49:45 -05:00
Blake Blackshear
b304139db2 Update bug_report.md 2020-08-22 06:49:05 -05:00
Ryan Press
df2aae5169 Fix zone filters 2020-08-19 09:58:53 -05:00
Blake Blackshear
351ac4ec7d Update bug_report.md 2020-08-17 07:48:53 -05:00
Blake Blackshear
12e40291c0 Update bug_report.md 2020-08-17 07:41:13 -05:00
Blake Blackshear
8af7d51159 Update issue templates 2020-08-17 07:33:51 -05:00
Blake Blackshear
84ada716ac fix readme images 2020-08-09 13:18:12 -05:00
Blake Blackshear
cbcc89be9c readme tweaks 2020-08-09 13:16:40 -05:00
Blake Blackshear
73a5e11b9b Add details for debug info 2020-08-09 13:06:33 -05:00
Blake Blackshear
194baaeb56 fix example config 2020-08-08 20:58:54 -05:00
Blake Blackshear
469259d663 dont refresh cache if exiting 2020-08-08 07:40:48 -05:00
Blake Blackshear
f3db69d975 update docs 2020-08-08 07:40:48 -05:00
Blake Blackshear
0914cb71ad allow resizing best image 2020-08-08 07:40:48 -05:00
Blake Blackshear
0ae2806eb4 fix overwriting variable 2020-08-08 07:40:48 -05:00
Blake Blackshear
adcfe699c2 ensure frigate can exit gracefully 2020-08-08 07:40:48 -05:00
Blake Blackshear
e5048f98b6 fix latest size calculation 2020-08-08 07:40:48 -05:00
Blake Blackshear
e6c6338266 allow mask to be base64 encoded into the config file 2020-08-08 07:40:48 -05:00
Blake Blackshear
1f03c8cb8c add latest jpg endpoint 2020-08-08 07:40:48 -05:00
Blake Blackshear
69f5249788 initial implementation of zones 2020-08-08 07:40:48 -05:00
Blake Blackshear
3a1f1c946b better camera name handling 2020-08-01 18:20:44 -05:00
Blake Blackshear
d88745af6e simplify directory creation 2020-08-01 18:20:44 -05:00
Blake Blackshear
709d917f0c update snapshot with better scores 2020-08-01 18:20:44 -05:00
Blake Blackshear
918386bdc1 use a random string in the object id instead of the index 2020-08-01 18:20:44 -05:00
Blake Blackshear
a8c0fadf95 make pre_capture time configurable 2020-08-01 18:20:44 -05:00
Blake Blackshear
6dc7b8f246 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
71f6f0bee4 typo 2020-08-01 18:20:44 -05:00
Blake Blackshear
a00afb61c0 add warning about cache to config 2020-08-01 18:20:44 -05:00
Blake Blackshear
5dbe6c5f36 add mqtt messages to readme 2020-08-01 18:20:44 -05:00
Blake Blackshear
16732aa5b3 update example config 2020-08-01 18:20:44 -05:00
Blake Blackshear
3d2f1437e4 filter objects before triggering events 2020-08-01 18:20:44 -05:00
Blake Blackshear
fbe721c860 remove vsync drop because it breaks segment 2020-08-01 18:20:44 -05:00
Blake Blackshear
7383db60b0 save clips for tracked objects 2020-08-01 18:20:44 -05:00
Blake Blackshear
53ccc903da switch to MIT license 2020-07-26 12:07:47 -05:00
Blake Blackshear
9d1f9f35e5 fix model paths 2020-07-26 12:07:47 -05:00
Blake Blackshear
c1f522ff54 fix box merging 2020-07-26 12:00:46 -05:00
mattheys
b345571a63 Update CPU model to Mobilenet v2
Inference speed went from ~470ms to ~530ms, however average confidence went from ~75% to ~90%+
2020-07-03 12:32:01 -05:00
Blake Blackshear
f29ee6165f add proxmox tip 2020-07-01 07:49:01 -05:00
Blake Blackshear
ec6432cc5f add hardware section and fix typos 2020-07-01 07:49:01 -05:00
walthowd
8c917667b6 Added mask overlay example and docker logging 2020-07-01 07:49:01 -05:00
walthowd
941434b8d8 Added mask overlay example 2020-07-01 07:49:01 -05:00
walthowd
2d0632adf8 Updated README with abstracted HA config, expanded tips section 2020-07-01 07:49:01 -05:00
walthowd
f1afaf641a Mask example images 2020-07-01 07:49:01 -05:00
Blake Blackshear
743116a733 install tzdata 2020-06-02 05:25:02 -05:00
Blake Blackshear
8e77cf25d9 handle ffmpeg process hangs that dont exit ffmpeg 2020-06-02 05:25:02 -05:00
Blake Blackshear
7d33e03943 ensure detection_start doesnt change values between conditions 2020-06-02 05:25:02 -05:00
Blake Blackshear
0c44666c89 drop plasma store stderr logs 2020-06-02 05:25:02 -05:00
Blake Blackshear
ddaa746807 resize to aspect ratio of frame 2020-06-02 05:25:02 -05:00
Blake Blackshear
760e1ffe1d skip frames in the capture thread instead 2020-06-02 05:25:02 -05:00
Blake Blackshear
15b4024715 expose frame time at each step of processing 2020-06-02 05:25:02 -05:00
Blake Blackshear
918112a793 ensure the previous frame is deleted when the new one is stored 2020-06-02 05:25:02 -05:00
Blake Blackshear
4ee200a81c move ffmpeg capture to a separate thread and use a queue 2020-06-02 05:25:02 -05:00
Blake Blackshear
e37eba49ff make object processor resilient to plasma failures 2020-06-02 05:25:02 -05:00
Blake Blackshear
6de8e3bd1f remove sharedarray references 2020-06-02 05:25:02 -05:00
Blake Blackshear
3a9781c4f8 handle various scenarios with external process failures 2020-06-02 05:25:02 -05:00
Blake Blackshear
a60b9211d2 allow specifying debug view fps and size 2020-03-03 20:26:53 -06:00
Blake Blackshear
777fb1d5d1 Update to latest url for tensorflow lite wheel 2020-03-03 20:26:53 -06:00
Blake Blackshear
8e9110f42e if the detections dont come back in 10s, give up 2020-03-03 20:26:53 -06:00
Blake Blackshear
c80137e059 call the restart function and handle errors better in the detection process 2020-03-03 20:26:53 -06:00
Blake Blackshear
2768e1dadb clarify mqtt password readme 2020-03-03 20:26:53 -06:00
Blake Blackshear
2fbba01577 readme updates 2020-03-03 20:26:53 -06:00
Blake Blackshear
e7c536ea31 allow mqtt password to be set by env var 2020-03-03 20:26:53 -06:00
Blake Blackshear
1734c0569a update benchmark script to mirror actual frigate use 2020-03-03 20:26:53 -06:00
Blake Blackshear
a5bef89123 improve detection processing and restart when stuck 2020-03-03 20:26:53 -06:00
Blake Blackshear
d8aa73d26e handle ffmpeg process failures in the camera process itself 2020-03-03 20:26:53 -06:00
Blake Blackshear
791409d5e5 add a few print statements for debugging 2020-03-03 20:26:53 -06:00
Blake Blackshear
01bf89907d dont kill the camera process from the main process 2020-03-03 20:26:53 -06:00
Blake Blackshear
8e73c7e95e increase the buffer size a bit 2020-03-03 20:26:53 -06:00
Blake Blackshear
088bd18adb add a few more metrics to debug 2020-03-03 20:26:53 -06:00
Blake Blackshear
2e8c7ec225 cleanup the plasma store when finished with a frame 2020-03-03 20:26:53 -06:00
Blake Blackshear
9340a74371 dont redirect stdout for plasma store 2020-03-03 20:26:53 -06:00
Blake Blackshear
5998de610b reset detection fps 2020-03-03 20:26:53 -06:00
Blake Blackshear
dfabff3846 dont change dictionary while iterating 2020-03-03 20:26:53 -06:00
Blake Blackshear
76a7a3bad5 allow specifying the frame size in the config instead of detecting 2020-03-03 20:26:53 -06:00
Blake Blackshear
a3fa97dd52 ensure missing objects are expired even when other object types are in the frame 2020-03-03 20:26:53 -06:00
Blake Blackshear
1d2a41129c Fix watchdog last_frame calculation 2020-03-03 20:26:53 -06:00
Blake Blackshear
956298128d cleanup 2020-03-03 20:26:53 -06:00
Blake Blackshear
e6892d66b8 update docs and add back benchmark 2020-03-03 20:26:53 -06:00
Blake Blackshear
6ef22cf578 fix watchdog 2020-03-03 20:26:53 -06:00
Blake Blackshear
3e6f6edf7e check avg wait before dropping frames 2020-03-03 20:26:53 -06:00
Blake Blackshear
81c5b96ed7 fix watchdog restart 2020-03-03 20:26:53 -06:00
Blake Blackshear
6f6d202c99 improve watchdog and coral fps tracking 2020-03-03 20:26:53 -06:00
Blake Blackshear
2fc389c3ad dont log http requests 2020-03-03 20:26:53 -06:00
Blake Blackshear
05951aa7da cleanup 2020-03-03 20:26:53 -06:00
Blake Blackshear
bb8e4621f5 add models and convert speed to ms 2020-03-03 20:26:53 -06:00
Blake Blackshear
04e9ab5ce4 add watchdog for camera processes 2020-03-03 20:26:53 -06:00
Blake Blackshear
1089a40943 cleanup old code 2020-03-03 20:26:53 -06:00
Blake Blackshear
68c3a069ba add a min_fps option 2020-03-03 20:26:53 -06:00
Blake Blackshear
80b9652f7a check plasma store and consolidate frame drawing 2020-03-03 20:26:53 -06:00
Blake Blackshear
569e07949f split into separate processes 2020-03-03 20:26:53 -06:00
Blake Blackshear
ffa9534549 update tflite to 2.1.0 2020-03-03 20:26:53 -06:00
Blake Blackshear
c539993387 refactor some classes into new files 2020-03-03 20:26:53 -06:00
Blake Blackshear
8a572f96d5 tweak process handoff 2020-03-03 20:26:53 -06:00
Blake Blackshear
24cb3508e8 Mostly working detection in a separate process 2020-03-03 20:26:53 -06:00
Blake Blackshear
3f34c57e31 read from ffmpeg 2020-03-03 20:26:53 -06:00
Blake Blackshear
4c618daa90 WIP: revamp to incorporate motion 2020-03-03 20:26:53 -06:00
Blake Blackshear
cd057370e1 fallback to opencv to detect resolution and allow config to specify 2020-02-22 09:03:00 -06:00
Blake Blackshear
6263912655 use ffprobe to get frame shape (fixes #87) 2020-02-22 09:03:00 -06:00
Blake Blackshear
af247275cf make timestamp on snapshots configurable (fixes #88) 2020-02-22 09:03:00 -06:00
Blake Blackshear
1198c29dac make watchdog timeout configurable per camera (fixes #95) 2020-02-22 09:03:00 -06:00
Blake Blackshear
169603d3ff attempt to fix regions in process key error 2020-02-22 09:03:00 -06:00
Blake Blackshear
dc7eecebc6 clarify config 2020-02-22 09:03:00 -06:00
Blake Blackshear
0dd4087d5d switch base image back to ubuntu:18.04 2020-02-22 09:03:00 -06:00
Blake Blackshear
6ecf87fc60 update config example 2020-02-22 09:03:00 -06:00
Blake Blackshear
ebcf1482f8 remove region in process when skipping 2020-02-22 09:03:00 -06:00
Blake Blackshear
50bcf60893 switch to opencv headless 2020-02-22 09:03:00 -06:00
Blake Blackshear
38efbd63ea add camera name to ffmpeg log messages 2020-02-22 09:03:00 -06:00
Blake Blackshear
50bcad8b77 skip regions when the queue is too full and add more locks 2020-02-22 09:03:00 -06:00
Blake Blackshear
cfffb219ae switch back to stretch for hwaccel issues 2020-02-22 09:03:00 -06:00
Blake Blackshear
382d7be50a check correct object 2020-02-22 09:03:00 -06:00
Blake Blackshear
f43dc36a37 cleanup 2020-02-22 09:03:00 -06:00
Blake Blackshear
38e7fa07d2 add a label position arg for bounding boxes 2020-02-22 09:03:00 -06:00
Blake Blackshear
e261c20819 let the queues get as big as needed 2020-02-22 09:03:00 -06:00
Blake Blackshear
3a66e672d3 notify mqtt when objects deregistered 2020-02-22 09:03:00 -06:00
Blake Blackshear
2aada930e3 fix multiple object type tracking 2020-02-22 09:03:00 -06:00
Blake Blackshear
d87f4407a0 switch everything to run off of tracked objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
be5a114f6a group by label before tracking objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
32b212c7b6 fix mask filtering 2020-02-22 09:03:00 -06:00
Blake Blackshear
76c8e3a12f make a copy 2020-02-22 09:03:00 -06:00
Blake Blackshear
16f7a361c3 fix object filters 2020-02-22 09:03:00 -06:00
Blake Blackshear
634b87307f group by label before suppressing boxes 2020-02-22 09:03:00 -06:00
Blake Blackshear
1d4fbbdba3 update all obj props 2020-02-22 09:03:00 -06:00
Blake Blackshear
65579e9cbf add thread to write frames to disk 2020-02-22 09:03:00 -06:00
Blake Blackshear
49dc029c43 merge boxes by label 2020-02-22 09:03:00 -06:00
Blake Blackshear
08174d8db2 fix color of best image 2020-02-22 09:03:00 -06:00
Blake Blackshear
5199242a68 remove unused current frame variable 2020-02-22 09:03:00 -06:00
Blake Blackshear
725dd3220c removing pillow-simd for now 2020-02-22 09:03:00 -06:00
Blake Blackshear
10dc56f6ea revamp dockerfile 2020-02-22 09:03:00 -06:00
Blake Blackshear
cc2abe93a6 track objects and add config for tracked objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
0c6717090c implement filtering and switch to NMS with OpenCV 2020-02-22 09:03:00 -06:00
Blake Blackshear
f5a2252b29 cleanup imports 2020-02-22 09:03:00 -06:00
Blake Blackshear
02efb6f415 fixing a few things 2020-02-22 09:03:00 -06:00
Blake Blackshear
5b4c6e50bc dedupe detected objects 2020-02-22 09:03:00 -06:00
Blake Blackshear
9cc46a71cb working dynamic regions, but messy 2020-02-22 09:03:00 -06:00
Blake Blackshear
be1673b00a process detected objects in a queue 2020-02-22 09:03:00 -06:00
Blake Blackshear
b6130e77ff label threads and implements stats endpoint 2020-02-22 09:03:00 -06:00
Blake Blackshear
4180c710cd refactor resizing into generic priority queues 2020-02-22 09:03:00 -06:00
Blake Blackshear
ab3e70b4db check to see if we have a frame before trying to send 2020-01-02 07:39:57 -06:00
Blake Blackshear
d90e408d50 set the current object status to off when expired 2020-01-02 07:39:57 -06:00
Blake Blackshear
6c87ce0879 cache the computed jpg bytes to reduce cpu usage 2020-01-02 07:39:57 -06:00
Blake Blackshear
b7b4e38f62 slow down the preview feed to lower cpu usage 2020-01-02 07:39:57 -06:00
Blake Blackshear
480175d70f add color map to use different colors for different objects 2020-01-02 07:39:57 -06:00
Blake Blackshear
bee99ca6ff track and report all detected object types 2020-01-02 07:39:57 -06:00
Blake Blackshear
5c01720567 Update README.md 2019-12-12 08:08:32 -06:00
Blake Blackshear
262f45c8bc Update sponsorship option 2019-12-11 06:35:17 -06:00
tubalainen
22bb17b2fd Filename updated but not the reference 2019-12-09 06:01:27 -06:00
Blake Blackshear
3a3afe14bf change the ffmpeg config for global defaults and overrides 2019-12-08 16:03:23 -06:00
Blake Blackshear
01f058a482 clarify optional properties 2019-12-08 16:03:23 -06:00
Blake Blackshear
d899ef158e fix datestamp positioning 2019-12-08 16:03:23 -06:00
Blake Blackshear
39d64f7ba7 add health check and handle bad camera names 2019-12-08 16:03:23 -06:00
Blake Blackshear
f148eb5a7b add some comments for regions 2019-12-08 16:03:23 -06:00
Blake Blackshear
297e2f1c0c allow mqtt client_id to be set for multi frigate setups 2019-12-08 16:03:23 -06:00
Blake Blackshear
e818744d81 print the frame time on the image 2019-12-08 08:55:54 -06:00
Blake Blackshear
ceedfae993 add max person area 2019-12-08 07:17:18 -06:00
Blake Blackshear
e13563770d allow full customization of input 2019-12-08 07:06:52 -06:00
Blake Blackshear
a659019d1a move config example 2019-12-08 07:06:52 -06:00
blakeblackshear
ba71927d53 allow setting custom output params and setting the log level for ffmpeg 2019-08-25 08:54:19 -05:00
blakeblackshear
04fed31eac increase watchdog timeout to 10 seconds 2019-08-25 08:54:19 -05:00
blakeblackshear
ebaa8fac01 tweak input params and gracefully kill ffmpeg 2019-08-25 08:54:19 -05:00
blakeblackshear
2ec45cd1b6 send the best person frame over mqtt for faster updates in homeassistant 2019-08-25 08:54:19 -05:00
blakeblackshear
700bd1e3ef use a thread to capture frames from the subprocess so it can be killed properly 2019-07-30 19:11:22 -05:00
Alexis Birkill
c9e9f7a735 Fix comparison of object x-coord against mask (#52) 2019-07-30 19:11:22 -05:00
blakeblackshear
aea4dc8724 a few fixes 2019-07-30 19:11:22 -05:00
blakeblackshear
12d5007b90 add required packages for VAAPI 2019-07-30 19:11:22 -05:00
blakeblackshear
8970e73f75 comment formatting and comment out mask in example config 2019-07-30 19:11:22 -05:00
blakeblackshear
1ba006b24f add some comments to the sample config 2019-07-30 19:11:22 -05:00
blakeblackshear
4a58f16637 tweak the label position 2019-07-30 19:11:22 -05:00
blakeblackshear
436b876b24 add support for ffmpeg hwaccel params and better mask handling 2019-07-30 19:11:22 -05:00
blakeblackshear
a770ab7f69 specify a client id for frigate 2019-07-30 19:11:22 -05:00
blakeblackshear
806acaf445 update dockerignore and debug option 2019-07-30 19:11:22 -05:00
Kyle Niewiada
c653567cc1 Add area labels to bounding boxes (#47)
* Add object size to the bounding box

Remove script from Dockerfile

Fix framerate command

Move default value for framerate

update dockerfile

dockerfile changes

Add person_area label to surrounding box


Update dockerfile


ffmpeg config bug


Add `person_area` label to `best_person` frame


Resolve debug view showing area label for non-persons


Add object size to the bounding box


Add object size to the bounding box

* Move object area outside of conditional to work with all object types
2019-07-30 19:11:22 -05:00
blakeblackshear
8fee8f86a2 take_frame config example 2019-07-30 19:11:22 -05:00
blakeblackshear
59a4b0e650 add ability to process every nth frame 2019-07-30 19:11:22 -05:00
blakeblackshear
834a3df0bc added missing scripts 2019-07-30 19:11:22 -05:00
blakeblackshear
c41b104997 extra ffmpeg params to reduce latency 2019-07-30 19:11:22 -05:00
blakeblackshear
7028b05856 add a benchmark script 2019-07-30 19:11:22 -05:00
blakeblackshear
2d22a04391 reduce verbosity of ffmpeg 2019-07-30 19:11:22 -05:00
blakeblackshear
baa587028b use a regular subprocess for ffmpeg, refactor bounding box drawing 2019-07-30 19:11:22 -05:00
blakeblackshear
2b51dc3e5b experimental: running ffmpeg directly and capturing raw frames 2019-07-30 19:11:22 -05:00
blakeblackshear
9f8278ea8f working odroid build, still needs hwaccel 2019-07-30 19:11:22 -05:00
Blake Blackshear
56b9c754f5 Update README.md 2019-06-18 06:19:13 -07:00
Blake Blackshear
5c4f5ef3f0 Create FUNDING.yml 2019-06-18 06:15:05 -07:00
Blake Blackshear
8c924896c5 Merge pull request #36 from drcrimzon/patch-1
Add MQTT connection error handling
2019-05-15 07:10:53 -05:00
Mike Wilkinson
2c2f0044b9 Remove error redundant check 2019-05-14 11:09:57 -04:00
Mike Wilkinson
874e9085a7 Add MQTT connection error handling 2019-05-14 08:34:14 -04:00
Blake Blackshear
e791d6646b Merge pull request #34 from blakeblackshear/watchdog
0.1.2
2019-05-11 07:43:09 -05:00
blakeblackshear
3019b0218c make the threshold configurable per region. fixes #31 2019-05-11 07:39:27 -05:00
blakeblackshear
6900e140d5 add a watchdog to the capture process to detect silent failures. fixes #27 2019-05-11 07:16:15 -05:00
Blake Blackshear
911c1b2bfa Merge pull request #32 from tubalainen/patch-2
Clarification on username and password for MQTT
2019-05-11 07:14:19 -05:00
Blake Blackshear
f4587462cf Merge pull request #33 from tubalainen/patch-3
Update of the home assistant integration example
2019-05-11 07:14:01 -05:00
tubalainen
cac1faa8ac Update of the home assistant integration example
sensor to binary_sensor
device_class type "moving" does not exist, update to "motion"
2019-05-10 16:47:40 +02:00
tubalainen
9525bae5a3 Clarification on username and password for MQTT 2019-05-10 16:36:22 +02:00
blakeblackshear
dbcfd109f6 fix missing import 2019-05-10 06:19:39 -05:00
64 changed files with 8296 additions and 1430 deletions

View File

@@ -1 +1,7 @@
README.md
README.md
docs/
.gitignore
debug
config/
*.pyc
.git

1
.github/FUNDING.yml vendored Normal file
View File

@@ -0,0 +1 @@
github: blakeblackshear

56
.github/ISSUE_TEMPLATE/bug_report.md vendored Normal file
View File

@@ -0,0 +1,56 @@
---
name: Bug report or Support request
about: ''
title: ''
labels: ''
assignees: ''
---
**Describe the bug**
A clear and concise description of what your issue is.
**Version of frigate**
Output from `/version`
**Config file**
Include your full config file wrapped in triple back ticks.
```yaml
config here
```
**Frigate container logs**
```
Include relevant log output here
```
**Frigate stats**
```json
Output from frigate's /stats endpoint
```
**FFprobe from your camera**
Run the following command and paste output below
```
ffprobe <stream_url>
```
**Screenshots**
If applicable, add screenshots to help explain your problem.
**Computer Hardware**
- OS: [e.g. Ubuntu, Windows]
- Install method: [e.g. Addon, Docker Compose, Docker Command]
- Virtualization: [e.g. Proxmox, Virtualbox]
- Coral Version: [e.g. USB, PCIe, None]
- Network Setup: [e.g. Wired, WiFi]
**Camera Info:**
- Manufacturer: [e.g. Dahua]
- Model: [e.g. IPC-HDW5231R-ZE]
- Resolution: [e.g. 720p]
- FPS: [e.g. 5]
**Additional context**
Add any other context about the problem here.

6
.gitignore vendored
View File

@@ -1,2 +1,8 @@
*.pyc
debug
.vscode
config/config.yml
models
*.mp4
*.db
frigate/version.py

View File

@@ -1,107 +0,0 @@
FROM ubuntu:16.04
# Install system packages
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
python3-dev \
python-pil \
python-lxml \
python-tk \
build-essential \
cmake \
git \
libgtk2.0-dev \
pkg-config \
libavcodec-dev \
libavformat-dev \
libswscale-dev \
libtbb2 \
libtbb-dev \
libjpeg-dev \
libpng-dev \
libtiff-dev \
libjasper-dev \
libdc1394-22-dev \
x11-apps \
wget \
vim \
ffmpeg \
unzip \
libusb-1.0-0-dev \
python3-setuptools \
python3-numpy \
zlib1g-dev \
libgoogle-glog-dev \
swig \
libunwind-dev \
libc++-dev \
libc++abi-dev \
build-essential \
&& rm -rf /var/lib/apt/lists/*
# Install core packages
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
RUN pip install -U pip \
numpy \
pillow \
matplotlib \
notebook \
Flask \
imutils \
paho-mqtt \
PyYAML
# Install tensorflow models object detection
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
# Download & build protobuf-python
RUN cd /usr/local/src/ \
&& tar xf protobuf-python-3.5.1.tar.gz \
&& rm protobuf-python-3.5.1.tar.gz \
&& cd /usr/local/src/protobuf-3.5.1/ \
&& ./configure \
&& make \
&& make install \
&& ldconfig \
&& rm -rf /usr/local/src/protobuf-3.5.1/
# Download & build OpenCV
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
RUN cd /usr/local/src/ \
&& unzip 4.0.1.zip \
&& rm 4.0.1.zip \
&& cd /usr/local/src/opencv-4.0.1/ \
&& mkdir build \
&& cd /usr/local/src/opencv-4.0.1/build \
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
&& make -j4 \
&& make install \
&& rm -rf /usr/local/src/opencv-4.0.1
# Download and install EdgeTPU libraries
RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
RUN tar xzf edgetpu_api.tar.gz \
&& cd python-tflite-source \
&& cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \
&& cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
&& cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
&& python3 setup.py develop --user
# Minimize image size
RUN (apt-get autoremove -y; \
apt-get autoclean -y)
# symlink the model and labels
RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext
# Set TF object detection available
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY detect_objects.py .
CMD ["python3", "-u", "detect_objects.py"]

682
LICENSE
View File

@@ -1,661 +1,21 @@
GNU AFFERO GENERAL PUBLIC LICENSE
Version 3, 19 November 2007
Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
Preamble
The GNU Affero General Public License is a free, copyleft license for
software and other kinds of works, specifically designed to ensure
cooperation with the community in the case of network server software.
The licenses for most software and other practical works are designed
to take away your freedom to share and change the works. By contrast,
our General Public Licenses are intended to guarantee your freedom to
share and change all versions of a program--to make sure it remains free
software for all its users.
When we speak of free software, we are referring to freedom, not
price. Our General Public Licenses are designed to make sure that you
have the freedom to distribute copies of free software (and charge for
them if you wish), that you receive source code or can get it if you
want it, that you can change the software or use pieces of it in new
free programs, and that you know you can do these things.
Developers that use our General Public Licenses protect your rights
with two steps: (1) assert copyright on the software, and (2) offer
you this License which gives you legal permission to copy, distribute
and/or modify the software.
A secondary benefit of defending all users' freedom is that
improvements made in alternate versions of the program, if they
receive widespread use, become available for other developers to
incorporate. Many developers of free software are heartened and
encouraged by the resulting cooperation. However, in the case of
software used on network servers, this result may fail to come about.
The GNU General Public License permits making a modified version and
letting the public access it on a server without ever releasing its
source code to the public.
The GNU Affero General Public License is designed specifically to
ensure that, in such cases, the modified source code becomes available
to the community. It requires the operator of a network server to
provide the source code of the modified version running there to the
users of that server. Therefore, public use of a modified version, on
a publicly accessible server, gives the public access to the source
code of the modified version.
An older license, called the Affero General Public License and
published by Affero, was designed to accomplish similar goals. This is
a different license, not a version of the Affero GPL, but Affero has
released a new version of the Affero GPL which permits relicensing under
this license.
The precise terms and conditions for copying, distribution and
modification follow.
TERMS AND CONDITIONS
0. Definitions.
"This License" refers to version 3 of the GNU Affero General Public License.
"Copyright" also means copyright-like laws that apply to other kinds of
works, such as semiconductor masks.
"The Program" refers to any copyrightable work licensed under this
License. Each licensee is addressed as "you". "Licensees" and
"recipients" may be individuals or organizations.
To "modify" a work means to copy from or adapt all or part of the work
in a fashion requiring copyright permission, other than the making of an
exact copy. The resulting work is called a "modified version" of the
earlier work or a work "based on" the earlier work.
A "covered work" means either the unmodified Program or a work based
on the Program.
To "propagate" a work means to do anything with it that, without
permission, would make you directly or secondarily liable for
infringement under applicable copyright law, except executing it on a
computer or modifying a private copy. Propagation includes copying,
distribution (with or without modification), making available to the
public, and in some countries other activities as well.
To "convey" a work means any kind of propagation that enables other
parties to make or receive copies. Mere interaction with a user through
a computer network, with no transfer of a copy, is not conveying.
An interactive user interface displays "Appropriate Legal Notices"
to the extent that it includes a convenient and prominently visible
feature that (1) displays an appropriate copyright notice, and (2)
tells the user that there is no warranty for the work (except to the
extent that warranties are provided), that licensees may convey the
work under this License, and how to view a copy of this License. If
the interface presents a list of user commands or options, such as a
menu, a prominent item in the list meets this criterion.
1. Source Code.
The "source code" for a work means the preferred form of the work
for making modifications to it. "Object code" means any non-source
form of a work.
A "Standard Interface" means an interface that either is an official
standard defined by a recognized standards body, or, in the case of
interfaces specified for a particular programming language, one that
is widely used among developers working in that language.
The "System Libraries" of an executable work include anything, other
than the work as a whole, that (a) is included in the normal form of
packaging a Major Component, but which is not part of that Major
Component, and (b) serves only to enable use of the work with that
Major Component, or to implement a Standard Interface for which an
implementation is available to the public in source code form. A
"Major Component", in this context, means a major essential component
(kernel, window system, and so on) of the specific operating system
(if any) on which the executable work runs, or a compiler used to
produce the work, or an object code interpreter used to run it.
The "Corresponding Source" for a work in object code form means all
the source code needed to generate, install, and (for an executable
work) run the object code and to modify the work, including scripts to
control those activities. However, it does not include the work's
System Libraries, or general-purpose tools or generally available free
programs which are used unmodified in performing those activities but
which are not part of the work. For example, Corresponding Source
includes interface definition files associated with source files for
the work, and the source code for shared libraries and dynamically
linked subprograms that the work is specifically designed to require,
such as by intimate data communication or control flow between those
subprograms and other parts of the work.
The Corresponding Source need not include anything that users
can regenerate automatically from other parts of the Corresponding
Source.
The Corresponding Source for a work in source code form is that
same work.
2. Basic Permissions.
All rights granted under this License are granted for the term of
copyright on the Program, and are irrevocable provided the stated
conditions are met. This License explicitly affirms your unlimited
permission to run the unmodified Program. The output from running a
covered work is covered by this License only if the output, given its
content, constitutes a covered work. This License acknowledges your
rights of fair use or other equivalent, as provided by copyright law.
You may make, run and propagate covered works that you do not
convey, without conditions so long as your license otherwise remains
in force. You may convey covered works to others for the sole purpose
of having them make modifications exclusively for you, or provide you
with facilities for running those works, provided that you comply with
the terms of this License in conveying all material for which you do
not control copyright. Those thus making or running the covered works
for you must do so exclusively on your behalf, under your direction
and control, on terms that prohibit them from making any copies of
your copyrighted material outside their relationship with you.
Conveying under any other circumstances is permitted solely under
the conditions stated below. Sublicensing is not allowed; section 10
makes it unnecessary.
3. Protecting Users' Legal Rights From Anti-Circumvention Law.
No covered work shall be deemed part of an effective technological
measure under any applicable law fulfilling obligations under article
11 of the WIPO copyright treaty adopted on 20 December 1996, or
similar laws prohibiting or restricting circumvention of such
measures.
When you convey a covered work, you waive any legal power to forbid
circumvention of technological measures to the extent such circumvention
is effected by exercising rights under this License with respect to
the covered work, and you disclaim any intention to limit operation or
modification of the work as a means of enforcing, against the work's
users, your or third parties' legal rights to forbid circumvention of
technological measures.
4. Conveying Verbatim Copies.
You may convey verbatim copies of the Program's source code as you
receive it, in any medium, provided that you conspicuously and
appropriately publish on each copy an appropriate copyright notice;
keep intact all notices stating that this License and any
non-permissive terms added in accord with section 7 apply to the code;
keep intact all notices of the absence of any warranty; and give all
recipients a copy of this License along with the Program.
You may charge any price or no price for each copy that you convey,
and you may offer support or warranty protection for a fee.
5. Conveying Modified Source Versions.
You may convey a work based on the Program, or the modifications to
produce it from the Program, in the form of source code under the
terms of section 4, provided that you also meet all of these conditions:
a) The work must carry prominent notices stating that you modified
it, and giving a relevant date.
b) The work must carry prominent notices stating that it is
released under this License and any conditions added under section
7. This requirement modifies the requirement in section 4 to
"keep intact all notices".
c) You must license the entire work, as a whole, under this
License to anyone who comes into possession of a copy. This
License will therefore apply, along with any applicable section 7
additional terms, to the whole of the work, and all its parts,
regardless of how they are packaged. This License gives no
permission to license the work in any other way, but it does not
invalidate such permission if you have separately received it.
d) If the work has interactive user interfaces, each must display
Appropriate Legal Notices; however, if the Program has interactive
interfaces that do not display Appropriate Legal Notices, your
work need not make them do so.
A compilation of a covered work with other separate and independent
works, which are not by their nature extensions of the covered work,
and which are not combined with it such as to form a larger program,
in or on a volume of a storage or distribution medium, is called an
"aggregate" if the compilation and its resulting copyright are not
used to limit the access or legal rights of the compilation's users
beyond what the individual works permit. Inclusion of a covered work
in an aggregate does not cause this License to apply to the other
parts of the aggregate.
6. Conveying Non-Source Forms.
You may convey a covered work in object code form under the terms
of sections 4 and 5, provided that you also convey the
machine-readable Corresponding Source under the terms of this License,
in one of these ways:
a) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by the
Corresponding Source fixed on a durable physical medium
customarily used for software interchange.
b) Convey the object code in, or embodied in, a physical product
(including a physical distribution medium), accompanied by a
written offer, valid for at least three years and valid for as
long as you offer spare parts or customer support for that product
model, to give anyone who possesses the object code either (1) a
copy of the Corresponding Source for all the software in the
product that is covered by this License, on a durable physical
medium customarily used for software interchange, for a price no
more than your reasonable cost of physically performing this
conveying of source, or (2) access to copy the
Corresponding Source from a network server at no charge.
c) Convey individual copies of the object code with a copy of the
written offer to provide the Corresponding Source. This
alternative is allowed only occasionally and noncommercially, and
only if you received the object code with such an offer, in accord
with subsection 6b.
d) Convey the object code by offering access from a designated
place (gratis or for a charge), and offer equivalent access to the
Corresponding Source in the same way through the same place at no
further charge. You need not require recipients to copy the
Corresponding Source along with the object code. If the place to
copy the object code is a network server, the Corresponding Source
may be on a different server (operated by you or a third party)
that supports equivalent copying facilities, provided you maintain
clear directions next to the object code saying where to find the
Corresponding Source. Regardless of what server hosts the
Corresponding Source, you remain obligated to ensure that it is
available for as long as needed to satisfy these requirements.
e) Convey the object code using peer-to-peer transmission, provided
you inform other peers where the object code and Corresponding
Source of the work are being offered to the general public at no
charge under subsection 6d.
A separable portion of the object code, whose source code is excluded
from the Corresponding Source as a System Library, need not be
included in conveying the object code work.
A "User Product" is either (1) a "consumer product", which means any
tangible personal property which is normally used for personal, family,
or household purposes, or (2) anything designed or sold for incorporation
into a dwelling. In determining whether a product is a consumer product,
doubtful cases shall be resolved in favor of coverage. For a particular
product received by a particular user, "normally used" refers to a
typical or common use of that class of product, regardless of the status
of the particular user or of the way in which the particular user
actually uses, or expects or is expected to use, the product. A product
is a consumer product regardless of whether the product has substantial
commercial, industrial or non-consumer uses, unless such uses represent
the only significant mode of use of the product.
"Installation Information" for a User Product means any methods,
procedures, authorization keys, or other information required to install
and execute modified versions of a covered work in that User Product from
a modified version of its Corresponding Source. The information must
suffice to ensure that the continued functioning of the modified object
code is in no case prevented or interfered with solely because
modification has been made.
If you convey an object code work under this section in, or with, or
specifically for use in, a User Product, and the conveying occurs as
part of a transaction in which the right of possession and use of the
User Product is transferred to the recipient in perpetuity or for a
fixed term (regardless of how the transaction is characterized), the
Corresponding Source conveyed under this section must be accompanied
by the Installation Information. But this requirement does not apply
if neither you nor any third party retains the ability to install
modified object code on the User Product (for example, the work has
been installed in ROM).
The requirement to provide Installation Information does not include a
requirement to continue to provide support service, warranty, or updates
for a work that has been modified or installed by the recipient, or for
the User Product in which it has been modified or installed. Access to a
network may be denied when the modification itself materially and
adversely affects the operation of the network or violates the rules and
protocols for communication across the network.
Corresponding Source conveyed, and Installation Information provided,
in accord with this section must be in a format that is publicly
documented (and with an implementation available to the public in
source code form), and must require no special password or key for
unpacking, reading or copying.
7. Additional Terms.
"Additional permissions" are terms that supplement the terms of this
License by making exceptions from one or more of its conditions.
Additional permissions that are applicable to the entire Program shall
be treated as though they were included in this License, to the extent
that they are valid under applicable law. If additional permissions
apply only to part of the Program, that part may be used separately
under those permissions, but the entire Program remains governed by
this License without regard to the additional permissions.
When you convey a copy of a covered work, you may at your option
remove any additional permissions from that copy, or from any part of
it. (Additional permissions may be written to require their own
removal in certain cases when you modify the work.) You may place
additional permissions on material, added by you to a covered work,
for which you have or can give appropriate copyright permission.
Notwithstanding any other provision of this License, for material you
add to a covered work, you may (if authorized by the copyright holders of
that material) supplement the terms of this License with terms:
a) Disclaiming warranty or limiting liability differently from the
terms of sections 15 and 16 of this License; or
b) Requiring preservation of specified reasonable legal notices or
author attributions in that material or in the Appropriate Legal
Notices displayed by works containing it; or
c) Prohibiting misrepresentation of the origin of that material, or
requiring that modified versions of such material be marked in
reasonable ways as different from the original version; or
d) Limiting the use for publicity purposes of names of licensors or
authors of the material; or
e) Declining to grant rights under trademark law for use of some
trade names, trademarks, or service marks; or
f) Requiring indemnification of licensors and authors of that
material by anyone who conveys the material (or modified versions of
it) with contractual assumptions of liability to the recipient, for
any liability that these contractual assumptions directly impose on
those licensors and authors.
All other non-permissive additional terms are considered "further
restrictions" within the meaning of section 10. If the Program as you
received it, or any part of it, contains a notice stating that it is
governed by this License along with a term that is a further
restriction, you may remove that term. If a license document contains
a further restriction but permits relicensing or conveying under this
License, you may add to a covered work material governed by the terms
of that license document, provided that the further restriction does
not survive such relicensing or conveying.
If you add terms to a covered work in accord with this section, you
must place, in the relevant source files, a statement of the
additional terms that apply to those files, or a notice indicating
where to find the applicable terms.
Additional terms, permissive or non-permissive, may be stated in the
form of a separately written license, or stated as exceptions;
the above requirements apply either way.
8. Termination.
You may not propagate or modify a covered work except as expressly
provided under this License. Any attempt otherwise to propagate or
modify it is void, and will automatically terminate your rights under
this License (including any patent licenses granted under the third
paragraph of section 11).
However, if you cease all violation of this License, then your
license from a particular copyright holder is reinstated (a)
provisionally, unless and until the copyright holder explicitly and
finally terminates your license, and (b) permanently, if the copyright
holder fails to notify you of the violation by some reasonable means
prior to 60 days after the cessation.
Moreover, your license from a particular copyright holder is
reinstated permanently if the copyright holder notifies you of the
violation by some reasonable means, this is the first time you have
received notice of violation of this License (for any work) from that
copyright holder, and you cure the violation prior to 30 days after
your receipt of the notice.
Termination of your rights under this section does not terminate the
licenses of parties who have received copies or rights from you under
this License. If your rights have been terminated and not permanently
reinstated, you do not qualify to receive new licenses for the same
material under section 10.
9. Acceptance Not Required for Having Copies.
You are not required to accept this License in order to receive or
run a copy of the Program. Ancillary propagation of a covered work
occurring solely as a consequence of using peer-to-peer transmission
to receive a copy likewise does not require acceptance. However,
nothing other than this License grants you permission to propagate or
modify any covered work. These actions infringe copyright if you do
not accept this License. Therefore, by modifying or propagating a
covered work, you indicate your acceptance of this License to do so.
10. Automatic Licensing of Downstream Recipients.
Each time you convey a covered work, the recipient automatically
receives a license from the original licensors, to run, modify and
propagate that work, subject to this License. You are not responsible
for enforcing compliance by third parties with this License.
An "entity transaction" is a transaction transferring control of an
organization, or substantially all assets of one, or subdividing an
organization, or merging organizations. If propagation of a covered
work results from an entity transaction, each party to that
transaction who receives a copy of the work also receives whatever
licenses to the work the party's predecessor in interest had or could
give under the previous paragraph, plus a right to possession of the
Corresponding Source of the work from the predecessor in interest, if
the predecessor has it or can get it with reasonable efforts.
You may not impose any further restrictions on the exercise of the
rights granted or affirmed under this License. For example, you may
not impose a license fee, royalty, or other charge for exercise of
rights granted under this License, and you may not initiate litigation
(including a cross-claim or counterclaim in a lawsuit) alleging that
any patent claim is infringed by making, using, selling, offering for
sale, or importing the Program or any portion of it.
11. Patents.
A "contributor" is a copyright holder who authorizes use under this
License of the Program or a work on which the Program is based. The
work thus licensed is called the contributor's "contributor version".
A contributor's "essential patent claims" are all patent claims
owned or controlled by the contributor, whether already acquired or
hereafter acquired, that would be infringed by some manner, permitted
by this License, of making, using, or selling its contributor version,
but do not include claims that would be infringed only as a
consequence of further modification of the contributor version. For
purposes of this definition, "control" includes the right to grant
patent sublicenses in a manner consistent with the requirements of
this License.
Each contributor grants you a non-exclusive, worldwide, royalty-free
patent license under the contributor's essential patent claims, to
make, use, sell, offer for sale, import and otherwise run, modify and
propagate the contents of its contributor version.
In the following three paragraphs, a "patent license" is any express
agreement or commitment, however denominated, not to enforce a patent
(such as an express permission to practice a patent or covenant not to
sue for patent infringement). To "grant" such a patent license to a
party means to make such an agreement or commitment not to enforce a
patent against the party.
If you convey a covered work, knowingly relying on a patent license,
and the Corresponding Source of the work is not available for anyone
to copy, free of charge and under the terms of this License, through a
publicly available network server or other readily accessible means,
then you must either (1) cause the Corresponding Source to be so
available, or (2) arrange to deprive yourself of the benefit of the
patent license for this particular work, or (3) arrange, in a manner
consistent with the requirements of this License, to extend the patent
license to downstream recipients. "Knowingly relying" means you have
actual knowledge that, but for the patent license, your conveying the
covered work in a country, or your recipient's use of the covered work
in a country, would infringe one or more identifiable patents in that
country that you have reason to believe are valid.
If, pursuant to or in connection with a single transaction or
arrangement, you convey, or propagate by procuring conveyance of, a
covered work, and grant a patent license to some of the parties
receiving the covered work authorizing them to use, propagate, modify
or convey a specific copy of the covered work, then the patent license
you grant is automatically extended to all recipients of the covered
work and works based on it.
A patent license is "discriminatory" if it does not include within
the scope of its coverage, prohibits the exercise of, or is
conditioned on the non-exercise of one or more of the rights that are
specifically granted under this License. You may not convey a covered
work if you are a party to an arrangement with a third party that is
in the business of distributing software, under which you make payment
to the third party based on the extent of your activity of conveying
the work, and under which the third party grants, to any of the
parties who would receive the covered work from you, a discriminatory
patent license (a) in connection with copies of the covered work
conveyed by you (or copies made from those copies), or (b) primarily
for and in connection with specific products or compilations that
contain the covered work, unless you entered into that arrangement,
or that patent license was granted, prior to 28 March 2007.
Nothing in this License shall be construed as excluding or limiting
any implied license or other defenses to infringement that may
otherwise be available to you under applicable patent law.
12. No Surrender of Others' Freedom.
If conditions are imposed on you (whether by court order, agreement or
otherwise) that contradict the conditions of this License, they do not
excuse you from the conditions of this License. If you cannot convey a
covered work so as to satisfy simultaneously your obligations under this
License and any other pertinent obligations, then as a consequence you may
not convey it at all. For example, if you agree to terms that obligate you
to collect a royalty for further conveying from those to whom you convey
the Program, the only way you could satisfy both those terms and this
License would be to refrain entirely from conveying the Program.
13. Remote Network Interaction; Use with the GNU General Public License.
Notwithstanding any other provision of this License, if you modify the
Program, your modified version must prominently offer all users
interacting with it remotely through a computer network (if your version
supports such interaction) an opportunity to receive the Corresponding
Source of your version by providing access to the Corresponding Source
from a network server at no charge, through some standard or customary
means of facilitating copying of software. This Corresponding Source
shall include the Corresponding Source for any work covered by version 3
of the GNU General Public License that is incorporated pursuant to the
following paragraph.
Notwithstanding any other provision of this License, you have
permission to link or combine any covered work with a work licensed
under version 3 of the GNU General Public License into a single
combined work, and to convey the resulting work. The terms of this
License will continue to apply to the part which is the covered work,
but the work with which it is combined will remain governed by version
3 of the GNU General Public License.
14. Revised Versions of this License.
The Free Software Foundation may publish revised and/or new versions of
the GNU Affero General Public License from time to time. Such new versions
will be similar in spirit to the present version, but may differ in detail to
address new problems or concerns.
Each version is given a distinguishing version number. If the
Program specifies that a certain numbered version of the GNU Affero General
Public License "or any later version" applies to it, you have the
option of following the terms and conditions either of that numbered
version or of any later version published by the Free Software
Foundation. If the Program does not specify a version number of the
GNU Affero General Public License, you may choose any version ever published
by the Free Software Foundation.
If the Program specifies that a proxy can decide which future
versions of the GNU Affero General Public License can be used, that proxy's
public statement of acceptance of a version permanently authorizes you
to choose that version for the Program.
Later license versions may give you additional or different
permissions. However, no additional obligations are imposed on any
author or copyright holder as a result of your choosing to follow a
later version.
15. Disclaimer of Warranty.
THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
16. Limitation of Liability.
IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.
17. Interpretation of Sections 15 and 16.
If the disclaimer of warranty and limitation of liability provided
above cannot be given local legal effect according to their terms,
reviewing courts shall apply local law that most closely approximates
an absolute waiver of all civil liability in connection with the
Program, unless a warranty or assumption of liability accompanies a
copy of the Program in return for a fee.
END OF TERMS AND CONDITIONS
How to Apply These Terms to Your New Programs
If you develop a new program, and you want it to be of the greatest
possible use to the public, the best way to achieve this is to make it
free software which everyone can redistribute and change under these terms.
To do so, attach the following notices to the program. It is safest
to attach them to the start of each source file to most effectively
state the exclusion of warranty; and each file should have at least
the "copyright" line and a pointer to where the full notice is found.
<one line to give the program's name and a brief idea of what it does.>
Copyright (C) <year> <name of author>
This program is free software: you can redistribute it and/or modify
it under the terms of the GNU Affero General Public License as published
by the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU Affero General Public License for more details.
You should have received a copy of the GNU Affero General Public License
along with this program. If not, see <https://www.gnu.org/licenses/>.
Also add information on how to contact you by electronic and paper mail.
If your software can interact with users remotely through a computer
network, you should also make sure that it provides a way for users to
get its source. For example, if your program is a web application, its
interface could display a "Source" link that leads users to an archive
of the code. There are many ways you could offer source, and different
solutions will be better for different programs; see section 13 for the
specific requirements.
You should also get your employer (if you work as a programmer) or school,
if any, to sign a "copyright disclaimer" for the program, if necessary.
For more information on this, and how to apply and follow the GNU AGPL, see
<https://www.gnu.org/licenses/>.
The MIT License
Copyright (c) 2020 Blake Blackshear
Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

54
Makefile Normal file
View File

@@ -0,0 +1,54 @@
default_target: amd64_frigate
COMMIT_HASH := $(shell git log -1 --pretty=format:"%h")
version:
echo "VERSION='0.8.0-$(COMMIT_HASH)'" > frigate/version.py
amd64_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64 --file docker/Dockerfile.wheels .
amd64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.1.0-amd64 --file docker/Dockerfile.ffmpeg.amd64 .
amd64_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64 --build-arg FFMPEG_VERSION=1.1.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64 .
amd64_all: amd64_wheels amd64_ffmpeg amd64_frigate
amd64nvidia_wheels:
docker build --tag blakeblackshear/frigate-wheels:amd64nvidia --file docker/Dockerfile.wheels .
amd64nvidia_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-amd64nvidia --file docker/Dockerfile.ffmpeg.amd64nvidia .
amd64nvidia_frigate: version
docker build --tag frigate-base --build-arg ARCH=amd64nvidia --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.amd64nvidia .
amd64nvidia_all: amd64nvidia_wheels amd64nvidia_ffmpeg amd64nvidia_frigate
aarch64_wheels:
docker build --tag blakeblackshear/frigate-wheels:aarch64 --file docker/Dockerfile.wheels.aarch64 .
aarch64_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-aarch64 --file docker/Dockerfile.ffmpeg.aarch64 .
aarch64_frigate: version
docker build --tag frigate-base --build-arg ARCH=aarch64 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.aarch64 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate
armv7_wheels:
docker build --tag blakeblackshear/frigate-wheels:armv7 --file docker/Dockerfile.wheels .
armv7_ffmpeg:
docker build --tag blakeblackshear/frigate-ffmpeg:1.0.0-armv7 --file docker/Dockerfile.ffmpeg.armv7 .
armv7_frigate: version
docker build --tag frigate-base --build-arg ARCH=armv7 --build-arg FFMPEG_VERSION=1.0.0 --file docker/Dockerfile.base .
docker build --tag frigate --file docker/Dockerfile.armv7 .
armv7_all: armv7_wheels armv7_ffmpeg armv7_frigate

1063
README.md

File diff suppressed because it is too large Load Diff

93
benchmark.py Executable file
View File

@@ -0,0 +1,93 @@
import os
from statistics import mean
import multiprocessing as mp
import numpy as np
import datetime
from frigate.edgetpu import LocalObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
labels = load_labels('/labelmap.txt')
######
# Minimal same process runner
######
# object_detector = LocalObjectDetector()
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
# start = datetime.datetime.now().timestamp()
# frame_times = []
# for x in range(0, 1000):
# start_frame = datetime.datetime.now().timestamp()
# tensor_input[:] = my_frame
# detections = object_detector.detect_raw(tensor_input)
# parsed_detections = []
# for d in detections:
# if d[1] < 0.4:
# break
# parsed_detections.append((
# labels[int(d[0])],
# float(d[1]),
# (d[2], d[3], d[4], d[5])
# ))
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
# duration = datetime.datetime.now().timestamp()-start
# print(f"Processed for {duration:.2f} seconds.")
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
def start(id, num_detections, detection_queue, event):
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue, event)
start = datetime.datetime.now().timestamp()
frame_times = []
for x in range(0, num_detections):
start_frame = datetime.datetime.now().timestamp()
detections = object_detector.detect(my_frame)
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
duration = datetime.datetime.now().timestamp()-start
object_detector.cleanup()
print(f"{id} - Processed for {duration:.2f} seconds.")
print(f"{id} - FPS: {object_detector.fps.eps():.2f}")
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
######
# Separate process runner
######
# event = mp.Event()
# detection_queue = mp.Queue()
# edgetpu_process = EdgeTPUProcess(detection_queue, {'1': event}, 'usb:0')
# start(1, 1000, edgetpu_process.detection_queue, event)
# print(f"Average raw inference speed: {edgetpu_process.avg_inference_speed.value*1000:.2f}ms")
####
# Multiple camera processes
####
camera_processes = []
events = {}
for x in range(0, 10):
events[str(x)] = mp.Event()
detection_queue = mp.Queue()
edgetpu_process_1 = EdgeTPUProcess(detection_queue, events, 'usb:0')
edgetpu_process_2 = EdgeTPUProcess(detection_queue, events, 'usb:1')
for x in range(0, 10):
camera_process = mp.Process(target=start, args=(x, 300, detection_queue, events[str(x)]))
camera_process.daemon = True
camera_processes.append(camera_process)
start_time = datetime.datetime.now().timestamp()
for p in camera_processes:
p.start()
for p in camera_processes:
p.join()
duration = datetime.datetime.now().timestamp()-start_time
print(f"Total - Processed for {duration:.2f} seconds.")

Binary file not shown.

Before

Width:  |  Height:  |  Size: 1.8 MiB

View File

@@ -1,29 +0,0 @@
web_port: 5000
mqtt:
host: mqtt.server.com
topic_prefix: frigate
cameras:
back:
rtsp:
user: viewer
host: 10.0.10.10
port: 554
# values that begin with a "$" will be replaced with environment variable
password: $RTSP_PASSWORD
path: /cam/realmonitor?channel=1&subtype=2
mask: back-mask.bmp
regions:
- size: 350
x_offset: 0
y_offset: 300
min_person_area: 5000
- size: 400
x_offset: 350
y_offset: 250
min_person_area: 2000
- size: 400
x_offset: 750
y_offset: 250
min_person_area: 2000

View File

@@ -1,90 +0,0 @@
import cv2
import time
import queue
import yaml
import numpy as np
from flask import Flask, Response, make_response
import paho.mqtt.client as mqtt
from frigate.video import Camera
from frigate.object_detection import PreppedQueueProcessor
with open('/config/config.yml') as f:
CONFIG = yaml.safe_load(f)
MQTT_HOST = CONFIG['mqtt']['host']
MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
WEB_PORT = CONFIG.get('web_port', 5000)
DEBUG = (CONFIG.get('debug', '0') == '1')
def main():
# connect to mqtt and setup last will
def on_connect(client, userdata, flags, rc):
print("On connect called")
# publish a message to signal that the service is running
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
client = mqtt.Client()
client.on_connect = on_connect
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
if not MQTT_USER is None:
client.username_pw_set(MQTT_USER, password=MQTT_PASS)
client.connect(MQTT_HOST, MQTT_PORT, 60)
client.loop_start()
# Queue for prepped frames, max size set to (number of cameras * 5)
max_queue_size = len(CONFIG['cameras'].items())*5
prepped_frame_queue = queue.Queue(max_queue_size)
cameras = {}
for name, config in CONFIG['cameras'].items():
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
prepped_queue_processor = PreppedQueueProcessor(
cameras,
prepped_frame_queue
)
prepped_queue_processor.start()
for name, camera in cameras.items():
camera.start()
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
# create a flask app that encodes frames a mjpeg on demand
app = Flask(__name__)
@app.route('/<camera_name>/best_person.jpg')
def best_person(camera_name):
best_person_frame = cameras[camera_name].get_best_person()
if best_person_frame is None:
best_person_frame = np.zeros((720,1280,3), np.uint8)
ret, jpg = cv2.imencode('.jpg', best_person_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
@app.route('/<camera_name>')
def mjpeg_feed(camera_name):
# return a multipart response
return Response(imagestream(camera_name),
mimetype='multipart/x-mixed-replace; boundary=frame')
def imagestream(camera_name):
while True:
# max out at 5 FPS
time.sleep(0.2)
frame = cameras[camera_name].get_current_frame_with_objects()
# encode the image into a jpg
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
camera.join()
if __name__ == '__main__':
main()

Binary file not shown.

Before

Width:  |  Height:  |  Size: 283 KiB

22
docker/Dockerfile.aarch64 Normal file
View File

@@ -0,0 +1,22 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_aarch64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

18
docker/Dockerfile.amd64 Normal file
View File

@@ -0,0 +1,18 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# By default, use the i965 driver
ENV LIBVA_DRIVER_NAME=i965
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
# VAAPI drivers for Intel hardware accel
libva-drm2 libva2 libmfx1 i965-va-driver vainfo intel-media-va-driver mesa-va-drivers \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

View File

@@ -0,0 +1,47 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg dependencies
libgomp1 \
## Tensorflow lite
&& wget -q https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& python3.8 -m pip install tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm tflite_runtime-2.5.0-cp38-cp38-linux_x86_64.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)
# nvidia layer (see https://gitlab.com/nvidia/container-images/cuda/blob/master/dist/11.1/ubuntu20.04-x86_64/base/Dockerfile)
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
RUN apt-get update && apt-get install -y --no-install-recommends \
gnupg2 curl ca-certificates && \
curl -fsSL https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64/7fa2af80.pub | apt-key add - && \
echo "deb https://developer.download.nvidia.com/compute/cuda/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/cuda.list && \
echo "deb https://developer.download.nvidia.com/compute/machine-learning/repos/ubuntu2004/x86_64 /" > /etc/apt/sources.list.d/nvidia-ml.list && \
apt-get purge --autoremove -y curl \
&& rm -rf /var/lib/apt/lists/*
ENV CUDA_VERSION 11.1.1
# For libraries in the cuda-compat-* package: https://docs.nvidia.com/cuda/eula/index.html#attachment-a
RUN apt-get update && apt-get install -y --no-install-recommends \
cuda-cudart-11-1=11.1.74-1 \
cuda-compat-11-1 \
&& ln -s cuda-11.1 /usr/local/cuda && \
rm -rf /var/lib/apt/lists/*
# Required for nvidia-docker v1
RUN echo "/usr/local/nvidia/lib" >> /etc/ld.so.conf.d/nvidia.conf && \
echo "/usr/local/nvidia/lib64" >> /etc/ld.so.conf.d/nvidia.conf
ENV PATH /usr/local/nvidia/bin:/usr/local/cuda/bin:${PATH}
ENV LD_LIBRARY_PATH /usr/local/nvidia/lib:/usr/local/nvidia/lib64
# nvidia-container-runtime
ENV NVIDIA_VISIBLE_DEVICES all
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV NVIDIA_REQUIRE_CUDA "cuda>=11.1 brand=tesla,driver>=418,driver<419 brand=tesla,driver>=440,driver<441 brand=tesla,driver>=450,driver<451"

24
docker/Dockerfile.armv7 Normal file
View File

@@ -0,0 +1,24 @@
FROM frigate-base
LABEL maintainer "blakeb@blakeshome.com"
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get -qq install --no-install-recommends -y \
# ffmpeg runtime dependencies
libgomp1 \
# runtime dependencies
libopenexr24 \
libgstreamer1.0-0 \
libgstreamer-plugins-base1.0-0 \
libopenblas-base \
libjpeg-turbo8 \
libpng16-16 \
libtiff5 \
libdc1394-22 \
libaom0 \
libx265-179 \
## Tensorflow lite
&& pip3 install https://github.com/google-coral/pycoral/releases/download/release-frogfish/tflite_runtime-2.5.0-cp38-cp38-linux_armv7l.whl \
&& rm -rf /var/lib/apt/lists/* \
&& (apt-get autoremove -y; apt-get autoclean -y)

53
docker/Dockerfile.base Normal file
View File

@@ -0,0 +1,53 @@
ARG ARCH=amd64
ARG FFMPEG_VERSION
FROM blakeblackshear/frigate-wheels:${ARCH} as wheels
FROM blakeblackshear/frigate-ffmpeg:${FFMPEG_VERSION}-${ARCH} as ffmpeg
FROM ubuntu:20.04
LABEL maintainer "blakeb@blakeshome.com"
COPY --from=ffmpeg /usr/local /usr/local/
COPY --from=wheels /wheels/. /wheels/
ENV FLASK_ENV=development
# ENV FONTCONFIG_PATH=/etc/fonts
ENV DEBIAN_FRONTEND=noninteractive
# Install packages for apt repo
RUN apt-get -qq update \
&& apt-get upgrade -y \
&& apt-get -qq install --no-install-recommends -y \
gnupg wget unzip tzdata nginx libnginx-mod-rtmp \
&& apt-get -qq install --no-install-recommends -y \
python3-pip \
&& pip3 install -U /wheels/*.whl \
&& APT_KEY_DONT_WARN_ON_DANGEROUS_USAGE=DontWarn apt-key adv --fetch-keys https://packages.cloud.google.com/apt/doc/apt-key.gpg \
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
&& echo "libedgetpu1-max libedgetpu/accepted-eula select true" | debconf-set-selections \
&& apt-get -qq update && apt-get -qq install --no-install-recommends -y \
libedgetpu1-max=15.0 \
&& rm -rf /var/lib/apt/lists/* /wheels \
&& (apt-get autoremove -y; apt-get autoclean -y)
RUN pip3 install \
peewee \
zeroconf \
voluptuous
COPY nginx/nginx.conf /etc/nginx/nginx.conf
# get model and labels
COPY labelmap.txt /labelmap.txt
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess_edgetpu.tflite -O /edgetpu_model.tflite
RUN wget -q https://github.com/google-coral/test_data/raw/master/ssdlite_mobiledet_coco_qat_postprocess.tflite -O /cpu_model.tflite
WORKDIR /opt/frigate/
ADD frigate frigate/
COPY run.sh /run.sh
RUN chmod +x /run.sh
EXPOSE 5000
EXPOSE 1935
CMD ["/run.sh"]

View File

@@ -0,0 +1,474 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
export CXXFLAGS="${CXXFLAGS} -fPIC" && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
# --enable-omx \
# --enable-omx-rpi \
# --enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
# Run ffmpeg with -c:v h264_v4l2m2m to enable HW accell for decoding on raspberry pi4 64-bit

View File

@@ -0,0 +1,468 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
libva-dev \
libmfx-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmfx \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-vaapi \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/
RUN \
apt-get update -y && \
apt-get install -y --no-install-recommends libva-drm2 libva2 i965-va-driver mesa-va-drivers && \
rm -rf /var/lib/apt/lists/*

View File

@@ -0,0 +1,549 @@
# inspired by https://github.com/jrottenberg/ffmpeg/blob/master/docker-images/4.3/ubuntu1804/Dockerfile
# ffmpeg - http://ffmpeg.org/download.html
#
# From https://trac.ffmpeg.org/wiki/CompilationGuide/Ubuntu
#
# https://hub.docker.com/r/jrottenberg/ffmpeg/
#
#
FROM nvidia/cuda:11.1-devel-ubuntu20.04 AS devel-base
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /tmp/workdir
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM nvidia/cuda:11.1-runtime-ubuntu20.04 AS runtime-base
ENV NVIDIA_DRIVER_CAPABILITIES compute,utility,video
ENV DEBIAN_FRONTEND=noninteractive
WORKDIR /tmp/workdir
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 libxcb-shape0-dev && \
apt-get autoremove -y && \
apt-get clean -y
FROM devel-base as build
ENV NVIDIA_HEADERS_VERSION=9.1.23.1
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.2 \
LIBSRT_VERSION=1.4.1 \
LIBARIBB24_VERSION=1.0.3 \
LIBPNG_VERSION=1.6.9 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LIBZMQ_SHA256SUM="02ecc88466ae38cf2c8d79f09cfd2675ba299a439680b64ade733e26a349edeb v4.3.2.tar.gz"
ARG LIBARIBB24_SHA256SUM="f61560738926e57f9173510389634d8c06cabedfa857db4b28fb7704707ff128 v1.0.3.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
libssl-dev \
yasm \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
RUN \
DIR=/tmp/nv-codec-headers && \
git clone https://github.com/FFmpeg/nv-codec-headers ${DIR} && \
cd ${DIR} && \
git checkout n${NVIDIA_HEADERS_VERSION} && \
make PREFIX="${PREFIX}" && \
make install PREFIX="${PREFIX}" && \
rm -rf ${DIR}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make && \
make install && \
rm -rf ${DIR}
### x265 http://x265.org/
RUN \
DIR=/tmp/x265 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
tar -zx && \
cd x265_${X265_VERSION}/build/linux && \
sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
./multilib.sh && \
make -C 8bit install && \
rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make && \
make install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make && \
make install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make && \
make install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make && \
make install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/aom && \
git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
cd ${DIR} ; \
rm -rf CMakeCache.txt CMakeFiles ; \
mkdir -p ./aom_build ; \
cd ./aom_build ; \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
make ; \
make install ; \
rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make && \
make install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
echo ${LIBZMQ_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make && \
make check && \
make install && \
rm -rf ${DIR}
## libsrt https://github.com/Haivision/srt
RUN \
DIR=/tmp/srt && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/Haivision/srt/archive/v${LIBSRT_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBSRT_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make && \
make install && \
rm -rf ${DIR}
## libpng
RUN \
DIR=/tmp/png && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone https://git.code.sf.net/p/libpng/code ${DIR} -b v${LIBPNG_VERSION} --depth 1 && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make check && \
make install && \
rm -rf ${DIR}
## libaribb24
RUN \
DIR=/tmp/b24 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/nkoriyama/aribb24/archive/v${LIBARIBB24_VERSION}.tar.gz && \
echo ${LIBARIBB24_SHA256SUM} | sha256sum --check && \
tar -xz --strip-components=1 -f v${LIBARIBB24_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure CFLAGS="-I${PREFIX}/include -fPIC" --prefix="${PREFIX}" && \
make && \
make install && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-libsrt \
--enable-libaribb24 \
--enable-nvenc \
--enable-cuda \
--enable-cuvid \
--enable-libnpp \
--extra-cflags="-I${PREFIX}/include -I${PREFIX}/include/ffnvcodec -I/usr/local/cuda/include/" \
--extra-ldflags="-L${PREFIX}/lib -L/usr/local/cuda/lib64 -L/usr/local/cuda/lib32/" && \
make && \
make install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
LD_LIBRARY_PATH="${PREFIX}/lib:${PREFIX}/lib64:${LD_LIBRARY_PATH}" ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/* /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g; s:/lib64:/lib:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM runtime-base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
# copy only needed files, without copying nvidia dev files
COPY --from=build /usr/local/bin /usr/local/bin/
COPY --from=build /usr/local/share /usr/local/share/
COPY --from=build /usr/local/lib /usr/local/lib/
COPY --from=build /usr/local/include /usr/local/include/
# Let's make sure the app built correctly
# Convenient to verify on https://hub.docker.com/r/jrottenberg/ffmpeg/builds/ console output

View File

@@ -0,0 +1,490 @@
# inspired by:
# https://github.com/collelog/ffmpeg/blob/master/4.3.1-alpine-rpi4-arm64v8.Dockerfile
# https://github.com/mmastrac/ffmpeg-omx-rpi-docker/blob/master/Dockerfile
# https://github.com/jrottenberg/ffmpeg/pull/158/files
# https://github.com/jrottenberg/ffmpeg/pull/239
FROM ubuntu:20.04 AS base
WORKDIR /tmp/workdir
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -yqq update && \
apt-get install -yq --no-install-recommends ca-certificates expat libgomp1 && \
apt-get autoremove -y && \
apt-get clean -y
FROM base as build
ENV FFMPEG_VERSION=4.3.1 \
AOM_VERSION=v1.0.0 \
FDKAAC_VERSION=0.1.5 \
FREETYPE_VERSION=2.5.5 \
FRIBIDI_VERSION=0.19.7 \
KVAZAAR_VERSION=1.2.0 \
LAME_VERSION=3.100 \
LIBPTHREAD_STUBS_VERSION=0.4 \
LIBVIDSTAB_VERSION=1.1.0 \
LIBXCB_VERSION=1.13.1 \
XCBPROTO_VERSION=1.13 \
OGG_VERSION=1.3.2 \
OPENCOREAMR_VERSION=0.1.5 \
OPUS_VERSION=1.2 \
OPENJPEG_VERSION=2.1.2 \
THEORA_VERSION=1.1.1 \
VORBIS_VERSION=1.3.5 \
VPX_VERSION=1.8.0 \
WEBP_VERSION=1.0.2 \
X264_VERSION=20170226-2245-stable \
X265_VERSION=3.1.1 \
XAU_VERSION=1.0.9 \
XORG_MACROS_VERSION=1.19.2 \
XPROTO_VERSION=7.0.31 \
XVID_VERSION=1.3.4 \
LIBZMQ_VERSION=4.3.3 \
SRC=/usr/local
ARG FREETYPE_SHA256SUM="5d03dd76c2171a7601e9ce10551d52d4471cf92cd205948e60289251daddffa8 freetype-2.5.5.tar.gz"
ARG FRIBIDI_SHA256SUM="3fc96fa9473bd31dcb5500bdf1aa78b337ba13eb8c301e7c28923fea982453a8 0.19.7.tar.gz"
ARG LIBVIDSTAB_SHA256SUM="14d2a053e56edad4f397be0cb3ef8eb1ec3150404ce99a426c4eb641861dc0bb v1.1.0.tar.gz"
ARG OGG_SHA256SUM="e19ee34711d7af328cb26287f4137e70630e7261b17cbe3cd41011d73a654692 libogg-1.3.2.tar.gz"
ARG OPUS_SHA256SUM="77db45a87b51578fbc49555ef1b10926179861d854eb2613207dc79d9ec0a9a9 opus-1.2.tar.gz"
ARG THEORA_SHA256SUM="40952956c47811928d1e7922cda3bc1f427eb75680c3c37249c91e949054916b libtheora-1.1.1.tar.gz"
ARG VORBIS_SHA256SUM="6efbcecdd3e5dfbf090341b485da9d176eb250d893e3eb378c428a2db38301ce libvorbis-1.3.5.tar.gz"
ARG XVID_SHA256SUM="4e9fd62728885855bc5007fe1be58df42e5e274497591fec37249e1052ae316f xvidcore-1.3.4.tar.gz"
ARG LD_LIBRARY_PATH=/opt/ffmpeg/lib
ARG MAKEFLAGS="-j2"
ARG PKG_CONFIG_PATH="/opt/ffmpeg/share/pkgconfig:/opt/ffmpeg/lib/pkgconfig:/opt/ffmpeg/lib64/pkgconfig:/opt/vc/lib/pkgconfig"
ARG PREFIX=/opt/ffmpeg
ARG LD_LIBRARY_PATH="/opt/ffmpeg/lib:/opt/ffmpeg/lib64:/usr/lib64:/usr/lib:/lib64:/lib:/opt/vc/lib"
RUN buildDeps="autoconf \
automake \
cmake \
curl \
bzip2 \
libexpat1-dev \
g++ \
gcc \
git \
gperf \
libtool \
make \
nasm \
perl \
pkg-config \
python \
sudo \
libssl-dev \
yasm \
linux-headers-raspi2 \
libomxil-bellagio-dev \
libx265-dev \
libaom-dev \
zlib1g-dev" && \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends ${buildDeps}
## opencore-amr https://sourceforge.net/projects/opencore-amr/
RUN \
DIR=/tmp/opencore-amr && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/opencore-amr/opencore-amr/opencore-amr-${OPENCOREAMR_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## x264 http://www.videolan.org/developers/x264.html
RUN \
DIR=/tmp/x264 && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://download.videolan.org/pub/videolan/x264/snapshots/x264-snapshot-${X264_VERSION}.tar.bz2 | \
tar -jx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared --enable-pic --disable-cli && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# ### x265 http://x265.org/
# RUN \
# DIR=/tmp/x265 && \
# mkdir -p ${DIR} && \
# cd ${DIR} && \
# curl -sL https://download.videolan.org/pub/videolan/x265/x265_${X265_VERSION}.tar.gz | \
# tar -zx && \
# cd x265_${X265_VERSION}/build/linux && \
# sed -i "/-DEXTRA_LIB/ s/$/ -DCMAKE_INSTALL_PREFIX=\${PREFIX}/" multilib.sh && \
# sed -i "/^cmake/ s/$/ -DENABLE_CLI=OFF/" multilib.sh && \
# # export CXXFLAGS="${CXXFLAGS} -fPIC" && \
# ./multilib.sh && \
# make -C 8bit install && \
# rm -rf ${DIR}
### libogg https://www.xiph.org/ogg/
RUN \
DIR=/tmp/ogg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/ogg/libogg-${OGG_VERSION}.tar.gz && \
echo ${OGG_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libogg-${OGG_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libopus https://www.opus-codec.org/
RUN \
DIR=/tmp/opus && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://archive.mozilla.org/pub/opus/opus-${OPUS_VERSION}.tar.gz && \
echo ${OPUS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f opus-${OPUS_VERSION}.tar.gz && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvorbis https://xiph.org/vorbis/
RUN \
DIR=/tmp/vorbis && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/vorbis/libvorbis-${VORBIS_VERSION}.tar.gz && \
echo ${VORBIS_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libvorbis-${VORBIS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libtheora http://www.theora.org/
RUN \
DIR=/tmp/theora && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xiph.org/releases/theora/libtheora-${THEORA_VERSION}.tar.gz && \
echo ${THEORA_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f libtheora-${THEORA_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --prefix="${PREFIX}" --with-ogg="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libvpx https://www.webmproject.org/code/
RUN \
DIR=/tmp/vpx && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://codeload.github.com/webmproject/libvpx/tar.gz/v${VPX_VERSION} | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-vp8 --enable-vp9 --enable-vp9-highbitdepth --enable-pic --enable-shared \
--disable-debug --disable-examples --disable-docs --disable-install-bins && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libwebp https://developers.google.com/speed/webp/
RUN \
DIR=/tmp/vebp && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://storage.googleapis.com/downloads.webmproject.org/releases/webp/libwebp-${WEBP_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### libmp3lame http://lame.sourceforge.net/
RUN \
DIR=/tmp/lame && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://versaweb.dl.sourceforge.net/project/lame/lame/$(echo ${LAME_VERSION} | sed -e 's/[^0-9]*\([0-9]*\)[.]\([0-9]*\)[.]\([0-9]*\)\([0-9A-Za-z-]*\)/\1.\2/')/lame-${LAME_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" --enable-shared --enable-nasm --disable-frontend && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### xvid https://www.xvid.com/
RUN \
DIR=/tmp/xvid && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO http://downloads.xvid.org/downloads/xvidcore-${XVID_VERSION}.tar.gz && \
echo ${XVID_SHA256SUM} | sha256sum --check && \
tar -zx -f xvidcore-${XVID_VERSION}.tar.gz && \
cd xvidcore/build/generic && \
./configure --prefix="${PREFIX}" --bindir="${PREFIX}/bin" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
### fdk-aac https://github.com/mstorsjo/fdk-aac
RUN \
DIR=/tmp/fdk-aac && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/mstorsjo/fdk-aac/archive/v${FDKAAC_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
autoreconf -fiv && \
./configure --prefix="${PREFIX}" --enable-shared --datadir="${DIR}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## openjpeg https://github.com/uclouvain/openjpeg
RUN \
DIR=/tmp/openjpeg && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sL https://github.com/uclouvain/openjpeg/archive/v${OPENJPEG_VERSION}.tar.gz | \
tar -zx --strip-components=1 && \
export CFLAGS="${CFLAGS} -DPNG_ARM_NEON_OPT=0" && \
cmake -DBUILD_THIRDPARTY:BOOL=ON -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## freetype https://www.freetype.org/
RUN \
DIR=/tmp/freetype && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://download.savannah.gnu.org/releases/freetype/freetype-${FREETYPE_VERSION}.tar.gz && \
echo ${FREETYPE_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f freetype-${FREETYPE_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libvstab https://github.com/georgmartius/vid.stab
RUN \
DIR=/tmp/vid.stab && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/georgmartius/vid.stab/archive/v${LIBVIDSTAB_VERSION}.tar.gz && \
echo ${LIBVIDSTAB_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f v${LIBVIDSTAB_VERSION}.tar.gz && \
cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" . && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## fridibi https://www.fribidi.org/
RUN \
DIR=/tmp/fribidi && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/fribidi/fribidi/archive/${FRIBIDI_VERSION}.tar.gz && \
echo ${FRIBIDI_SHA256SUM} | sha256sum --check && \
tar -zx --strip-components=1 -f ${FRIBIDI_VERSION}.tar.gz && \
sed -i 's/^SUBDIRS =.*/SUBDIRS=gen.tab charset lib bin/' Makefile.am && \
./bootstrap --no-config --auto && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j1 && \
make -j $(nproc) install && \
rm -rf ${DIR}
## kvazaar https://github.com/ultravideo/kvazaar
RUN \
DIR=/tmp/kvazaar && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/ultravideo/kvazaar/archive/v${KVAZAAR_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f v${KVAZAAR_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
# RUN \
# DIR=/tmp/aom && \
# git clone --branch ${AOM_VERSION} --depth 1 https://aomedia.googlesource.com/aom ${DIR} ; \
# cd ${DIR} ; \
# rm -rf CMakeCache.txt CMakeFiles ; \
# mkdir -p ./aom_build ; \
# cd ./aom_build ; \
# cmake -DCMAKE_INSTALL_PREFIX="${PREFIX}" -DBUILD_SHARED_LIBS=1 ..; \
# make ; \
# make install ; \
# rm -rf ${DIR}
## libxcb (and supporting libraries) for screen capture https://xcb.freedesktop.org/
RUN \
DIR=/tmp/xorg-macros && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive//individual/util/util-macros-${XORG_MACROS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f util-macros-${XORG_MACROS_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/xproto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/proto/xproto-${XPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xproto-${XPROTO_VERSION}.tar.gz && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.guess;hb=HEAD' -o config.guess && \
curl -sL 'http://git.savannah.gnu.org/gitweb/?p=config.git;a=blob_plain;f=config.sub;hb=HEAD' -o config.sub && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libXau && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://www.x.org/archive/individual/lib/libXau-${XAU_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libXau-${XAU_VERSION}.tar.gz && \
./configure --srcdir=${DIR} --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libpthread-stubs && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libpthread-stubs-${LIBPTHREAD_STUBS_VERSION}.tar.gz && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb-proto && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f xcb-proto-${XCBPROTO_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
RUN \
DIR=/tmp/libxcb && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://xcb.freedesktop.org/dist/libxcb-${LIBXCB_VERSION}.tar.gz && \
tar -zx --strip-components=1 -f libxcb-${LIBXCB_VERSION}.tar.gz && \
ACLOCAL_PATH="${PREFIX}/share/aclocal" ./autogen.sh && \
./configure --prefix="${PREFIX}" --disable-static --enable-shared && \
make -j $(nproc) && \
make -j $(nproc) install && \
rm -rf ${DIR}
## libzmq https://github.com/zeromq/libzmq/
RUN \
DIR=/tmp/libzmq && \
mkdir -p ${DIR} && \
cd ${DIR} && \
curl -sLO https://github.com/zeromq/libzmq/archive/v${LIBZMQ_VERSION}.tar.gz && \
tar -xz --strip-components=1 -f v${LIBZMQ_VERSION}.tar.gz && \
./autogen.sh && \
./configure --prefix="${PREFIX}" && \
make -j $(nproc) && \
# make check && \
make -j $(nproc) install && \
rm -rf ${DIR}
## userland https://github.com/raspberrypi/userland
RUN \
DIR=/tmp/userland && \
mkdir -p ${DIR} && \
cd ${DIR} && \
git clone --depth 1 https://github.com/raspberrypi/userland.git . && \
./buildme && \
rm -rf ${DIR}
## ffmpeg https://ffmpeg.org/
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
curl -sLO https://ffmpeg.org/releases/ffmpeg-${FFMPEG_VERSION}.tar.bz2 && \
tar -jx --strip-components=1 -f ffmpeg-${FFMPEG_VERSION}.tar.bz2
RUN \
DIR=/tmp/ffmpeg && mkdir -p ${DIR} && cd ${DIR} && \
./configure \
--disable-debug \
--disable-doc \
--disable-ffplay \
--enable-shared \
--enable-avresample \
--enable-libopencore-amrnb \
--enable-libopencore-amrwb \
--enable-gpl \
--enable-libfreetype \
--enable-libvidstab \
--enable-libmp3lame \
--enable-libopus \
--enable-libtheora \
--enable-libvorbis \
--enable-libvpx \
--enable-libwebp \
--enable-libxcb \
--enable-libx265 \
--enable-libxvid \
--enable-libx264 \
--enable-nonfree \
--enable-openssl \
--enable-libfdk_aac \
--enable-postproc \
--enable-small \
--enable-version3 \
--enable-libzmq \
--extra-libs=-ldl \
--prefix="${PREFIX}" \
--enable-libopenjpeg \
--enable-libkvazaar \
--enable-libaom \
--extra-libs=-lpthread \
--enable-omx \
--enable-omx-rpi \
--enable-mmal \
--enable-v4l2_m2m \
--enable-neon \
--extra-cflags="-I${PREFIX}/include" \
--extra-ldflags="-L${PREFIX}/lib" && \
make -j $(nproc) && \
make -j $(nproc) install && \
make tools/zmqsend && cp tools/zmqsend ${PREFIX}/bin/ && \
make distclean && \
hash -r && \
cd tools && \
make qt-faststart && cp qt-faststart ${PREFIX}/bin/
## cleanup
RUN \
ldd ${PREFIX}/bin/ffmpeg | grep opt/ffmpeg | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
# copy userland lib too
ldd ${PREFIX}/bin/ffmpeg | grep opt/vc | cut -d ' ' -f 3 | xargs -i cp {} /usr/local/lib/ && \
for lib in /usr/local/lib/*.so.*; do ln -s "${lib##*/}" "${lib%%.so.*}".so; done && \
cp ${PREFIX}/bin/* /usr/local/bin/ && \
cp -r ${PREFIX}/share/ffmpeg /usr/local/share/ && \
LD_LIBRARY_PATH=/usr/local/lib ffmpeg -buildconf && \
cp -r ${PREFIX}/include/libav* ${PREFIX}/include/libpostproc ${PREFIX}/include/libsw* /usr/local/include && \
mkdir -p /usr/local/lib/pkgconfig && \
for pc in ${PREFIX}/lib/pkgconfig/libav*.pc ${PREFIX}/lib/pkgconfig/libpostproc.pc ${PREFIX}/lib/pkgconfig/libsw*.pc; do \
sed "s:${PREFIX}:/usr/local:g" <"$pc" >/usr/local/lib/pkgconfig/"${pc##*/}"; \
done
FROM base AS release
ENV LD_LIBRARY_PATH=/usr/local/lib:/usr/local/lib64:/usr/lib:/usr/lib64:/lib:/lib64
RUN \
apt-get -yqq update && \
apt-get install -yq --no-install-recommends libx265-dev libaom-dev && \
apt-get autoremove -y && \
apt-get clean -y
CMD ["--help"]
ENTRYPOINT ["ffmpeg"]
COPY --from=build /usr/local /usr/local/

39
docker/Dockerfile.wheels Normal file
View File

@@ -0,0 +1,39 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
RUN pip3 install scikit-build
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

View File

@@ -0,0 +1,49 @@
FROM ubuntu:20.04 as build
ENV DEBIAN_FRONTEND=noninteractive
RUN apt-get -qq update \
&& apt-get -qq install -y \
python3 \
python3-dev \
wget \
# opencv dependencies
build-essential cmake git pkg-config libgtk-3-dev \
libavcodec-dev libavformat-dev libswscale-dev libv4l-dev \
libxvidcore-dev libx264-dev libjpeg-dev libpng-dev libtiff-dev \
gfortran openexr libatlas-base-dev libssl-dev\
libtbb2 libtbb-dev libdc1394-22-dev libopenexr-dev \
libgstreamer-plugins-base1.0-dev libgstreamer1.0-dev \
# scipy dependencies
gcc gfortran libopenblas-dev liblapack-dev cython
RUN wget -q https://bootstrap.pypa.io/get-pip.py -O get-pip.py \
&& python3 get-pip.py
# need to build cmake from source because binary distribution is broken for arm64
# https://github.com/scikit-build/cmake-python-distributions/issues/115
# https://github.com/skvark/opencv-python/issues/366
# https://github.com/scikit-build/cmake-python-distributions/issues/96#issuecomment-663062358
RUN pip3 install scikit-build
RUN git clone https://github.com/scikit-build/cmake-python-distributions.git \
&& cd cmake-python-distributions/ \
&& python3 setup.py bdist_wheel
RUN pip3 install cmake-python-distributions/dist/*.whl
RUN pip3 wheel --wheel-dir=/wheels \
opencv-python-headless \
numpy \
imutils \
scipy \
psutil \
Flask \
paho-mqtt \
PyYAML \
matplotlib \
click
FROM scratch
COPY --from=build /wheels /wheels

21
docs/cameras.md Normal file
View File

@@ -0,0 +1,21 @@
# Camera Specific Configuration
Frigate should work with most RTSP cameras and h264 feeds such as Dahua.
## RTMP Cameras
The input parameters need to be adjusted for RTMP cameras
```yaml
ffmpeg:
input_args:
- -avoid_negative_ts
- make_zero
- -fflags
- nobuffer
- -flags
- low_delay
- -strict
- experimental
- -fflags
- +genpts+discardcorrupt
- -use_wallclock_as_timestamps
- '1'
```

BIN
docs/diagram.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 132 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.2 MiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask-poly.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 2.1 MiB

BIN
docs/example-mask.bmp Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 6.0 MiB

BIN
docs/frigate.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

10
docs/how-frigate-works.md Normal file
View File

@@ -0,0 +1,10 @@
# How Frigate Works
Frigate is designed to minimize resource and maximize performance by only looking for objects when and where it is necessary
![Diagram](diagram.png)
## 1. Look for Motion
## 2. Calculate Detection Regions
## 3. Run Object Detection

BIN
docs/media_browser.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 781 KiB

View File

@@ -0,0 +1,71 @@
# Notification examples
Here are some examples of notifications for the HomeAssistant android companion app:
```yaml
automation:
- alias: When a person enters a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['after']['entered_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has entered the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: When a person leaves a zone named yard
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'person' }}"
- "{{ 'yard' in trigger.payload_json['before']['current_zones'] }}"
- "{{ not 'yard' in trigger.payload_json['after']['current_zones'] }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: "A {{trigger.payload_json['after']['label']}} has left the yard."
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
- alias: Notify for dogs in the front with a high top score
trigger:
platform: mqtt
topic: frigate/events
conditions:
- "{{ trigger.payload_json['after']['label'] == 'dog' }}"
- "{{ trigger.payload_json['after']['camera'] == 'front' }}"
- "{{ trigger.payload_json['after']['top_score'] > 0.98 }}"
action:
- service: notify.mobile_app_pixel_3
data_template:
message: 'High confidence dog detection.'
data:
image: "https://url.com/api/frigate/notifications/{{trigger.payload_json['after']['id']}}.jpg"
tag: "{{trigger.payload_json['after']['id']}}"
```
If you are using telegram, you can fetch the image directly from Frigate:
```yaml
automation:
- alias: Notify of events
trigger:
platform: mqtt
topic: frigate/events
action:
- service: notify.telegram_full
data_template:
message: 'A {{trigger.payload_json["after"]["label"]}} was detected.'
data:
photo:
# this url should work for addon users
- url: 'http://ccab4aaf-frigate:5000/events/{{trigger.payload_json["after"]["id"]}}/snapshot.jpg'
caption : 'A {{trigger.payload_json["after"]["label"]}} was detected on {{ trigger.payload_json["after"]["camera"] }} camera'
```

BIN
docs/notification.png Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.5 MiB

105
docs/nvdec.md Normal file
View File

@@ -0,0 +1,105 @@
# nVidia hardware decoder (NVDEC)
Certain nvidia cards include a hardware decoder, which can greatly improve the
performance of video decoding. In order to use NVDEC, a special build of
ffmpeg with NVDEC support is required. The special docker architecture 'amd64nvidia'
includes this support for amd64 platforms. An aarch64 for the Jetson, which
also includes NVDEC may be added in the future.
## Docker setup
### Requirements
[nVidia closed source driver](https://www.nvidia.com/en-us/drivers/unix/) required to access NVDEC.
[nvidia-docker](https://github.com/NVIDIA/nvidia-docker) required to pass NVDEC to docker.
### Setting up docker-compose
In order to pass NVDEC, the docker engine must be set to `nvidia` and the environment variables
`NVIDIA_VISIBLE_DEVICES=all` and `NVIDIA_DRIVER_CAPABILITIES=compute,utility,video` must be set.
In a docker compose file, these lines need to be set:
```
services:
frigate:
...
image: blakeblackshear/frigate:stable-amd64nvidia
runtime: nvidia
environment:
- NVIDIA_VISIBLE_DEVICES=all
- NVIDIA_DRIVER_CAPABILITIES=compute,utility,video
```
### Setting up the configuration file
In your frigate config.yml, you'll need to set ffmpeg to use the hardware decoder.
The decoder you choose will depend on the input video.
A list of supported codecs (you can use `ffmpeg -decoders | grep cuvid` in the container to get a list)
```
V..... h263_cuvid Nvidia CUVID H263 decoder (codec h263)
V..... h264_cuvid Nvidia CUVID H264 decoder (codec h264)
V..... hevc_cuvid Nvidia CUVID HEVC decoder (codec hevc)
V..... mjpeg_cuvid Nvidia CUVID MJPEG decoder (codec mjpeg)
V..... mpeg1_cuvid Nvidia CUVID MPEG1VIDEO decoder (codec mpeg1video)
V..... mpeg2_cuvid Nvidia CUVID MPEG2VIDEO decoder (codec mpeg2video)
V..... mpeg4_cuvid Nvidia CUVID MPEG4 decoder (codec mpeg4)
V..... vc1_cuvid Nvidia CUVID VC1 decoder (codec vc1)
V..... vp8_cuvid Nvidia CUVID VP8 decoder (codec vp8)
V..... vp9_cuvid Nvidia CUVID VP9 decoder (codec vp9)
```
For example, for H265 video (hevc), you'll select `hevc_cuvid`. Add
`-c:v hevc_covid` to your ffmpeg input arguments:
```
ffmpeg:
input_args:
...
- -c:v
- hevc_cuvid
```
If everything is working correctly, you should see a significant improvement in performance.
Verify that hardware decoding is working by running `nvidia-smi`, which should show the ffmpeg
processes:
```
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 455.38 Driver Version: 455.38 CUDA Version: 11.1 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
| | | MIG M. |
|===============================+======================+======================|
| 0 GeForce GTX 166... Off | 00000000:03:00.0 Off | N/A |
| 38% 41C P2 36W / 125W | 2082MiB / 5942MiB | 5% Default |
| | | N/A |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: |
| GPU GI CI PID Type Process name GPU Memory |
| ID ID Usage |
|=============================================================================|
| 0 N/A N/A 12737 C ffmpeg 249MiB |
| 0 N/A N/A 12751 C ffmpeg 249MiB |
| 0 N/A N/A 12772 C ffmpeg 249MiB |
| 0 N/A N/A 12775 C ffmpeg 249MiB |
| 0 N/A N/A 12800 C ffmpeg 249MiB |
| 0 N/A N/A 12811 C ffmpeg 417MiB |
| 0 N/A N/A 12827 C ffmpeg 417MiB |
+-----------------------------------------------------------------------------+
```
To further improve performance, you can set ffmpeg to skip frames in the output,
using the fps filter:
```
output_args:
- -filter:v
- fps=fps=5
```
This setting, for example, allows Frigate to consume my 10-15fps camera streams on
my relatively low powered Haswell machine with relatively low cpu usage.

BIN
docs/zone_example.jpg Normal file

Binary file not shown.

After

Width:  |  Height:  |  Size: 73 KiB

0
frigate/__init__.py Normal file
View File

15
frigate/__main__.py Normal file
View File

@@ -0,0 +1,15 @@
import faulthandler; faulthandler.enable()
import sys
import threading
threading.current_thread().name = "frigate"
from frigate.app import FrigateApp
cli = sys.modules['flask.cli']
cli.show_server_banner = lambda *x: None
if __name__ == '__main__':
frigate_app = FrigateApp()
frigate_app.start()

235
frigate/app.py Normal file
View File

@@ -0,0 +1,235 @@
import json
import logging
import multiprocessing as mp
import os
from logging.handlers import QueueHandler
from typing import Dict, List
import sys
import signal
import yaml
from playhouse.sqlite_ext import SqliteExtDatabase
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import EdgeTPUProcess
from frigate.events import EventProcessor, EventCleanup
from frigate.http import create_app
from frigate.log import log_process, root_configurer
from frigate.models import Event
from frigate.mqtt import create_mqtt_client
from frigate.object_processing import TrackedObjectProcessor
from frigate.record import RecordingMaintainer
from frigate.video import capture_camera, track_camera
from frigate.watchdog import FrigateWatchdog
from frigate.zeroconf import broadcast_zeroconf
logger = logging.getLogger(__name__)
class FrigateApp():
def __init__(self):
self.stop_event = mp.Event()
self.config: FrigateConfig = None
self.detection_queue = mp.Queue()
self.detectors: Dict[str, EdgeTPUProcess] = {}
self.detection_out_events: Dict[str, mp.Event] = {}
self.detection_shms: List[mp.shared_memory.SharedMemory] = []
self.log_queue = mp.Queue()
self.camera_metrics = {}
def ensure_dirs(self):
tmpfs_size = self.config.save_clips.tmpfs_cache_size
if tmpfs_size:
logger.info(f"Creating tmpfs of size {tmpfs_size}")
rc = os.system(f"mount -t tmpfs -o size={tmpfs_size} tmpfs {CACHE_DIR}")
if rc != 0:
logger.error(f"Failed to create tmpfs, error code: {rc}")
for d in [RECORD_DIR, CLIPS_DIR, CACHE_DIR]:
if not os.path.exists(d) and not os.path.islink(d):
logger.info(f"Creating directory: {d}")
os.makedirs(d)
else:
logger.debug(f"Skipping directory: {d}")
def init_logger(self):
self.log_process = mp.Process(target=log_process, args=(self.log_queue,), name='log_process')
self.log_process.daemon = True
self.log_process.start()
root_configurer(self.log_queue)
def init_config(self):
config_file = os.environ.get('CONFIG_FILE', '/config/config.yml')
self.config = FrigateConfig(config_file=config_file)
for camera_name in self.config.cameras.keys():
# create camera_metrics
self.camera_metrics[camera_name] = {
'camera_fps': mp.Value('d', 0.0),
'skipped_fps': mp.Value('d', 0.0),
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0),
'read_start': mp.Value('d', 0.0),
'ffmpeg_pid': mp.Value('i', 0),
'frame_queue': mp.Queue(maxsize=2)
}
def check_config(self):
for name, camera in self.config.cameras.items():
assigned_roles = list(set([r for i in camera.ffmpeg.inputs for r in i.roles]))
if not camera.save_clips.enabled and 'clips' in assigned_roles:
logger.warning(f"Camera {name} has clips assigned to an input, but save_clips is not enabled.")
elif camera.save_clips.enabled and not 'clips' in assigned_roles:
logger.warning(f"Camera {name} has save_clips enabled, but clips is not assigned to an input.")
if not camera.record.enabled and 'record' in assigned_roles:
logger.warning(f"Camera {name} has record assigned to an input, but record is not enabled.")
elif camera.record.enabled and not 'record' in assigned_roles:
logger.warning(f"Camera {name} has record enabled, but record is not assigned to an input.")
if not camera.rtmp.enabled and 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp assigned to an input, but rtmp is not enabled.")
elif camera.rtmp.enabled and not 'rtmp' in assigned_roles:
logger.warning(f"Camera {name} has rtmp enabled, but rtmp is not assigned to an input.")
def set_log_levels(self):
logging.getLogger().setLevel(self.config.logger.default)
for log, level in self.config.logger.logs.items():
logging.getLogger(log).setLevel(level)
if not 'werkzeug' in self.config.logger.logs:
logging.getLogger('werkzeug').setLevel('ERROR')
def init_queues(self):
# Queues for clip processing
self.event_queue = mp.Queue()
self.event_processed_queue = mp.Queue()
# Queue for cameras to push tracked objects to
self.detected_frames_queue = mp.Queue(maxsize=len(self.config.cameras.keys())*2)
def init_database(self):
self.db = SqliteExtDatabase(self.config.database.path)
models = [Event]
self.db.bind(models)
self.db.create_tables(models, safe=True)
def init_web_server(self):
self.flask_app = create_app(self.config, self.db, self.camera_metrics, self.detectors, self.detected_frames_processor)
def init_mqtt(self):
self.mqtt_client = create_mqtt_client(self.config.mqtt)
def start_detectors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name in self.config.cameras.keys():
self.detection_out_events[name] = mp.Event()
shm_in = mp.shared_memory.SharedMemory(name=name, create=True, size=self.config.model.height*self.config.model.width*3)
shm_out = mp.shared_memory.SharedMemory(name=f"out-{name}", create=True, size=20*6*4)
self.detection_shms.append(shm_in)
self.detection_shms.append(shm_out)
for name, detector in self.config.detectors.items():
if detector.type == 'cpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, 'cpu', detector.num_threads)
if detector.type == 'edgetpu':
self.detectors[name] = EdgeTPUProcess(name, self.detection_queue, self.detection_out_events, model_shape, detector.device, detector.num_threads)
def start_detected_frames_processor(self):
self.detected_frames_processor = TrackedObjectProcessor(self.config, self.mqtt_client, self.config.mqtt.topic_prefix,
self.detected_frames_queue, self.event_queue, self.event_processed_queue, self.stop_event)
self.detected_frames_processor.start()
def start_camera_processors(self):
model_shape = (self.config.model.height, self.config.model.width)
for name, config in self.config.cameras.items():
camera_process = mp.Process(target=track_camera, name=f"camera_processor:{name}", args=(name, config, model_shape,
self.detection_queue, self.detection_out_events[name], self.detected_frames_queue,
self.camera_metrics[name]))
camera_process.daemon = True
self.camera_metrics[name]['process'] = camera_process
camera_process.start()
logger.info(f"Camera processor started for {name}: {camera_process.pid}")
def start_camera_capture_processes(self):
for name, config in self.config.cameras.items():
capture_process = mp.Process(target=capture_camera, name=f"camera_capture:{name}", args=(name, config,
self.camera_metrics[name]))
capture_process.daemon = True
self.camera_metrics[name]['capture_process'] = capture_process
capture_process.start()
logger.info(f"Capture process started for {name}: {capture_process.pid}")
def start_event_processor(self):
self.event_processor = EventProcessor(self.config, self.camera_metrics, self.event_queue, self.event_processed_queue, self.stop_event)
self.event_processor.start()
def start_event_cleanup(self):
self.event_cleanup = EventCleanup(self.config, self.stop_event)
self.event_cleanup.start()
def start_recording_maintainer(self):
self.recording_maintainer = RecordingMaintainer(self.config, self.stop_event)
self.recording_maintainer.start()
def start_watchdog(self):
self.frigate_watchdog = FrigateWatchdog(self.detectors, self.stop_event)
self.frigate_watchdog.start()
def start(self):
self.init_logger()
try:
try:
self.init_config()
except Exception as e:
logger.error(f"Error parsing config: {e}")
self.log_process.terminate()
sys.exit(1)
self.ensure_dirs()
self.check_config()
self.set_log_levels()
self.init_queues()
self.init_database()
self.init_mqtt()
except Exception as e:
print(e)
self.log_process.terminate()
sys.exit(1)
self.start_detectors()
self.start_detected_frames_processor()
self.start_camera_processors()
self.start_camera_capture_processes()
self.init_web_server()
self.start_event_processor()
self.start_event_cleanup()
self.start_recording_maintainer()
self.start_watchdog()
# self.zeroconf = broadcast_zeroconf(self.config.mqtt.client_id)
def receiveSignal(signalNumber, frame):
self.stop()
sys.exit()
signal.signal(signal.SIGTERM, receiveSignal)
self.flask_app.run(host='127.0.0.1', port=5001, debug=False)
self.stop()
def stop(self):
logger.info(f"Stopping...")
self.stop_event.set()
self.detected_frames_processor.join()
self.event_processor.join()
self.event_cleanup.join()
self.recording_maintainer.join()
self.frigate_watchdog.join()
for detector in self.detectors.values():
detector.stop()
while len(self.detection_shms) > 0:
shm = self.detection_shms.pop()
shm.close()
shm.unlink()

963
frigate/config.py Normal file
View File

@@ -0,0 +1,963 @@
import base64
import json
import os
from typing import Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
import voluptuous as vol
import yaml
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
DETECTORS_SCHEMA = vol.Schema(
{
vol.Required(str): {
vol.Required('type', default='edgetpu'): vol.In(['cpu', 'edgetpu']),
vol.Optional('device', default='usb'): str,
vol.Optional('num_threads', default=3): int
}
}
)
DEFAULT_DETECTORS = {
'coral': {
'type': 'edgetpu',
'device': 'usb'
}
}
MQTT_SCHEMA = vol.Schema(
{
vol.Required('host'): str,
vol.Optional('port', default=1883): int,
vol.Optional('topic_prefix', default='frigate'): str,
vol.Optional('client_id', default='frigate'): str,
'user': str,
'password': str
}
)
SAVE_CLIPS_RETAIN_SCHEMA = vol.Schema(
{
vol.Required('default',default=10): int,
'objects': {
str: int
}
}
)
SAVE_CLIPS_SCHEMA = vol.Schema(
{
vol.Optional('max_seconds', default=300): int,
'tmpfs_cache_size': str,
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA
}
)
FFMPEG_GLOBAL_ARGS_DEFAULT = ['-hide_banner','-loglevel','fatal']
FFMPEG_INPUT_ARGS_DEFAULT = ['-avoid_negative_ts', 'make_zero',
'-fflags', '+genpts+discardcorrupt',
'-rtsp_transport', 'tcp',
'-stimeout', '5000000',
'-use_wallclock_as_timestamps', '1']
DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT = ['-f', 'rawvideo',
'-pix_fmt', 'yuv420p']
RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-c", "copy", "-f", "flv"]
SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "segment", "-segment_time",
"10", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime",
"1", "-c", "copy", "-an"]
RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT = ["-f", "segment", "-segment_time",
"60", "-segment_format", "mp4", "-reset_timestamps", "1", "-strftime",
"1", "-c", "copy", "-an"]
GLOBAL_FFMPEG_SCHEMA = vol.Schema(
{
vol.Optional('global_args', default=FFMPEG_GLOBAL_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('hwaccel_args', default=[]): vol.Any(str, [str]),
vol.Optional('input_args', default=FFMPEG_INPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('output_args', default={}): {
vol.Optional('detect', default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('record', default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('clips', default=SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('rtmp', default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
}
}
)
MOTION_SCHEMA = vol.Schema(
{
'threshold': vol.Range(min=1, max=255),
'contour_area': int,
'delta_alpha': float,
'frame_alpha': float,
'frame_height': int
}
)
DETECT_SCHEMA = vol.Schema(
{
'max_disappeared': int
}
)
FILTER_SCHEMA = vol.Schema(
{
str: {
vol.Optional('min_area', default=0): int,
vol.Optional('max_area', default=24000000): int,
vol.Optional('threshold', default=0.7): float
}
}
)
def filters_for_all_tracked_objects(object_config):
for tracked_object in object_config.get('track', ['person']):
if not 'filters' in object_config:
object_config['filters'] = {}
if not tracked_object in object_config['filters']:
object_config['filters'][tracked_object] = {}
return object_config
OBJECTS_SCHEMA = vol.Schema(vol.All(filters_for_all_tracked_objects,
{
vol.Optional('track', default=['person']): [str],
vol.Optional('filters', default = {}): FILTER_SCHEMA.extend({ str: {vol.Optional('min_score', default=0.5): float}})
}
))
def each_role_used_once(inputs):
roles = [role for i in inputs for role in i['roles']]
roles_set = set(roles)
if len(roles) > len(roles_set):
raise ValueError
return inputs
CAMERA_FFMPEG_SCHEMA = vol.Schema(
{
vol.Required('inputs'): vol.All([{
vol.Required('path'): str,
vol.Required('roles'): ['detect', 'clips', 'record', 'rtmp'],
'global_args': vol.Any(str, [str]),
'hwaccel_args': vol.Any(str, [str]),
'input_args': vol.Any(str, [str]),
}], vol.Msg(each_role_used_once, msg="Each input role may only be used once")),
'output_args': {
vol.Optional('detect', default=DETECT_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('record', default=RECORD_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('clips', default=SAVE_CLIPS_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
vol.Optional('rtmp', default=RTMP_FFMPEG_OUTPUT_ARGS_DEFAULT): vol.Any(str, [str]),
}
}
)
def ensure_zones_and_cameras_have_different_names(cameras):
zones = [zone for camera in cameras.values() for zone in camera['zones'].keys()]
for zone in zones:
if zone in cameras.keys():
raise ValueError
return cameras
CAMERAS_SCHEMA = vol.Schema(vol.All(
{
str: {
vol.Required('ffmpeg'): CAMERA_FFMPEG_SCHEMA,
vol.Required('height'): int,
vol.Required('width'): int,
'fps': int,
'mask': vol.Any(str, [str]),
vol.Optional('best_image_timeout', default=60): int,
vol.Optional('zones', default={}): {
str: {
vol.Required('coordinates'): vol.Any(str, [str]),
vol.Optional('filters', default={}): FILTER_SCHEMA
}
},
vol.Optional('save_clips', default={}): {
vol.Optional('enabled', default=False): bool,
vol.Optional('pre_capture', default=5): int,
vol.Optional('post_capture', default=5): int,
'objects': [str],
vol.Optional('retain', default={}): SAVE_CLIPS_RETAIN_SCHEMA,
},
vol.Optional('record', default={}): {
'enabled': bool,
'retain_days': int,
},
vol.Optional('rtmp', default={}): {
vol.Required('enabled', default=True): bool,
},
vol.Optional('snapshots', default={}): {
vol.Optional('show_timestamp', default=True): bool,
vol.Optional('draw_zones', default=False): bool,
vol.Optional('draw_bounding_boxes', default=True): bool,
vol.Optional('crop_to_region', default=True): bool,
vol.Optional('height', default=175): int
},
'objects': OBJECTS_SCHEMA,
vol.Optional('motion', default={}): MOTION_SCHEMA,
vol.Optional('detect', default={}): DETECT_SCHEMA
}
}, vol.Msg(ensure_zones_and_cameras_have_different_names, msg='Zones cannot share names with cameras'))
)
FRIGATE_CONFIG_SCHEMA = vol.Schema(
{
vol.Optional('database', default={}): {
vol.Optional('path', default=os.path.join(CLIPS_DIR, 'frigate.db')): str
},
vol.Optional('model', default={'width': 320, 'height': 320}): {
vol.Required('width'): int,
vol.Required('height'): int
},
vol.Optional('detectors', default=DEFAULT_DETECTORS): DETECTORS_SCHEMA,
'mqtt': MQTT_SCHEMA,
vol.Optional('logger', default={'default': 'info', 'logs': {}}): {
vol.Optional('default', default='info'): vol.In(['info', 'debug', 'warning', 'error', 'critical']),
vol.Optional('logs', default={}): {str: vol.In(['info', 'debug', 'warning', 'error', 'critical']) }
},
vol.Optional('save_clips', default={}): SAVE_CLIPS_SCHEMA,
vol.Optional('record', default={}): {
vol.Optional('enabled', default=False): bool,
vol.Optional('retain_days', default=30): int,
},
vol.Optional('ffmpeg', default={}): GLOBAL_FFMPEG_SCHEMA,
vol.Optional('objects', default={}): OBJECTS_SCHEMA,
vol.Optional('motion', default={}): MOTION_SCHEMA,
vol.Optional('detect', default={}): DETECT_SCHEMA,
vol.Required('cameras', default={}): CAMERAS_SCHEMA
}
)
class DatabaseConfig():
def __init__(self, config):
self._path = config['path']
@property
def path(self):
return self._path
def to_dict(self):
return {
'path': self.path
}
class ModelConfig():
def __init__(self, config):
self._width = config['width']
self._height = config['height']
@property
def width(self):
return self._width
@property
def height(self):
return self._height
def to_dict(self):
return {
'width': self.width,
'height': self.height
}
class DetectorConfig():
def __init__(self, config):
self._type = config['type']
self._device = config['device']
self._num_threads = config['num_threads']
@property
def type(self):
return self._type
@property
def device(self):
return self._device
@property
def num_threads(self):
return self._num_threads
def to_dict(self):
return {
'type': self.type,
'device': self.device,
'num_threads': self.num_threads
}
class LoggerConfig():
def __init__(self, config):
self._default = config['default'].upper()
self._logs = {k: v.upper() for k, v in config['logs'].items()}
@property
def default(self):
return self._default
@property
def logs(self):
return self._logs
def to_dict(self):
return {
'default': self.default,
'logs': self.logs
}
class MqttConfig():
def __init__(self, config):
self._host = config['host']
self._port = config['port']
self._topic_prefix = config['topic_prefix']
self._client_id = config['client_id']
self._user = config.get('user')
self._password = config.get('password')
@property
def host(self):
return self._host
@property
def port(self):
return self._port
@property
def topic_prefix(self):
return self._topic_prefix
@property
def client_id(self):
return self._client_id
@property
def user(self):
return self._user
@property
def password(self):
return self._password
def to_dict(self):
return {
'host': self.host,
'port': self.port,
'topic_prefix': self.topic_prefix,
'client_id': self.client_id,
'user': self.user
}
class CameraInput():
def __init__(self, global_config, ffmpeg_input):
self._path = ffmpeg_input['path']
self._roles = ffmpeg_input['roles']
self._global_args = ffmpeg_input.get('global_args', global_config['global_args'])
self._hwaccel_args = ffmpeg_input.get('hwaccel_args', global_config['hwaccel_args'])
self._input_args = ffmpeg_input.get('input_args', global_config['input_args'])
@property
def path(self):
return self._path
@property
def roles(self):
return self._roles
@property
def global_args(self):
return self._global_args if isinstance(self._global_args, list) else self._global_args.split(' ')
@property
def hwaccel_args(self):
return self._hwaccel_args if isinstance(self._hwaccel_args, list) else self._hwaccel_args.split(' ')
@property
def input_args(self):
return self._input_args if isinstance(self._input_args, list) else self._input_args.split(' ')
class CameraFfmpegConfig():
def __init__(self, global_config, config):
self._inputs = [CameraInput(global_config, i) for i in config['inputs']]
self._output_args = config.get('output_args', global_config['output_args'])
@property
def inputs(self):
return self._inputs
@property
def output_args(self):
return {k: v if isinstance(v, list) else v.split(' ') for k, v in self._output_args.items()}
class SaveClipsRetainConfig():
def __init__(self, global_config, config):
self._default = config.get('default', global_config.get('default'))
self._objects = config.get('objects', global_config.get('objects', {}))
@property
def default(self):
return self._default
@property
def objects(self):
return self._objects
def to_dict(self):
return {
'default': self.default,
'objects': self.objects
}
class SaveClipsConfig():
def __init__(self, config):
self._max_seconds = config['max_seconds']
self._tmpfs_cache_size = config.get('tmpfs_cache_size', '').strip()
self._retain = SaveClipsRetainConfig(config['retain'], config['retain'])
@property
def max_seconds(self):
return self._max_seconds
@property
def tmpfs_cache_size(self):
return self._tmpfs_cache_size
@property
def retain(self):
return self._retain
def to_dict(self):
return {
'max_seconds': self.max_seconds,
'tmpfs_cache_size': self.tmpfs_cache_size,
'retain': self.retain.to_dict()
}
class RecordConfig():
def __init__(self, global_config, config):
self._enabled = config.get('enabled', global_config['enabled'])
self._retain_days = config.get('retain_days', global_config['retain_days'])
@property
def enabled(self):
return self._enabled
@property
def retain_days(self):
return self._retain_days
def to_dict(self):
return {
'enabled': self.enabled,
'retain_days': self.retain_days,
}
class FilterConfig():
def __init__(self, config):
self._min_area = config['min_area']
self._max_area = config['max_area']
self._threshold = config['threshold']
self._min_score = config.get('min_score')
@property
def min_area(self):
return self._min_area
@property
def max_area(self):
return self._max_area
@property
def threshold(self):
return self._threshold
@property
def min_score(self):
return self._min_score
def to_dict(self):
return {
'min_area': self.min_area,
'max_area': self.max_area,
'threshold': self.threshold,
'min_score': self.min_score
}
class ObjectConfig():
def __init__(self, global_config, config):
self._track = config.get('track', global_config['track'])
if 'filters' in config:
self._filters = { name: FilterConfig(c) for name, c in config['filters'].items() }
else:
self._filters = { name: FilterConfig(c) for name, c in global_config['filters'].items() }
@property
def track(self):
return self._track
@property
def filters(self) -> Dict[str, FilterConfig]:
return self._filters
def to_dict(self):
return {
'track': self.track,
'filters': { k: f.to_dict() for k, f in self.filters.items() }
}
class CameraSnapshotsConfig():
def __init__(self, config):
self._show_timestamp = config['show_timestamp']
self._draw_zones = config['draw_zones']
self._draw_bounding_boxes = config['draw_bounding_boxes']
self._crop_to_region = config['crop_to_region']
self._height = config.get('height')
@property
def show_timestamp(self):
return self._show_timestamp
@property
def draw_zones(self):
return self._draw_zones
@property
def draw_bounding_boxes(self):
return self._draw_bounding_boxes
@property
def crop_to_region(self):
return self._crop_to_region
@property
def height(self):
return self._height
def to_dict(self):
return {
'show_timestamp': self.show_timestamp,
'draw_zones': self.draw_zones,
'draw_bounding_boxes': self.draw_bounding_boxes,
'crop_to_region': self.crop_to_region,
'height': self.height
}
class CameraSaveClipsConfig():
def __init__(self, global_config, config):
self._enabled = config['enabled']
self._pre_capture = config['pre_capture']
self._post_capture = config['post_capture']
self._objects = config.get('objects', global_config['objects']['track'])
self._retain = SaveClipsRetainConfig(global_config['save_clips']['retain'], config['retain'])
@property
def enabled(self):
return self._enabled
@property
def pre_capture(self):
return self._pre_capture
@property
def post_capture(self):
return self._post_capture
@property
def objects(self):
return self._objects
@property
def retain(self):
return self._retain
def to_dict(self):
return {
'enabled': self.enabled,
'pre_capture': self.pre_capture,
'post_capture': self.post_capture,
'objects': self.objects,
'retain': self.retain.to_dict()
}
class CameraRtmpConfig():
def __init__(self, global_config, config):
self._enabled = config['enabled']
@property
def enabled(self):
return self._enabled
def to_dict(self):
return {
'enabled': self.enabled,
}
class MotionConfig():
def __init__(self, global_config, config, camera_height: int):
self._threshold = config.get('threshold', global_config.get('threshold', 25))
self._contour_area = config.get('contour_area', global_config.get('contour_area', 100))
self._delta_alpha = config.get('delta_alpha', global_config.get('delta_alpha', 0.2))
self._frame_alpha = config.get('frame_alpha', global_config.get('frame_alpha', 0.2))
self._frame_height = config.get('frame_height', global_config.get('frame_height', camera_height//6))
@property
def threshold(self):
return self._threshold
@property
def contour_area(self):
return self._contour_area
@property
def delta_alpha(self):
return self._delta_alpha
@property
def frame_alpha(self):
return self._frame_alpha
@property
def frame_height(self):
return self._frame_height
def to_dict(self):
return {
'threshold': self.threshold,
'contour_area': self.contour_area,
'delta_alpha': self.delta_alpha,
'frame_alpha': self.frame_alpha,
'frame_height': self.frame_height,
}
class DetectConfig():
def __init__(self, global_config, config, camera_fps):
self._max_disappeared = config.get('max_disappeared', global_config.get('max_disappeared', camera_fps*2))
@property
def max_disappeared(self):
return self._max_disappeared
def to_dict(self):
return {
'max_disappeared': self._max_disappeared,
}
class ZoneConfig():
def __init__(self, name, config):
self._coordinates = config['coordinates']
self._filters = { name: FilterConfig(c) for name, c in config['filters'].items() }
if isinstance(self._coordinates, list):
self._contour = np.array([[int(p.split(',')[0]), int(p.split(',')[1])] for p in self._coordinates])
elif isinstance(self._coordinates, str):
points = self._coordinates.split(',')
self._contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
else:
print(f"Unable to parse zone coordinates for {name}")
self._contour = np.array([])
self._color = (0,0,0)
@property
def coordinates(self):
return self._coordinates
@property
def contour(self):
return self._contour
@contour.setter
def contour(self, val):
self._contour = val
@property
def color(self):
return self._color
@color.setter
def color(self, val):
self._color = val
@property
def filters(self):
return self._filters
def to_dict(self):
return {
'filters': {k: f.to_dict() for k, f in self.filters.items()}
}
class CameraConfig():
def __init__(self, name, config, global_config):
self._name = name
self._ffmpeg = CameraFfmpegConfig(global_config['ffmpeg'], config['ffmpeg'])
self._height = config.get('height')
self._width = config.get('width')
self._frame_shape = (self._height, self._width)
self._frame_shape_yuv = (self._frame_shape[0]*3//2, self._frame_shape[1])
self._fps = config.get('fps')
self._mask = self._create_mask(config.get('mask'))
self._best_image_timeout = config['best_image_timeout']
self._zones = { name: ZoneConfig(name, z) for name, z in config['zones'].items() }
self._save_clips = CameraSaveClipsConfig(global_config, config['save_clips'])
self._record = RecordConfig(global_config['record'], config['record'])
self._rtmp = CameraRtmpConfig(global_config, config['rtmp'])
self._snapshots = CameraSnapshotsConfig(config['snapshots'])
self._objects = ObjectConfig(global_config['objects'], config.get('objects', {}))
self._motion = MotionConfig(global_config['motion'], config['motion'], self._height)
self._detect = DetectConfig(global_config['detect'], config['detect'], config.get('fps', 5))
self._ffmpeg_cmds = []
for ffmpeg_input in self._ffmpeg.inputs:
ffmpeg_cmd = self._get_ffmpeg_cmd(ffmpeg_input)
if ffmpeg_cmd is None:
continue
self._ffmpeg_cmds.append({
'roles': ffmpeg_input.roles,
'cmd': ffmpeg_cmd
})
self._set_zone_colors(self._zones)
def _create_mask(self, mask):
mask_img = np.zeros(self.frame_shape, np.uint8)
mask_img[:] = 255
if isinstance(mask, list):
for m in mask:
self._add_mask(m, mask_img)
elif isinstance(mask, str):
self._add_mask(mask, mask_img)
return mask_img
def _add_mask(self, mask, mask_img):
if mask.startswith('poly,'):
points = mask.split(',')[1:]
contour = np.array([[int(points[i]), int(points[i+1])] for i in range(0, len(points), 2)])
cv2.fillPoly(mask_img, pts=[contour], color=(0))
else:
mask_file = cv2.imread(f"/config/{mask}", cv2.IMREAD_GRAYSCALE)
if not mask_file.size == 0:
mask_img[np.where(mask_file==[0])] = [0]
def _get_ffmpeg_cmd(self, ffmpeg_input):
ffmpeg_output_args = []
if 'detect' in ffmpeg_input.roles:
ffmpeg_output_args = self.ffmpeg.output_args['detect'] + ffmpeg_output_args + ['pipe:']
if self.fps:
ffmpeg_output_args = ["-r", str(self.fps)] + ffmpeg_output_args
if 'rtmp' in ffmpeg_input.roles and self.rtmp.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['rtmp'] + [
f"rtmp://127.0.0.1/live/{self.name}"
] + ffmpeg_output_args
if 'clips' in ffmpeg_input.roles and self.save_clips.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['clips'] + [
f"{os.path.join(CACHE_DIR, self.name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
if 'record' in ffmpeg_input.roles and self.record.enabled:
ffmpeg_output_args = self.ffmpeg.output_args['record'] + [
f"{os.path.join(RECORD_DIR, self.name)}-%Y%m%d%H%M%S.mp4"
] + ffmpeg_output_args
# if there arent any outputs enabled for this input
if len(ffmpeg_output_args) == 0:
return None
cmd = (['ffmpeg'] +
ffmpeg_input.global_args +
ffmpeg_input.hwaccel_args +
ffmpeg_input.input_args +
['-i', ffmpeg_input.path] +
ffmpeg_output_args)
return [part for part in cmd if part != '']
def _set_zone_colors(self, zones: Dict[str, ZoneConfig]):
# set colors for zones
all_zone_names = zones.keys()
zone_colors = {}
colors = plt.cm.get_cmap('tab10', len(all_zone_names))
for i, zone in enumerate(all_zone_names):
zone_colors[zone] = tuple(int(round(255 * c)) for c in colors(i)[:3])
for name, zone in zones.items():
zone.color = zone_colors[name]
@property
def name(self):
return self._name
@property
def ffmpeg(self):
return self._ffmpeg
@property
def height(self):
return self._height
@property
def width(self):
return self._width
@property
def fps(self):
return self._fps
@property
def mask(self):
return self._mask
@property
def best_image_timeout(self):
return self._best_image_timeout
@property
def zones(self)-> Dict[str, ZoneConfig]:
return self._zones
@property
def save_clips(self):
return self._save_clips
@property
def record(self):
return self._record
@property
def rtmp(self):
return self._rtmp
@property
def snapshots(self):
return self._snapshots
@property
def objects(self):
return self._objects
@property
def motion(self):
return self._motion
@property
def detect(self):
return self._detect
@property
def frame_shape(self):
return self._frame_shape
@property
def frame_shape_yuv(self):
return self._frame_shape_yuv
@property
def ffmpeg_cmds(self):
return self._ffmpeg_cmds
def to_dict(self):
return {
'name': self.name,
'height': self.height,
'width': self.width,
'fps': self.fps,
'best_image_timeout': self.best_image_timeout,
'zones': {k: z.to_dict() for k, z in self.zones.items()},
'save_clips': self.save_clips.to_dict(),
'record': self.record.to_dict(),
'rtmp': self.rtmp.to_dict(),
'snapshots': self.snapshots.to_dict(),
'objects': self.objects.to_dict(),
'motion': self.motion.to_dict(),
'detect': self.detect.to_dict(),
'frame_shape': self.frame_shape,
'ffmpeg_cmds': [{'roles': c['roles'], 'cmd': ' '.join(c['cmd'])} for c in self.ffmpeg_cmds],
}
class FrigateConfig():
def __init__(self, config_file=None, config=None):
if config is None and config_file is None:
raise ValueError('config or config_file must be defined')
elif not config_file is None:
config = self._load_file(config_file)
config = FRIGATE_CONFIG_SCHEMA(config)
config = self._sub_env_vars(config)
self._database = DatabaseConfig(config['database'])
self._model = ModelConfig(config['model'])
self._detectors = { name: DetectorConfig(d) for name, d in config['detectors'].items() }
self._mqtt = MqttConfig(config['mqtt'])
self._save_clips = SaveClipsConfig(config['save_clips'])
self._cameras = { name: CameraConfig(name, c, config) for name, c in config['cameras'].items() }
self._logger = LoggerConfig(config['logger'])
def _sub_env_vars(self, config):
frigate_env_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
if 'password' in config['mqtt']:
config['mqtt']['password'] = config['mqtt']['password'].format(**frigate_env_vars)
for camera in config['cameras'].values():
for i in camera['ffmpeg']['inputs']:
i['path'] = i['path'].format(**frigate_env_vars)
return config
def _load_file(self, config_file):
with open(config_file) as f:
raw_config = f.read()
if config_file.endswith(".yml"):
config = yaml.safe_load(raw_config)
elif config_file.endswith(".json"):
config = json.loads(raw_config)
return config
def to_dict(self):
return {
'database': self.database.to_dict(),
'model': self.model.to_dict(),
'detectors': {k: d.to_dict() for k, d in self.detectors.items()},
'mqtt': self.mqtt.to_dict(),
'save_clips': self.save_clips.to_dict(),
'cameras': {k: c.to_dict() for k, c in self.cameras.items()},
'logger': self.logger.to_dict()
}
@property
def database(self):
return self._database
@property
def model(self):
return self._model
@property
def detectors(self) -> Dict[str, DetectorConfig]:
return self._detectors
@property
def logger(self):
return self._logger
@property
def mqtt(self):
return self._mqtt
@property
def save_clips(self):
return self._save_clips
@property
def cameras(self) -> Dict[str, CameraConfig]:
return self._cameras

3
frigate/const.py Normal file
View File

@@ -0,0 +1,3 @@
CLIPS_DIR = '/media/frigate/clips'
RECORD_DIR = '/media/frigate/recordings'
CACHE_DIR = '/tmp/cache'

225
frigate/edgetpu.py Normal file
View File

@@ -0,0 +1,225 @@
import datetime
import hashlib
import logging
import multiprocessing as mp
import os
import queue
import threading
import signal
from abc import ABC, abstractmethod
from multiprocessing.connection import Connection
from typing import Dict
import numpy as np
import tflite_runtime.interpreter as tflite
from tflite_runtime.interpreter import load_delegate
from frigate.util import EventsPerSecond, SharedMemoryFrameManager, listen
logger = logging.getLogger(__name__)
def load_labels(path, encoding='utf-8'):
"""Loads labels from file (with or without index numbers).
Args:
path: path to label file.
encoding: label file encoding.
Returns:
Dictionary mapping indices to labels.
"""
with open(path, 'r', encoding=encoding) as f:
lines = f.readlines()
if not lines:
return {}
if lines[0].split(' ', maxsplit=1)[0].isdigit():
pairs = [line.split(' ', maxsplit=1) for line in lines]
return {int(index): label.strip() for index, label in pairs}
else:
return {index: line.strip() for index, line in enumerate(lines)}
class ObjectDetector(ABC):
@abstractmethod
def detect(self, tensor_input, threshold = .4):
pass
class LocalObjectDetector(ObjectDetector):
def __init__(self, tf_device=None, num_threads=3, labels=None):
self.fps = EventsPerSecond()
if labels is None:
self.labels = {}
else:
self.labels = load_labels(labels)
device_config = {"device": "usb"}
if not tf_device is None:
device_config = {"device": tf_device}
edge_tpu_delegate = None
if tf_device != 'cpu':
try:
logger.info(f"Attempting to load TPU as {device_config['device']}")
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0', device_config)
logger.info("TPU found")
except ValueError:
logger.info("No EdgeTPU detected. Falling back to CPU.")
if edge_tpu_delegate is None:
self.interpreter = tflite.Interpreter(
model_path='/cpu_model.tflite', num_threads=num_threads)
else:
self.interpreter = tflite.Interpreter(
model_path='/edgetpu_model.tflite',
experimental_delegates=[edge_tpu_delegate])
self.interpreter.allocate_tensors()
self.tensor_input_details = self.interpreter.get_input_details()
self.tensor_output_details = self.interpreter.get_output_details()
def detect(self, tensor_input, threshold=.4):
detections = []
raw_detections = self.detect_raw(tensor_input)
for d in raw_detections:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def detect_raw(self, tensor_input):
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
self.interpreter.invoke()
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
detections = np.zeros((20,6), np.float32)
for i, score in enumerate(scores):
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
return detections
def run_detector(name: str, detection_queue: mp.Queue, out_events: Dict[str, mp.Event], avg_speed, start, model_shape, tf_device, num_threads):
threading.current_thread().name = f"detector:{name}"
logger = logging.getLogger(f"detector.{name}")
logger.info(f"Starting detection process: {os.getpid()}")
listen()
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_manager = SharedMemoryFrameManager()
object_detector = LocalObjectDetector(tf_device=tf_device, num_threads=num_threads)
outputs = {}
for name in out_events.keys():
out_shm = mp.shared_memory.SharedMemory(name=f"out-{name}", create=False)
out_np = np.ndarray((20,6), dtype=np.float32, buffer=out_shm.buf)
outputs[name] = {
'shm': out_shm,
'np': out_np
}
while True:
if stop_event.is_set():
break
try:
connection_id = detection_queue.get(timeout=5)
except queue.Empty:
continue
input_frame = frame_manager.get(connection_id, (1,model_shape[0],model_shape[1],3))
if input_frame is None:
continue
# detect and send the output
start.value = datetime.datetime.now().timestamp()
detections = object_detector.detect_raw(input_frame)
duration = datetime.datetime.now().timestamp()-start.value
outputs[connection_id]['np'][:] = detections[:]
out_events[connection_id].set()
start.value = 0.0
avg_speed.value = (avg_speed.value*9 + duration)/10
class EdgeTPUProcess():
def __init__(self, name, detection_queue, out_events, model_shape, tf_device=None, num_threads=3):
self.name = name
self.out_events = out_events
self.detection_queue = detection_queue
self.avg_inference_speed = mp.Value('d', 0.01)
self.detection_start = mp.Value('d', 0.0)
self.detect_process = None
self.model_shape = model_shape
self.tf_device = tf_device
self.num_threads = num_threads
self.start_or_restart()
def stop(self):
self.detect_process.terminate()
logging.info("Waiting for detection process to exit gracefully...")
self.detect_process.join(timeout=30)
if self.detect_process.exitcode is None:
logging.info("Detection process didnt exit. Force killing...")
self.detect_process.kill()
self.detect_process.join()
def start_or_restart(self):
self.detection_start.value = 0.0
if (not self.detect_process is None) and self.detect_process.is_alive():
self.stop()
self.detect_process = mp.Process(target=run_detector, name=f"detector:{self.name}", args=(self.name, self.detection_queue, self.out_events, self.avg_inference_speed, self.detection_start, self.model_shape, self.tf_device, self.num_threads))
self.detect_process.daemon = True
self.detect_process.start()
class RemoteObjectDetector():
def __init__(self, name, labels, detection_queue, event, model_shape):
self.labels = load_labels(labels)
self.name = name
self.fps = EventsPerSecond()
self.detection_queue = detection_queue
self.event = event
self.shm = mp.shared_memory.SharedMemory(name=self.name, create=False)
self.np_shm = np.ndarray((1,model_shape[0],model_shape[1],3), dtype=np.uint8, buffer=self.shm.buf)
self.out_shm = mp.shared_memory.SharedMemory(name=f"out-{self.name}", create=False)
self.out_np_shm = np.ndarray((20,6), dtype=np.float32, buffer=self.out_shm.buf)
def detect(self, tensor_input, threshold=.4):
detections = []
# copy input to shared memory
self.np_shm[:] = tensor_input[:]
self.event.clear()
self.detection_queue.put(self.name)
result = self.event.wait(timeout=10.0)
# if it timed out
if result is None:
return detections
for d in self.out_np_shm:
if d[1] < threshold:
break
detections.append((
self.labels[int(d[0])],
float(d[1]),
(d[2], d[3], d[4], d[5])
))
self.fps.update()
return detections
def cleanup(self):
self.shm.unlink()
self.out_shm.unlink()

289
frigate/events.py Normal file
View File

@@ -0,0 +1,289 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.models import Event
from peewee import fn
logger = logging.getLogger(__name__)
class EventProcessor(threading.Thread):
def __init__(self, config, camera_processes, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = 'event_processor'
self.config = config
self.camera_processes = camera_processes
self.cached_clips = {}
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.events_in_process = {}
self.stop_event = stop_event
def refresh_cache(self):
cached_files = os.listdir(CACHE_DIR)
files_in_use = []
for process in psutil.process_iter():
try:
if process.name() != 'ffmpeg':
continue
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(CACHE_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in cached_files:
if f in files_in_use or f in self.cached_clips:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(CACHE_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(CACHE_DIR,f))
continue
self.cached_clips[f] = {
'path': f,
'camera': camera,
'start_time': start_time.timestamp(),
'duration': duration
}
if len(self.events_in_process) > 0:
earliest_event = min(self.events_in_process.values(), key=lambda x:x['start_time'])['start_time']
else:
earliest_event = datetime.datetime.now().timestamp()
# if the earliest event exceeds the max seconds, cap it
max_seconds = self.config.save_clips.max_seconds
if datetime.datetime.now().timestamp()-earliest_event > max_seconds:
earliest_event = datetime.datetime.now().timestamp()-max_seconds
for f, data in list(self.cached_clips.items()):
if earliest_event-90 > data['start_time']+data['duration']:
del self.cached_clips[f]
os.remove(os.path.join(CACHE_DIR,f))
def create_clip(self, camera, event_data, pre_capture, post_capture):
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
while len(sorted_clips) == 0 or sorted_clips[-1]['start_time'] + sorted_clips[-1]['duration'] < event_data['end_time']+post_capture:
time.sleep(5)
self.refresh_cache()
# get all clips from the camera with the event sorted
sorted_clips = sorted([c for c in self.cached_clips.values() if c['camera'] == camera], key = lambda i: i['start_time'])
playlist_start = event_data['start_time']-pre_capture
playlist_end = event_data['end_time']+post_capture
playlist_lines = []
for clip in sorted_clips:
# clip ends before playlist start time, skip
if clip['start_time']+clip['duration'] < playlist_start:
continue
# clip starts after playlist ends, finish
if clip['start_time'] > playlist_end:
break
playlist_lines.append(f"file '{os.path.join(CACHE_DIR,clip['path'])}'")
# if this is the starting clip, add an inpoint
if clip['start_time'] < playlist_start:
playlist_lines.append(f"inpoint {int(playlist_start-clip['start_time'])}")
# if this is the ending clip, add an outpoint
if clip['start_time']+clip['duration'] > playlist_end:
playlist_lines.append(f"outpoint {int(playlist_end-clip['start_time'])}")
clip_name = f"{camera}-{event_data['id']}"
ffmpeg_cmd = [
'ffmpeg',
'-y',
'-protocol_whitelist',
'pipe,file',
'-f',
'concat',
'-safe',
'0',
'-i',
'-',
'-c',
'copy',
'-movflags',
'+faststart',
f"{os.path.join(CLIPS_DIR, clip_name)}.mp4"
]
p = sp.run(ffmpeg_cmd, input="\n".join(playlist_lines), encoding='ascii', capture_output=True)
if p.returncode != 0:
logger.error(p.stderr)
return
def run(self):
while True:
if self.stop_event.is_set():
logger.info(f"Exiting event processor...")
break
try:
event_type, camera, event_data = self.event_queue.get(timeout=10)
except queue.Empty:
if not self.stop_event.is_set():
self.refresh_cache()
continue
self.refresh_cache()
save_clips_config = self.config.cameras[camera].save_clips
# if save clips is not enabled for this camera, just continue
if not save_clips_config.enabled:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
# if specific objects are listed for this camera, only save clips for them
if not event_data['label'] in save_clips_config.objects:
if event_type == 'end':
self.event_processed_queue.put((event_data['id'], camera))
continue
if event_type == 'start':
self.events_in_process[event_data['id']] = event_data
if event_type == 'end':
if len(self.cached_clips) > 0 and not event_data['false_positive']:
self.create_clip(camera, event_data, save_clips_config.pre_capture, save_clips_config.post_capture)
Event.create(
id=event_data['id'],
label=event_data['label'],
camera=camera,
start_time=event_data['start_time'],
end_time=event_data['end_time'],
top_score=event_data['top_score'],
false_positive=event_data['false_positive'],
zones=list(event_data['entered_zones']),
thumbnail=event_data['thumbnail']
)
del self.events_in_process[event_data['id']]
self.event_processed_queue.put((event_data['id'], camera))
class EventCleanup(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'event_cleanup'
self.config = config
self.stop_event = stop_event
def run(self):
counter = 0
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting event cleanup...")
break
# only expire events every 10 minutes, but check for stop events every 10 seconds
time.sleep(10)
counter = counter + 1
if counter < 60:
continue
counter = 0
camera_keys = list(self.config.cameras.keys())
# Expire events from unlisted cameras based on the global config
retain_config = self.config.save_clips.retain
distinct_labels = (Event.select(Event.label)
.where(Event.camera.not_in(camera_keys))
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where(Event.camera.not_in(camera_keys),
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()
# Expire events from cameras based on the camera config
for name, camera in self.config.cameras.items():
retain_config = camera.save_clips.retain
# get distinct objects in database for this camera
distinct_labels = (Event.select(Event.label)
.where(Event.camera == name)
.distinct())
# loop over object types in db
for l in distinct_labels:
# get expiration time for this label
expire_days = retain_config.objects.get(l.label, retain_config.default)
expire_after = (datetime.datetime.now() - datetime.timedelta(days=expire_days)).timestamp()
# grab all events after specific time
expired_events = (
Event.select()
.where(Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
# delete the grabbed clips from disk
for event in expired_events:
clip_name = f"{event.camera}-{event.id}"
clip = Path(f"{os.path.join(CLIPS_DIR, clip_name)}.mp4")
clip.unlink(missing_ok=True)
# delete the event for this type from the db
delete_query = (
Event.delete()
.where( Event.camera == name,
Event.start_time < expire_after,
Event.label == l.label)
)
delete_query.execute()

269
frigate/http.py Normal file
View File

@@ -0,0 +1,269 @@
import base64
import datetime
import logging
import os
import time
from functools import reduce
import cv2
import numpy as np
from flask import (Blueprint, Flask, Response, current_app, jsonify,
make_response, request)
from peewee import SqliteDatabase, operator, fn, DoesNotExist
from playhouse.shortcuts import model_to_dict
from frigate.models import Event
from frigate.util import calculate_region
from frigate.version import VERSION
logger = logging.getLogger(__name__)
bp = Blueprint('frigate', __name__)
def create_app(frigate_config, database: SqliteDatabase, camera_metrics, detectors, detected_frames_processor):
app = Flask(__name__)
@app.before_request
def _db_connect():
database.connect()
@app.teardown_request
def _db_close(exc):
if not database.is_closed():
database.close()
app.frigate_config = frigate_config
app.camera_metrics = camera_metrics
app.detectors = detectors
app.detected_frames_processor = detected_frames_processor
app.register_blueprint(bp)
return app
@bp.route('/')
def is_healthy():
return "Frigate is running. Alive and healthy!"
@bp.route('/events/summary')
def events_summary():
groups = (
Event
.select(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')).alias('day'),
Event.zones,
fn.COUNT(Event.id).alias('count')
)
.group_by(
Event.camera,
Event.label,
fn.strftime('%Y-%m-%d', fn.datetime(Event.start_time, 'unixepoch', 'localtime')),
Event.zones
)
)
return jsonify([e for e in groups.dicts()])
@bp.route('/events/<id>')
def event(id):
try:
return model_to_dict(Event.get(Event.id == id))
except DoesNotExist:
return "Event not found", 404
@bp.route('/events/<id>/snapshot.jpg')
def event_snapshot(id):
format = request.args.get('format', 'ios')
thumbnail_bytes = None
try:
event = Event.get(Event.id == id)
thumbnail_bytes = base64.b64decode(event.thumbnail)
except DoesNotExist:
# see if the object is currently being tracked
try:
for camera_state in current_app.detected_frames_processor.camera_states.values():
if id in camera_state.tracked_objects:
tracked_obj = camera_state.tracked_objects.get(id)
if not tracked_obj is None:
thumbnail_bytes = tracked_obj.get_jpg_bytes()
except:
return "Event not found", 404
if thumbnail_bytes is None:
return "Event not found", 404
# android notifications prefer a 2:1 ratio
if format == 'android':
jpg_as_np = np.frombuffer(thumbnail_bytes, dtype=np.uint8)
img = cv2.imdecode(jpg_as_np, flags=1)
thumbnail = cv2.copyMakeBorder(img, 0, 0, int(img.shape[1]*0.5), int(img.shape[1]*0.5), cv2.BORDER_CONSTANT, (0,0,0))
ret, jpg = cv2.imencode('.jpg', thumbnail)
thumbnail_bytes = jpg.tobytes()
response = make_response(thumbnail_bytes)
response.headers['Content-Type'] = 'image/jpg'
return response
@bp.route('/events')
def events():
limit = request.args.get('limit', 100)
camera = request.args.get('camera')
label = request.args.get('label')
zone = request.args.get('zone')
after = request.args.get('after', type=int)
before = request.args.get('before', type=int)
clauses = []
if camera:
clauses.append((Event.camera == camera))
if label:
clauses.append((Event.label == label))
if zone:
clauses.append((Event.zones.cast('text') % f"*\"{zone}\"*"))
if after:
clauses.append((Event.start_time >= after))
if before:
clauses.append((Event.start_time <= before))
if len(clauses) == 0:
clauses.append((1 == 1))
events = (Event.select()
.where(reduce(operator.and_, clauses))
.order_by(Event.start_time.desc())
.limit(limit))
return jsonify([model_to_dict(e) for e in events])
@bp.route('/config')
def config():
return jsonify(current_app.frigate_config.to_dict())
@bp.route('/version')
def version():
return VERSION
@bp.route('/stats')
def stats():
camera_metrics = current_app.camera_metrics
stats = {}
total_detection_fps = 0
for name, camera_stats in camera_metrics.items():
total_detection_fps += camera_stats['detection_fps'].value
stats[name] = {
'camera_fps': round(camera_stats['camera_fps'].value, 2),
'process_fps': round(camera_stats['process_fps'].value, 2),
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
'detection_fps': round(camera_stats['detection_fps'].value, 2),
'pid': camera_stats['process'].pid,
'capture_pid': camera_stats['capture_process'].pid
}
stats['detectors'] = {}
for name, detector in current_app.detectors.items():
stats['detectors'][name] = {
'inference_speed': round(detector.avg_inference_speed.value*1000, 2),
'detection_start': detector.detection_start.value,
'pid': detector.detect_process.pid
}
stats['detection_fps'] = round(total_detection_fps, 2)
return jsonify(stats)
@bp.route('/<camera_name>/<label>/best.jpg')
def best(camera_name, label):
if camera_name in current_app.frigate_config.cameras:
best_object = current_app.detected_frames_processor.get_best(camera_name, label)
best_frame = best_object.get('frame')
if best_frame is None:
best_frame = np.zeros((720,1280,3), np.uint8)
else:
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_YUV2BGR_I420)
crop = bool(request.args.get('crop', 0, type=int))
if crop:
box = best_object.get('box', (0,0,300,300))
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
height = int(request.args.get('h', str(best_frame.shape[0])))
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', best_frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>')
def mjpeg_feed(camera_name):
fps = int(request.args.get('fps', '3'))
height = int(request.args.get('h', '360'))
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# return a multipart response
return Response(imagestream(current_app.detected_frames_processor, camera_name, fps, height, draw_options),
mimetype='multipart/x-mixed-replace; boundary=frame')
else:
return "Camera named {} not found".format(camera_name), 404
@bp.route('/<camera_name>/latest.jpg')
def latest_frame(camera_name):
draw_options = {
'bounding_boxes': request.args.get('bbox', type=int),
'timestamp': request.args.get('timestamp', type=int),
'zones': request.args.get('zones', type=int),
'mask': request.args.get('mask', type=int),
'motion_boxes': request.args.get('motion', type=int),
'regions': request.args.get('regions', type=int),
}
if camera_name in current_app.frigate_config.cameras:
# max out at specified FPS
frame = current_app.detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((720,1280,3), np.uint8)
height = int(request.args.get('h', str(frame.shape[0])))
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
ret, jpg = cv2.imencode('.jpg', frame)
response = make_response(jpg.tobytes())
response.headers['Content-Type'] = 'image/jpg'
return response
else:
return "Camera named {} not found".format(camera_name), 404
def imagestream(detected_frames_processor, camera_name, fps, height, draw_options):
while True:
# max out at specified FPS
time.sleep(1/fps)
frame = detected_frames_processor.get_current_frame(camera_name, draw_options)
if frame is None:
frame = np.zeros((height,int(height*16/9),3), np.uint8)
width = int(height*frame.shape[1]/frame.shape[0])
frame = cv2.resize(frame, dsize=(width, height), interpolation=cv2.INTER_LINEAR)
ret, jpg = cv2.imencode('.jpg', frame)
yield (b'--frame\r\n'
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')

75
frigate/log.py Normal file
View File

@@ -0,0 +1,75 @@
# adapted from https://medium.com/@jonathonbao/python3-logging-with-multiprocessing-f51f460b8778
import logging
import threading
import os
import signal
import queue
import multiprocessing as mp
from logging import handlers
def listener_configurer():
root = logging.getLogger()
console_handler = logging.StreamHandler()
formatter = logging.Formatter('%(name)-30s %(levelname)-8s: %(message)s')
console_handler.setFormatter(formatter)
root.addHandler(console_handler)
root.setLevel(logging.INFO)
def root_configurer(queue):
h = handlers.QueueHandler(queue)
root = logging.getLogger()
root.addHandler(h)
root.setLevel(logging.INFO)
def log_process(log_queue):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"logger"
listener_configurer()
while True:
if stop_event.is_set() and log_queue.empty():
break
try:
record = log_queue.get(timeout=5)
except queue.Empty:
continue
logger = logging.getLogger(record.name)
logger.handle(record)
# based on https://codereview.stackexchange.com/a/17959
class LogPipe(threading.Thread):
def __init__(self, log_name, level):
"""Setup the object with a logger and a loglevel
and start the thread
"""
threading.Thread.__init__(self)
self.daemon = False
self.logger = logging.getLogger(log_name)
self.level = level
self.fdRead, self.fdWrite = os.pipe()
self.pipeReader = os.fdopen(self.fdRead)
self.start()
def fileno(self):
"""Return the write file descriptor of the pipe
"""
return self.fdWrite
def run(self):
"""Run the thread, logging everything.
"""
for line in iter(self.pipeReader.readline, ''):
self.logger.log(self.level, line.strip('\n'))
self.pipeReader.close()
def close(self):
"""Close the write end of the pipe.
"""
os.close(self.fdWrite)

14
frigate/models.py Normal file
View File

@@ -0,0 +1,14 @@
from peewee import *
from playhouse.sqlite_ext import *
class Event(Model):
id = CharField(null=False, primary_key=True, max_length=30)
label = CharField(index=True, max_length=20)
camera = CharField(index=True, max_length=20)
start_time = DateTimeField()
end_time = DateTimeField()
top_score = FloatField()
false_positive = BooleanField()
zones = JSONField()
thumbnail = TextField()

85
frigate/motion.py Normal file
View File

@@ -0,0 +1,85 @@
import cv2
import imutils
import numpy as np
from frigate.config import MotionConfig
class MotionDetector():
def __init__(self, frame_shape, mask, config: MotionConfig):
self.config = config
self.frame_shape = frame_shape
self.resize_factor = frame_shape[0]/config.frame_height
self.motion_frame_size = (config.frame_height, config.frame_height*frame_shape[1]//frame_shape[0])
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
self.motion_frame_count = 0
self.frame_counter = 0
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
self.mask = np.where(resized_mask==[0])
def detect(self, frame):
motion_boxes = []
gray = frame[0:self.frame_shape[0], 0:self.frame_shape[1]]
# resize frame
resized_frame = cv2.resize(gray, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
# TODO: can I improve the contrast of the grayscale image here?
# convert to grayscale
# resized_frame = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
# mask frame
resized_frame[self.mask] = [255]
# it takes ~30 frames to establish a baseline
# dont bother looking for motion
if self.frame_counter < 30:
self.frame_counter += 1
else:
# compare to average
frameDelta = cv2.absdiff(resized_frame, cv2.convertScaleAbs(self.avg_frame))
# compute the average delta over the past few frames
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
# register as motion, too low and a fast moving person wont be detected as motion
cv2.accumulateWeighted(frameDelta, self.avg_delta, self.config.delta_alpha)
# compute the threshold image for the current frame
# TODO: threshold
current_thresh = cv2.threshold(frameDelta, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# black out everything in the avg_delta where there isnt motion in the current frame
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
avg_delta_image = cv2.bitwise_and(avg_delta_image, current_thresh)
# then look for deltas above the threshold, but only in areas where there is a delta
# in the current frame. this prevents deltas from previous frames from being included
thresh = cv2.threshold(avg_delta_image, self.config.threshold, 255, cv2.THRESH_BINARY)[1]
# dilate the thresholded image to fill in holes, then find contours
# on thresholded image
thresh = cv2.dilate(thresh, None, iterations=2)
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
cnts = imutils.grab_contours(cnts)
# loop over the contours
for c in cnts:
# if the contour is big enough, count it as motion
contour_area = cv2.contourArea(c)
if contour_area > self.config.contour_area:
x, y, w, h = cv2.boundingRect(c)
motion_boxes.append((int(x*self.resize_factor), int(y*self.resize_factor), int((x+w)*self.resize_factor), int((y+h)*self.resize_factor)))
if len(motion_boxes) > 0:
self.motion_frame_count += 1
if self.motion_frame_count >= 10:
# only average in the current frame if the difference persists for a bit
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
else:
# when no motion, just keep averaging the frames together
cv2.accumulateWeighted(resized_frame, self.avg_frame, self.config.frame_alpha)
self.motion_frame_count = 0
return motion_boxes

View File

@@ -1,33 +1,36 @@
import json
import logging
import threading
class MqttObjectPublisher(threading.Thread):
def __init__(self, client, topic_prefix, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self.client = client
self.topic_prefix = topic_prefix
self.objects_parsed = objects_parsed
self._detected_objects = detected_objects
import paho.mqtt.client as mqtt
def run(self):
last_sent_payload = ""
while True:
from frigate.config import MqttConfig
# initialize the payload
payload = {}
logger = logging.getLogger(__name__)
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
# add all the person scores in detected objects
detected_objects = self._detected_objects.copy()
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
# if the person score is more than 100, set person to ON
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
# send message for objects if different
new_payload = json.dumps(payload, sort_keys=True)
if new_payload != last_sent_payload:
last_sent_payload = new_payload
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
def create_mqtt_client(config: MqttConfig):
client = mqtt.Client(client_id=config.client_id)
def on_connect(client, userdata, flags, rc):
threading.current_thread().name = "mqtt"
if rc != 0:
if rc == 3:
logger.error("MQTT Server unavailable")
elif rc == 4:
logger.error("MQTT Bad username or password")
elif rc == 5:
logger.error("MQTT Not authorized")
else:
logger.error("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
logger.info("MQTT connected")
client.publish(config.topic_prefix+'/available', 'online', retain=True)
client.on_connect = on_connect
client.will_set(config.topic_prefix+'/available', payload='offline', qos=1, retain=True)
if not config.user is None:
client.username_pw_set(config.user, password=config.password)
try:
client.connect(config.host, config.port, 60)
except Exception as e:
logger.error(f"Unable to connect to MQTT server: {e}")
raise
client.loop_start()
return client

View File

@@ -1,110 +0,0 @@
import datetime
import time
import cv2
import threading
import numpy as np
from edgetpu.detection.engine import DetectionEngine
from . util import tonumpyarray
# Path to frozen detection graph. This is the actual model that is used for the object detection.
PATH_TO_CKPT = '/frozen_inference_graph.pb'
# List of the strings that is used to add correct label for each box.
PATH_TO_LABELS = '/label_map.pbtext'
# Function to read labels from text files.
def ReadLabelFile(file_path):
with open(file_path, 'r') as f:
lines = f.readlines()
ret = {}
for line in lines:
pair = line.strip().split(maxsplit=1)
ret[int(pair[0])] = pair[1].strip()
return ret
class PreppedQueueProcessor(threading.Thread):
def __init__(self, cameras, prepped_frame_queue):
threading.Thread.__init__(self)
self.cameras = cameras
self.prepped_frame_queue = prepped_frame_queue
# Load the edgetpu engine and labels
self.engine = DetectionEngine(PATH_TO_CKPT)
self.labels = ReadLabelFile(PATH_TO_LABELS)
def run(self):
# process queue...
while True:
frame = self.prepped_frame_queue.get()
# Actual detection.
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
# parse and pass detected objects back to the camera
parsed_objects = []
for obj in objects:
box = obj.bounding_box.flatten().tolist()
parsed_objects.append({
'frame_time': frame['frame_time'],
'name': str(self.labels[obj.label_id]),
'score': float(obj.score),
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
})
self.cameras[frame['camera_name']].add_objects(parsed_objects)
# should this be a region class?
class FramePrepper(threading.Thread):
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
frame_lock,
region_size, region_x_offset, region_y_offset,
prepped_frame_queue):
threading.Thread.__init__(self)
self.camera_name = camera_name
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.region_size = region_size
self.region_x_offset = region_x_offset
self.region_y_offset = region_y_offset
self.prepped_frame_queue = prepped_frame_queue
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a new frame
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# make a copy of the cropped frame
with self.frame_lock:
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
frame_time = self.frame_time.value
# convert to RGB
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
# Resize to 300x300 if needed
if cropped_frame_rgb.shape != (300, 300, 3):
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
# add the frame to the queue
if not self.prepped_frame_queue.full():
self.prepped_frame_queue.put({
'camera_name': self.camera_name,
'frame_time': frame_time,
'frame': frame_expanded.flatten().copy(),
'region_size': self.region_size,
'region_x_offset': self.region_x_offset,
'region_y_offset': self.region_y_offset
})
else:
print("queue full. moving on")

View File

@@ -0,0 +1,522 @@
import copy
import base64
import datetime
import hashlib
import itertools
import json
import logging
import os
import queue
import threading
import time
from collections import Counter, defaultdict
from statistics import mean, median
from typing import Callable, Dict
import cv2
import matplotlib.pyplot as plt
import numpy as np
from frigate.config import FrigateConfig, CameraConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
from frigate.edgetpu import load_labels
from frigate.util import SharedMemoryFrameManager, draw_box_with_label, calculate_region
logger = logging.getLogger(__name__)
PATH_TO_LABELS = '/labelmap.txt'
LABELS = load_labels(PATH_TO_LABELS)
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
COLOR_MAP = {}
for key, val in LABELS.items():
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
def on_edge(box, frame_shape):
if (
box[0] == 0 or
box[1] == 0 or
box[2] == frame_shape[1]-1 or
box[3] == frame_shape[0]-1
):
return True
def is_better_thumbnail(current_thumb, new_obj, frame_shape) -> bool:
# larger is better
# cutoff images are less ideal, but they should also be smaller?
# better scores are obviously better too
# if the new_thumb is on an edge, and the current thumb is not
if on_edge(new_obj['box'], frame_shape) and not on_edge(current_thumb['box'], frame_shape):
return False
# if the score is better by more than 5%
if new_obj['score'] > current_thumb['score']+.05:
return True
# if the area is 10% larger
if new_obj['area'] > current_thumb['area']*1.1:
return True
return False
class TrackedObject():
def __init__(self, camera, camera_config: CameraConfig, frame_cache, obj_data):
self.obj_data = obj_data
self.camera = camera
self.camera_config = camera_config
self.frame_cache = frame_cache
self.current_zones = []
self.entered_zones = set()
self.false_positive = True
self.top_score = self.computed_score = 0.0
self.thumbnail_data = None
self.frame = None
self.previous = self.to_dict()
self._snapshot_jpg_time = 0
ret, jpg = cv2.imencode('.jpg', np.zeros((300,300,3), np.uint8))
self._snapshot_jpg = jpg.tobytes()
# start the score history
self.score_history = [self.obj_data['score']]
def _is_false_positive(self):
# once a true positive, always a true positive
if not self.false_positive:
return False
threshold = self.camera_config.objects.filters[self.obj_data['label']].threshold
if self.computed_score < threshold:
return True
return False
def compute_score(self):
scores = self.score_history[:]
# pad with zeros if you dont have at least 3 scores
if len(scores) < 3:
scores += [0.0]*(3 - len(scores))
return median(scores)
def update(self, current_frame_time, obj_data):
significant_update = False
self.obj_data.update(obj_data)
# if the object is not in the current frame, add a 0.0 to the score history
if self.obj_data['frame_time'] != current_frame_time:
self.score_history.append(0.0)
else:
self.score_history.append(self.obj_data['score'])
# only keep the last 10 scores
if len(self.score_history) > 10:
self.score_history = self.score_history[-10:]
# calculate if this is a false positive
self.computed_score = self.compute_score()
if self.computed_score > self.top_score:
self.top_score = self.computed_score
self.false_positive = self._is_false_positive()
if not self.false_positive:
# determine if this frame is a better thumbnail
if (
self.thumbnail_data is None
or is_better_thumbnail(self.thumbnail_data, self.obj_data, self.camera_config.frame_shape)
):
self.thumbnail_data = {
'frame_time': self.obj_data['frame_time'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'score': self.obj_data['score']
}
significant_update = True
# check zones
current_zones = []
bottom_center = (self.obj_data['centroid'][0], self.obj_data['box'][3])
# check each zone
for name, zone in self.camera_config.zones.items():
contour = zone.contour
# check if the object is in the zone
if (cv2.pointPolygonTest(contour, bottom_center, False) >= 0):
# if the object passed the filters once, dont apply again
if name in self.current_zones or not zone_filtered(self, zone.filters):
current_zones.append(name)
self.entered_zones.add(name)
# if the zones changed, signal an update
if not self.false_positive and set(self.current_zones) != set(current_zones):
significant_update = True
self.current_zones = current_zones
return significant_update
def to_dict(self, include_thumbnail: bool = False):
return {
'id': self.obj_data['id'],
'camera': self.camera,
'frame_time': self.obj_data['frame_time'],
'label': self.obj_data['label'],
'top_score': self.top_score,
'false_positive': self.false_positive,
'start_time': self.obj_data['start_time'],
'end_time': self.obj_data.get('end_time', None),
'score': self.obj_data['score'],
'box': self.obj_data['box'],
'area': self.obj_data['area'],
'region': self.obj_data['region'],
'current_zones': self.current_zones.copy(),
'entered_zones': list(self.entered_zones).copy(),
'thumbnail': base64.b64encode(self.get_jpg_bytes()).decode('utf-8') if include_thumbnail else None
}
def get_jpg_bytes(self):
if self.thumbnail_data is None or self._snapshot_jpg_time == self.thumbnail_data['frame_time']:
return self._snapshot_jpg
if not self.thumbnail_data['frame_time'] in self.frame_cache:
logger.error(f"Unable to create thumbnail for {self.obj_data['id']}")
logger.error(f"Looking for frame_time of {self.thumbnail_data['frame_time']}")
logger.error(f"Thumbnail frames: {','.join([str(k) for k in self.frame_cache.keys()])}")
return self._snapshot_jpg
# TODO: crop first to avoid converting the entire frame?
snapshot_config = self.camera_config.snapshots
best_frame = cv2.cvtColor(self.frame_cache[self.thumbnail_data['frame_time']], cv2.COLOR_YUV2BGR_I420)
if snapshot_config.draw_bounding_boxes:
thickness = 2
color = COLOR_MAP[self.obj_data['label']]
box = self.thumbnail_data['box']
draw_box_with_label(best_frame, box[0], box[1], box[2], box[3], self.obj_data['label'],
f"{int(self.thumbnail_data['score']*100)}% {int(self.thumbnail_data['area'])}", thickness=thickness, color=color)
if snapshot_config.crop_to_region:
box = self.thumbnail_data['box']
region = calculate_region(best_frame.shape, box[0], box[1], box[2], box[3], 1.1)
best_frame = best_frame[region[1]:region[3], region[0]:region[2]]
if snapshot_config.height:
height = snapshot_config.height
width = int(height*best_frame.shape[1]/best_frame.shape[0])
best_frame = cv2.resize(best_frame, dsize=(width, height), interpolation=cv2.INTER_AREA)
if snapshot_config.show_timestamp:
time_to_show = datetime.datetime.fromtimestamp(self.thumbnail_data['frame_time']).strftime("%m/%d/%Y %H:%M:%S")
size = cv2.getTextSize(time_to_show, cv2.FONT_HERSHEY_SIMPLEX, fontScale=1, thickness=2)
text_width = size[0][0]
desired_size = max(150, 0.33*best_frame.shape[1])
font_scale = desired_size/text_width
cv2.putText(best_frame, time_to_show, (5, best_frame.shape[0]-7), cv2.FONT_HERSHEY_SIMPLEX,
fontScale=font_scale, color=(255, 255, 255), thickness=2)
ret, jpg = cv2.imencode('.jpg', best_frame)
if ret:
self._snapshot_jpg = jpg.tobytes()
return self._snapshot_jpg
def zone_filtered(obj: TrackedObject, object_config):
object_name = obj.obj_data['label']
if object_name in object_config:
obj_settings = object_config[object_name]
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj.obj_data['area']:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj.obj_data['area']:
return True
# if the score is lower than the threshold, skip
if obj_settings.threshold > obj.computed_score:
return True
return False
# Maintains the state of a camera
class CameraState():
def __init__(self, name, config, frame_manager):
self.name = name
self.config = config
self.camera_config = config.cameras[name]
self.frame_manager = frame_manager
self.best_objects: Dict[str, TrackedObject] = {}
self.object_counts = defaultdict(lambda: 0)
self.tracked_objects: Dict[str, TrackedObject] = {}
self.frame_cache = {}
self.zone_objects = defaultdict(lambda: [])
self._current_frame = np.zeros(self.camera_config.frame_shape_yuv, np.uint8)
self.current_frame_lock = threading.Lock()
self.current_frame_time = 0.0
self.previous_frame_id = None
self.callbacks = defaultdict(lambda: [])
def get_current_frame(self, draw_options={}):
with self.current_frame_lock:
frame_copy = np.copy(self._current_frame)
frame_time = self.current_frame_time
tracked_objects = {k: v.to_dict() for k,v in self.tracked_objects.items()}
motion_boxes = self.motion_boxes.copy()
regions = self.regions.copy()
frame_copy = cv2.cvtColor(frame_copy, cv2.COLOR_YUV2BGR_I420)
# draw on the frame
if draw_options.get('bounding_boxes'):
# draw the bounding boxes on the frame
for obj in tracked_objects.values():
thickness = 2
color = COLOR_MAP[obj['label']]
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(frame_copy, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
if draw_options.get('regions'):
for region in regions:
cv2.rectangle(frame_copy, (region[0], region[1]), (region[2], region[3]), (0,255,0), 2)
if draw_options.get('timestamp'):
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
cv2.putText(frame_copy, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
if draw_options.get('zones'):
for name, zone in self.camera_config.zones.items():
thickness = 8 if any([name in obj['current_zones'] for obj in tracked_objects.values()]) else 2
cv2.drawContours(frame_copy, [zone.contour], -1, zone.color, thickness)
if draw_options.get('mask'):
mask_overlay = np.where(self.camera_config.mask==[0])
frame_copy[mask_overlay] = [0,0,0]
if draw_options.get('motion_boxes'):
for m_box in motion_boxes:
cv2.rectangle(frame_copy, (m_box[0], m_box[1]), (m_box[2], m_box[3]), (0,0,255), 2)
return frame_copy
def finished(self, obj_id):
del self.tracked_objects[obj_id]
def on(self, event_type: str, callback: Callable[[Dict], None]):
self.callbacks[event_type].append(callback)
def update(self, frame_time, current_detections, motion_boxes, regions):
self.current_frame_time = frame_time
self.motion_boxes = motion_boxes
self.regions = regions
# get the new frame
frame_id = f"{self.name}{frame_time}"
current_frame = self.frame_manager.get(frame_id, self.camera_config.frame_shape_yuv)
current_ids = current_detections.keys()
previous_ids = self.tracked_objects.keys()
removed_ids = list(set(previous_ids).difference(current_ids))
new_ids = list(set(current_ids).difference(previous_ids))
updated_ids = list(set(current_ids).intersection(previous_ids))
for id in new_ids:
new_obj = self.tracked_objects[id] = TrackedObject(self.name, self.camera_config, self.frame_cache, current_detections[id])
# call event handlers
for c in self.callbacks['start']:
c(self.name, new_obj, frame_time)
for id in updated_ids:
updated_obj = self.tracked_objects[id]
significant_update = updated_obj.update(frame_time, current_detections[id])
if significant_update:
# ensure this frame is stored in the cache
if updated_obj.thumbnail_data['frame_time'] == frame_time and frame_time not in self.frame_cache:
self.frame_cache[frame_time] = np.copy(current_frame)
# call event handlers
for c in self.callbacks['update']:
c(self.name, updated_obj, frame_time)
for id in removed_ids:
# publish events to mqtt
removed_obj = self.tracked_objects[id]
if not 'end_time' in removed_obj.obj_data:
removed_obj.obj_data['end_time'] = frame_time
for c in self.callbacks['end']:
c(self.name, removed_obj, frame_time)
# TODO: can i switch to looking this up and only changing when an event ends?
# maintain best objects
for obj in self.tracked_objects.values():
object_type = obj.obj_data['label']
# if the object's thumbnail is not from the current frame
if obj.false_positive or obj.thumbnail_data['frame_time'] != self.current_frame_time:
continue
if object_type in self.best_objects:
current_best = self.best_objects[object_type]
now = datetime.datetime.now().timestamp()
# if the object is a higher score than the current best score
# or the current object is older than desired, use the new object
if (is_better_thumbnail(current_best.thumbnail_data, obj.thumbnail_data, self.camera_config.frame_shape)
or (now - current_best.thumbnail_data['frame_time']) > self.camera_config.best_image_timeout):
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
else:
self.best_objects[object_type] = obj
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[object_type], frame_time)
# update overall camera state for each object type
obj_counter = Counter()
for obj in self.tracked_objects.values():
if not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# report on detected objects
for obj_name, count in obj_counter.items():
if count != self.object_counts[obj_name]:
self.object_counts[obj_name] = count
for c in self.callbacks['object_status']:
c(self.name, obj_name, count)
# expire any objects that are >0 and no longer detected
expired_objects = [obj_name for obj_name, count in self.object_counts.items() if count > 0 and not obj_name in obj_counter]
for obj_name in expired_objects:
self.object_counts[obj_name] = 0
for c in self.callbacks['object_status']:
c(self.name, obj_name, 0)
for c in self.callbacks['snapshot']:
c(self.name, self.best_objects[obj_name], frame_time)
# cleanup thumbnail frame cache
current_thumb_frames = set([obj.thumbnail_data['frame_time'] for obj in self.tracked_objects.values() if not obj.false_positive])
current_best_frames = set([obj.thumbnail_data['frame_time'] for obj in self.best_objects.values()])
thumb_frames_to_delete = [t for t in self.frame_cache.keys() if not t in current_thumb_frames and not t in current_best_frames]
for t in thumb_frames_to_delete:
del self.frame_cache[t]
with self.current_frame_lock:
self._current_frame = current_frame
if not self.previous_frame_id is None:
self.frame_manager.delete(self.previous_frame_id)
self.previous_frame_id = frame_id
class TrackedObjectProcessor(threading.Thread):
def __init__(self, config: FrigateConfig, client, topic_prefix, tracked_objects_queue, event_queue, event_processed_queue, stop_event):
threading.Thread.__init__(self)
self.name = "detected_frames_processor"
self.config = config
self.client = client
self.topic_prefix = topic_prefix
self.tracked_objects_queue = tracked_objects_queue
self.event_queue = event_queue
self.event_processed_queue = event_processed_queue
self.stop_event = stop_event
self.camera_states: Dict[str, CameraState] = {}
self.frame_manager = SharedMemoryFrameManager()
def start(camera, obj: TrackedObject, current_frame_time):
self.event_queue.put(('start', camera, obj.to_dict()))
def update(camera, obj: TrackedObject, current_frame_time):
after = obj.to_dict()
message = { 'before': obj.previous, 'after': after }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
obj.previous = after
def end(camera, obj: TrackedObject, current_frame_time):
if not obj.false_positive:
message = { 'before': obj.previous, 'after': obj.to_dict() }
self.client.publish(f"{self.topic_prefix}/events", json.dumps(message), retain=False)
self.event_queue.put(('end', camera, obj.to_dict(include_thumbnail=True)))
def snapshot(camera, obj: TrackedObject, current_frame_time):
self.client.publish(f"{self.topic_prefix}/{camera}/{obj.obj_data['label']}/snapshot", obj.get_jpg_bytes(), retain=True)
def object_status(camera, object_name, status):
self.client.publish(f"{self.topic_prefix}/{camera}/{object_name}", status, retain=False)
for camera in self.config.cameras.keys():
camera_state = CameraState(camera, self.config, self.frame_manager)
camera_state.on('start', start)
camera_state.on('update', update)
camera_state.on('end', end)
camera_state.on('snapshot', snapshot)
camera_state.on('object_status', object_status)
self.camera_states[camera] = camera_state
# {
# 'zone_name': {
# 'person': {
# 'camera_1': 2,
# 'camera_2': 1
# }
# }
# }
self.zone_data = defaultdict(lambda: defaultdict(lambda: {}))
def get_best(self, camera, label):
# TODO: need a lock here
camera_state = self.camera_states[camera]
if label in camera_state.best_objects:
best_obj = camera_state.best_objects[label]
best = best_obj.thumbnail_data.copy()
best['frame'] = camera_state.frame_cache.get(best_obj.thumbnail_data['frame_time'])
return best
else:
return {}
def get_current_frame(self, camera, draw_options={}):
return self.camera_states[camera].get_current_frame(draw_options)
def run(self):
while True:
if self.stop_event.is_set():
logger.info(f"Exiting object processor...")
break
try:
camera, frame_time, current_tracked_objects, motion_boxes, regions = self.tracked_objects_queue.get(True, 10)
except queue.Empty:
continue
camera_state = self.camera_states[camera]
camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
# update zone counts for each label
# for each zone in the current camera
for zone in self.config.cameras[camera].zones.keys():
# count labels for the camera in the zone
obj_counter = Counter()
for obj in camera_state.tracked_objects.values():
if zone in obj.current_zones and not obj.false_positive:
obj_counter[obj.obj_data['label']] += 1
# update counts and publish status
for label in set(list(self.zone_data[zone].keys()) + list(obj_counter.keys())):
# if we have previously published a count for this zone/label
zone_label = self.zone_data[zone][label]
if camera in zone_label:
current_count = sum(zone_label.values())
zone_label[camera] = obj_counter[label] if label in obj_counter else 0
new_count = sum(zone_label.values())
if new_count != current_count:
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", new_count, retain=False)
# if this is a new zone/label combo for this camera
else:
if label in obj_counter:
zone_label[camera] = obj_counter[label]
self.client.publish(f"{self.topic_prefix}/{zone}/{label}", obj_counter[label], retain=False)
# cleanup event finished queue
while not self.event_processed_queue.empty():
event_id, camera = self.event_processed_queue.get()
self.camera_states[camera].finished(event_id)

View File

@@ -1,96 +1,149 @@
import time
import copy
import datetime
import itertools
import multiprocessing as mp
import random
import string
import threading
import time
from collections import defaultdict
import cv2
from object_detection.utils import visualization_utils as vis_util
import numpy as np
from scipy.spatial import distance as dist
class ObjectCleaner(threading.Thread):
def __init__(self, objects_parsed, detected_objects):
threading.Thread.__init__(self)
self._objects_parsed = objects_parsed
self._detected_objects = detected_objects
def run(self):
while True:
# wait a bit before checking for expired frames
time.sleep(0.2)
# expire the objects that are more than 1 second old
now = datetime.datetime.now().timestamp()
# look for the first object found within the last second
# (newest objects are appended to the end)
detected_objects = self._detected_objects.copy()
num_to_delete = 0
for obj in detected_objects:
if now-obj['frame_time']<2:
break
num_to_delete += 1
if num_to_delete > 0:
del self._detected_objects[:num_to_delete]
# notify that parsed objects were changed
with self._objects_parsed:
self._objects_parsed.notify_all()
from frigate.config import DetectConfig
from frigate.util import draw_box_with_label
# Maintains the frame and person with the highest score from the most recent
# motion event
class BestPersonFrame(threading.Thread):
def __init__(self, objects_parsed, recent_frames, detected_objects):
threading.Thread.__init__(self)
self.objects_parsed = objects_parsed
self.recent_frames = recent_frames
self.detected_objects = detected_objects
self.best_person = None
self.best_frame = None
class ObjectTracker():
def __init__(self, config: DetectConfig):
self.tracked_objects = {}
self.disappeared = {}
self.max_disappeared = config.max_disappeared
def run(self):
while True:
def register(self, index, obj):
rand_id = ''.join(random.choices(string.ascii_lowercase + string.digits, k=6))
id = f"{obj['frame_time']}-{rand_id}"
obj['id'] = id
obj['start_time'] = obj['frame_time']
self.tracked_objects[id] = obj
self.disappeared[id] = 0
# wait until objects have been parsed
with self.objects_parsed:
self.objects_parsed.wait()
def deregister(self, id):
del self.tracked_objects[id]
del self.disappeared[id]
def update(self, id, new_obj):
self.disappeared[id] = 0
self.tracked_objects[id].update(new_obj)
# make a copy of detected objects
detected_objects = self.detected_objects.copy()
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
def match_and_update(self, frame_time, new_objects):
# group by name
new_object_groups = defaultdict(lambda: [])
for obj in new_objects:
new_object_groups[obj[0]].append({
'label': obj[0],
'score': obj[1],
'box': obj[2],
'area': obj[3],
'region': obj[4],
'frame_time': frame_time
})
# update any tracked objects with labels that are not
# seen in the current objects and deregister if needed
for obj in list(self.tracked_objects.values()):
if not obj['label'] in new_object_groups:
if self.disappeared[obj['id']] >= self.max_disappeared:
self.deregister(obj['id'])
else:
self.disappeared[obj['id']] += 1
if len(new_objects) == 0:
return
# track objects for each label type
for label, group in new_object_groups.items():
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
current_ids = [o['id'] for o in current_objects]
current_centroids = np.array([o['centroid'] for o in current_objects])
# get the highest scoring person
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
# compute centroids of new objects
for obj in group:
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
obj['centroid'] = (centroid_x, centroid_y)
# if there isnt a person, continue
if new_best_person is None:
continue
if len(current_objects) == 0:
for index, obj in enumerate(group):
self.register(index, obj)
return
new_centroids = np.array([o['centroid'] for o in group])
# if there is no current best_person
if self.best_person is None:
self.best_person = new_best_person
# if there is already a best_person
# compute the distance between each pair of tracked
# centroids and new centroids, respectively -- our
# goal will be to match each new centroid to an existing
# object centroid
D = dist.cdist(current_centroids, new_centroids)
# in order to perform this matching we must (1) find the
# smallest value in each row and then (2) sort the row
# indexes based on their minimum values so that the row
# with the smallest value is at the *front* of the index
# list
rows = D.min(axis=1).argsort()
# next, we perform a similar process on the columns by
# finding the smallest value in each column and then
# sorting using the previously computed row index list
cols = D.argmin(axis=1)[rows]
# in order to determine if we need to update, register,
# or deregister an object we need to keep track of which
# of the rows and column indexes we have already examined
usedRows = set()
usedCols = set()
# loop over the combination of the (row, column) index
# tuples
for (row, col) in zip(rows, cols):
# if we have already examined either the row or
# column value before, ignore it
if row in usedRows or col in usedCols:
continue
# otherwise, grab the object ID for the current row,
# set its new centroid, and reset the disappeared
# counter
objectID = current_ids[row]
self.update(objectID, group[col])
# indicate that we have examined each of the row and
# column indexes, respectively
usedRows.add(row)
usedCols.add(col)
# compute the column index we have NOT yet examined
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
# in the event that the number of object centroids is
# equal or greater than the number of input centroids
# we need to check and see if some of these objects have
# potentially disappeared
if D.shape[0] >= D.shape[1]:
for row in unusedRows:
id = current_ids[row]
if self.disappeared[id] >= self.max_disappeared:
self.deregister(id)
else:
self.disappeared[id] += 1
# if the number of input centroids is greater
# than the number of existing object centroids we need to
# register each new input centroid as a trackable object
else:
now = datetime.datetime.now().timestamp()
# if the new best person is a higher score than the current best person
# or the current person is more than 1 minute old, use the new best person
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
self.best_person = new_best_person
# make a copy of the recent frames
recent_frames = self.recent_frames.copy()
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
best_frame = recent_frames[self.best_person['frame_time']]
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
# draw the bounding box on the frame
vis_util.draw_bounding_box_on_image_array(best_frame,
self.best_person['ymin'],
self.best_person['xmin'],
self.best_person['ymax'],
self.best_person['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
use_normalized_coordinates=False)
# convert back to BGR
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
for col in unusedCols:
self.register(col, group[col])

208
frigate/process_clip.py Normal file
View File

@@ -0,0 +1,208 @@
import datetime
import json
import logging
import multiprocessing as mp
import os
import subprocess as sp
import sys
from unittest import TestCase, main
import click
import cv2
import numpy as np
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
from frigate.edgetpu import LocalObjectDetector
from frigate.motion import MotionDetector
from frigate.object_processing import COLOR_MAP, CameraState
from frigate.objects import ObjectTracker
from frigate.util import (DictFrameManager, EventsPerSecond,
SharedMemoryFrameManager, draw_box_with_label)
from frigate.video import (capture_frames, process_frames,
start_or_restart_ffmpeg)
logging.basicConfig()
logging.root.setLevel(logging.DEBUG)
logger = logging.getLogger(__name__)
def get_frame_shape(source):
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'panic',
'-show_error',
'-show_streams',
'-of',
'json',
'"'+source+'"'
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
info = json.loads(output)
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
if video_info['height'] != 0 and video_info['width'] != 0:
return (video_info['height'], video_info['width'], 3)
# fallback to using opencv if ffprobe didnt succeed
video = cv2.VideoCapture(source)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
class ProcessClip():
def __init__(self, clip_path, frame_shape, config: FrigateConfig):
self.clip_path = clip_path
self.camera_name = 'camera'
self.config = config
self.camera_config = self.config.cameras['camera']
self.frame_shape = self.camera_config.frame_shape
self.ffmpeg_cmd = [c['cmd'] for c in self.camera_config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.frame_manager = SharedMemoryFrameManager()
self.frame_queue = mp.Queue()
self.detected_objects_queue = mp.Queue()
self.camera_state = CameraState(self.camera_name, config, self.frame_manager)
def load_frames(self):
fps = EventsPerSecond()
skipped_fps = EventsPerSecond()
current_frame = mp.Value('d', 0.0)
frame_size = self.camera_config.frame_shape_yuv[0] * self.camera_config.frame_shape_yuv[1]
ffmpeg_process = start_or_restart_ffmpeg(self.ffmpeg_cmd, logger, sp.DEVNULL, frame_size)
capture_frames(ffmpeg_process, self.camera_name, self.camera_config.frame_shape_yuv, self.frame_manager,
self.frame_queue, fps, skipped_fps, current_frame)
ffmpeg_process.wait()
ffmpeg_process.communicate()
def process_frames(self, objects_to_track=['person'], object_filters={}):
mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
mask[:] = 255
motion_detector = MotionDetector(self.frame_shape, mask, self.camera_config.motion)
object_detector = LocalObjectDetector(labels='/labelmap.txt')
object_tracker = ObjectTracker(self.camera_config.detect)
process_info = {
'process_fps': mp.Value('d', 0.0),
'detection_fps': mp.Value('d', 0.0),
'detection_frame': mp.Value('d', 0.0)
}
stop_event = mp.Event()
model_shape = (self.config.model.height, self.config.model.width)
process_frames(self.camera_name, self.frame_queue, self.frame_shape, model_shape,
self.frame_manager, motion_detector, object_detector, object_tracker,
self.detected_objects_queue, process_info,
objects_to_track, object_filters, mask, stop_event, exit_on_empty=True)
def top_object(self, debug_path=None):
obj_detected = False
top_computed_score = 0.0
def handle_event(name, obj, frame_time):
nonlocal obj_detected
nonlocal top_computed_score
if obj.computed_score > top_computed_score:
top_computed_score = obj.computed_score
if not obj.false_positive:
obj_detected = True
self.camera_state.on('new', handle_event)
self.camera_state.on('update', handle_event)
while(not self.detected_objects_queue.empty()):
camera_name, frame_time, current_tracked_objects, motion_boxes, regions = self.detected_objects_queue.get()
if not debug_path is None:
self.save_debug_frame(debug_path, frame_time, current_tracked_objects.values())
self.camera_state.update(frame_time, current_tracked_objects, motion_boxes, regions)
self.frame_manager.delete(self.camera_state.previous_frame_id)
return {
'object_detected': obj_detected,
'top_score': top_computed_score
}
def save_debug_frame(self, debug_path, frame_time, tracked_objects):
current_frame = cv2.cvtColor(self.frame_manager.get(f"{self.camera_name}{frame_time}", self.camera_config.frame_shape_yuv), cv2.COLOR_YUV2BGR_I420)
# draw the bounding boxes on the frame
for obj in tracked_objects:
thickness = 2
color = (0,0,175)
if obj['frame_time'] != frame_time:
thickness = 1
color = (255,0,0)
else:
color = (255,255,0)
# draw the bounding boxes on the frame
box = obj['box']
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['id'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
# draw the regions on the frame
region = obj['region']
draw_box_with_label(current_frame, region[0], region[1], region[2], region[3], 'region', "", thickness=1, color=(0,255,0))
cv2.imwrite(f"{os.path.join(debug_path, os.path.basename(self.clip_path))}.{int(frame_time*1000000)}.jpg", current_frame)
@click.command()
@click.option("-p", "--path", required=True, help="Path to clip or directory to test.")
@click.option("-l", "--label", default='person', help="Label name to detect.")
@click.option("-t", "--threshold", default=0.85, help="Threshold value for objects.")
@click.option("-s", "--scores", default=None, help="File to save csv of top scores")
@click.option("--debug-path", default=None, help="Path to output frames for debugging.")
def process(path, label, threshold, scores, debug_path):
clips = []
if os.path.isdir(path):
files = os.listdir(path)
files.sort()
clips = [os.path.join(path, file) for file in files]
elif os.path.isfile(path):
clips.append(path)
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'camera': {
'ffmpeg': {
'inputs': [
{ 'path': 'path.mp4', 'global_args': '', 'input_args': '', 'roles': ['detect'] }
]
},
'height': 1920,
'width': 1080
}
}
}
results = []
for c in clips:
logger.info(c)
frame_shape = get_frame_shape(c)
json_config['cameras']['camera']['height'] = frame_shape[0]
json_config['cameras']['camera']['width'] = frame_shape[1]
json_config['cameras']['camera']['ffmpeg']['inputs'][0]['path'] = c
config = FrigateConfig(config=FRIGATE_CONFIG_SCHEMA(json_config))
process_clip = ProcessClip(c, frame_shape, config)
process_clip.load_frames()
process_clip.process_frames(objects_to_track=[label])
results.append((c, process_clip.top_object(debug_path)))
if not scores is None:
with open(scores, 'w') as writer:
for result in results:
writer.write(f"{result[0]},{result[1]['top_score']}\n")
positive_count = sum(1 for result in results if result[1]['object_detected'])
print(f"Objects were detected in {positive_count}/{len(results)}({positive_count/len(results)*100:.2f}%) clip(s).")
if __name__ == '__main__':
process()

125
frigate/record.py Normal file
View File

@@ -0,0 +1,125 @@
import datetime
import json
import logging
import os
import queue
import subprocess as sp
import threading
import time
from collections import defaultdict
from pathlib import Path
import psutil
from frigate.config import FrigateConfig
from frigate.const import RECORD_DIR, CLIPS_DIR, CACHE_DIR
logger = logging.getLogger(__name__)
SECONDS_IN_DAY = 60 * 60 * 24
def remove_empty_directories(directory):
# list all directories recursively and sort them by path,
# longest first
paths = sorted(
[x[0] for x in os.walk(RECORD_DIR)],
key=lambda p: len(str(p)),
reverse=True,
)
for path in paths:
# don't delete the parent
if path == RECORD_DIR:
continue
if len(os.listdir(path)) == 0:
os.rmdir(path)
class RecordingMaintainer(threading.Thread):
def __init__(self, config: FrigateConfig, stop_event):
threading.Thread.__init__(self)
self.name = 'recording_maint'
self.config = config
self.stop_event = stop_event
def move_files(self):
recordings = [d for d in os.listdir(RECORD_DIR) if os.path.isfile(os.path.join(RECORD_DIR, d)) and d.endswith(".mp4")]
files_in_use = []
for process in psutil.process_iter():
if process.name() != 'ffmpeg':
continue
try:
flist = process.open_files()
if flist:
for nt in flist:
if nt.path.startswith(RECORD_DIR):
files_in_use.append(nt.path.split('/')[-1])
except:
continue
for f in recordings:
if f in files_in_use:
continue
camera = '-'.join(f.split('-')[:-1])
start_time = datetime.datetime.strptime(f.split('-')[-1].split('.')[0], '%Y%m%d%H%M%S')
ffprobe_cmd = " ".join([
'ffprobe',
'-v',
'error',
'-show_entries',
'format=duration',
'-of',
'default=noprint_wrappers=1:nokey=1',
f"{os.path.join(RECORD_DIR,f)}"
])
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
(output, err) = p.communicate()
p_status = p.wait()
if p_status == 0:
duration = float(output.decode('utf-8').strip())
else:
logger.info(f"bad file: {f}")
os.remove(os.path.join(RECORD_DIR,f))
continue
directory = os.path.join(RECORD_DIR, start_time.strftime('%Y-%m/%d/%H'), camera)
if not os.path.exists(directory):
os.makedirs(directory)
file_name = f"{start_time.strftime('%M.%S.mp4')}"
os.rename(os.path.join(RECORD_DIR,f), os.path.join(directory,file_name))
def expire_files(self):
delete_before = {}
for name, camera in self.config.cameras.items():
delete_before[name] = datetime.datetime.now().timestamp() - SECONDS_IN_DAY*camera.record.retain_days
for p in Path('/media/frigate/recordings').rglob("*.mp4"):
if not p.parent in delete_before:
continue
if p.stat().st_mtime < delete_before[p.parent]:
p.unlink(missing_ok=True)
def run(self):
counter = 0
self.expire_files()
while(True):
if self.stop_event.is_set():
logger.info(f"Exiting recording maintenance...")
break
# only expire events every 10 minutes, but check for new files every 10 seconds
time.sleep(10)
counter = counter + 1
if counter > 60:
self.expire_files()
remove_empty_directories(RECORD_DIR)
counter = 0
self.move_files()

0
frigate/test/__init__.py Normal file
View File

344
frigate/test/test_config.py Normal file
View File

@@ -0,0 +1,344 @@
import json
from unittest import TestCase, main
import voluptuous as vol
from frigate.config import FRIGATE_CONFIG_SCHEMA, FrigateConfig
class TestConfig(TestCase):
def setUp(self):
self.minimal = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
def test_empty(self):
FRIGATE_CONFIG_SCHEMA({})
def test_minimal(self):
FRIGATE_CONFIG_SCHEMA(self.minimal)
def test_config_class(self):
FrigateConfig(config=self.minimal)
def test_inherit_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.track)
def test_override_tracked_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['cat']
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('cat' in frigate_config.cameras['back'].objects.track)
def test_default_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
def test_inherit_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_override_object_filters(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('dog' in frigate_config.cameras['back'].objects.filters)
assert(frigate_config.cameras['back'].objects.filters['dog'].threshold == 0.7)
def test_ffmpeg_params(self):
config = {
'ffmpeg': {
'input_args': ['-re']
},
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'objects': {
'track': ['person', 'dog'],
'filters': {
'dog': {
'threshold': 0.7
}
}
}
}
}
}
frigate_config = FrigateConfig(config=config)
assert('-re' in frigate_config.cameras['back'].ffmpeg_cmds[0]['cmd'])
def test_inherit_save_clips_retention(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
frigate_config = FrigateConfig(config=config)
assert(frigate_config.cameras['back'].save_clips.retain.objects['person'] == 30)
def test_roles_listed_twice_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] },
{ 'path': 'rtsp://10.0.0.1:554/video2', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_zone_matching_camera_name_throws_error(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'zones': {
'back': {
'coordinates': '1,1,1,1,1,1'
}
}
}
}
}
self.assertRaises(vol.MultipleInvalid, lambda: FrigateConfig(config=config))
def test_save_clips_should_default_to_global_objects(self):
config = {
'mqtt': {
'host': 'mqtt'
},
'save_clips': {
'retain': {
'default': 20,
'objects': {
'person': 30
}
}
},
'objects': {
'track': ['person', 'dog']
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect'] }
]
},
'height': 1080,
'width': 1920,
'save_clips': {
'enabled': True
}
}
}
}
config = FrigateConfig(config=config)
assert(len(config.cameras['back'].save_clips.objects) == 2)
assert('dog' in config.cameras['back'].save_clips.objects)
assert('person' in config.cameras['back'].save_clips.objects)
def test_role_assigned_but_not_enabled(self):
json_config = {
'mqtt': {
'host': 'mqtt'
},
'cameras': {
'back': {
'ffmpeg': {
'inputs': [
{ 'path': 'rtsp://10.0.0.1:554/video', 'roles': ['detect', 'rtmp'] },
{ 'path': 'rtsp://10.0.0.1:554/clips', 'roles': ['clips'] }
]
},
'height': 1080,
'width': 1920
}
}
}
config = FrigateConfig(config=json_config)
ffmpeg_cmds = config.cameras['back'].ffmpeg_cmds
assert(len(ffmpeg_cmds) == 1)
assert(not 'clips' in ffmpeg_cmds[0]['roles'])
if __name__ == '__main__':
main(verbosity=2)

View File

@@ -0,0 +1,39 @@
import cv2
import numpy as np
from unittest import TestCase, main
from frigate.util import yuv_region_2_rgb
class TestYuvRegion2RGB(TestCase):
def setUp(self):
self.bgr_frame = np.zeros((100, 200, 3), np.uint8)
self.bgr_frame[:] = (0, 0, 255)
self.bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
self.yuv_frame = cv2.cvtColor(self.bgr_frame, cv2.COLOR_BGR2YUV_I420)
def test_crop_yuv(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (10,10,50,50))
# ensure the upper left pixel is blue
assert(np.all(cropped[0, 0] == [0, 0, 255]))
def test_crop_yuv_out_of_bounds(self):
cropped = yuv_region_2_rgb(self.yuv_frame, (0,0,200,200))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
# ensure the upper left pixel is red
# the yuv conversion has some noise
assert(np.all(cropped[0, 0] == [255, 1, 0]))
# ensure the bottom right is black
assert(np.all(cropped[199, 199] == [0, 0, 0]))
def test_crop_yuv_portrait(self):
bgr_frame = np.zeros((1920, 1080, 3), np.uint8)
bgr_frame[:] = (0, 0, 255)
bgr_frame[5:55, 5:55] = (255,0,0)
# cv2.imwrite(f"bgr_frame.jpg", self.bgr_frame)
yuv_frame = cv2.cvtColor(bgr_frame, cv2.COLOR_BGR2YUV_I420)
cropped = yuv_region_2_rgb(yuv_frame, (0, 852, 648, 1500))
# cv2.imwrite(f"cropped.jpg", cv2.cvtColor(cropped, cv2.COLOR_RGB2BGR))
if __name__ == '__main__':
main(verbosity=2)

354
frigate/util.py Normal file → Executable file
View File

@@ -1,5 +1,353 @@
import collections
import datetime
import hashlib
import json
import signal
import subprocess as sp
import threading
import time
import traceback
from abc import ABC, abstractmethod
from multiprocessing import shared_memory
from typing import AnyStr
import cv2
import matplotlib.pyplot as plt
import numpy as np
# convert shared memory array into numpy array
def tonumpyarray(mp_arr):
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
if color is None:
color = (0,0,255)
display_text = "{}: {}".format(label, info)
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
font_scale = 0.5
font = cv2.FONT_HERSHEY_SIMPLEX
# get the width and height of the text box
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
text_width = size[0][0]
text_height = size[0][1]
line_height = text_height + size[1]
# set the text start position
if position == 'ul':
text_offset_x = x_min
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'ur':
text_offset_x = x_max - (text_width+8)
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
elif position == 'bl':
text_offset_x = x_min
text_offset_y = y_max
elif position == 'br':
text_offset_x = x_max - (text_width+8)
text_offset_y = y_max
# make the coords of the box with a small padding of two pixels
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
# size is the longest edge and divisible by 4
size = int(max(xmax-xmin, ymax-ymin)//4*4*multiplier)
# dont go any smaller than 300
if size < 300:
size = 300
# x_offset is midpoint of bounding box minus half the size
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
# if outside the image
if x_offset < 0:
x_offset = 0
elif x_offset > (frame_shape[1]-size):
x_offset = max(0, (frame_shape[1]-size))
# y_offset is midpoint of bounding box minus half the size
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
# # if outside the image
if y_offset < 0:
y_offset = 0
elif y_offset > (frame_shape[0]-size):
y_offset = max(0, (frame_shape[0]-size))
return (x_offset, y_offset, x_offset+size, y_offset+size)
def get_yuv_crop(frame_shape, crop):
# crop should be (x1,y1,x2,y2)
frame_height = frame_shape[0]//3*2
frame_width = frame_shape[1]
# compute the width/height of the uv channels
uv_width = frame_width//2 # width of the uv channels
uv_height = frame_height//4 # height of the uv channels
# compute the offset for upper left corner of the uv channels
uv_x_offset = crop[0]//2 # x offset of the uv channels
uv_y_offset = crop[1]//4 # y offset of the uv channels
# compute the width/height of the uv crops
uv_crop_width = (crop[2] - crop[0])//2 # width of the cropped uv channels
uv_crop_height = (crop[3] - crop[1])//4 # height of the cropped uv channels
# ensure crop dimensions are multiples of 2 and 4
y = (
crop[0],
crop[1],
crop[0] + uv_crop_width*2,
crop[1] + uv_crop_height*4
)
u1 = (
0 + uv_x_offset,
frame_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
u2 = (
uv_width + uv_x_offset,
frame_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_y_offset + uv_crop_height
)
v1 = (
0 + uv_x_offset,
frame_height + uv_height + uv_y_offset,
0 + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
v2 = (
uv_width + uv_x_offset,
frame_height + uv_height + uv_y_offset,
uv_width + uv_x_offset + uv_crop_width,
frame_height + uv_height + uv_y_offset + uv_crop_height
)
return y, u1, u2, v1, v2
def yuv_region_2_rgb(frame, region):
try:
height = frame.shape[0]//3*2
width = frame.shape[1]
# get the crop box if the region extends beyond the frame
crop_x1 = max(0, region[0])
crop_y1 = max(0, region[1])
# ensure these are a multiple of 4
crop_x2 = min(width, region[2])
crop_y2 = min(height, region[3])
crop_box = (crop_x1, crop_y1, crop_x2, crop_y2)
y, u1, u2, v1, v2 = get_yuv_crop(frame.shape, crop_box)
# if the region starts outside the frame, indent the start point in the cropped frame
y_channel_x_offset = abs(min(0, region[0]))
y_channel_y_offset = abs(min(0, region[1]))
uv_channel_x_offset = y_channel_x_offset//2
uv_channel_y_offset = y_channel_y_offset//4
# create the yuv region frame
# make sure the size is a multiple of 4
size = (region[3] - region[1])//4*4
yuv_cropped_frame = np.zeros((size+size//2, size), np.uint8)
# fill in black
yuv_cropped_frame[:] = 128
yuv_cropped_frame[0:size,0:size] = 16
# copy the y channel
yuv_cropped_frame[
y_channel_y_offset:y_channel_y_offset + y[3] - y[1],
y_channel_x_offset:y_channel_x_offset + y[2] - y[0]
] = frame[
y[1]:y[3],
y[0]:y[2]
]
uv_crop_width = u1[2] - u1[0]
uv_crop_height = u1[3] - u1[1]
# copy u1
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
u1[1]:u1[3],
u1[0]:u1[2]
]
# copy u2
yuv_cropped_frame[
size + uv_channel_y_offset:size + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
u2[1]:u2[3],
u2[0]:u2[2]
]
# copy v1
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
0 + uv_channel_x_offset:0 + uv_channel_x_offset + uv_crop_width
] = frame[
v1[1]:v1[3],
v1[0]:v1[2]
]
# copy v2
yuv_cropped_frame[
size+size//4 + uv_channel_y_offset:size+size//4 + uv_channel_y_offset + uv_crop_height,
size//2 + uv_channel_x_offset:size//2 + uv_channel_x_offset + uv_crop_width
] = frame[
v2[1]:v2[3],
v2[0]:v2[2]
]
return cv2.cvtColor(yuv_cropped_frame, cv2.COLOR_YUV2RGB_I420)
except:
print(f"frame.shape: {frame.shape}")
print(f"region: {region}")
raise
def intersection(box_a, box_b):
return (
max(box_a[0], box_b[0]),
max(box_a[1], box_b[1]),
min(box_a[2], box_b[2]),
min(box_a[3], box_b[3])
)
def area(box):
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
def intersection_over_union(box_a, box_b):
# determine the (x, y)-coordinates of the intersection rectangle
intersect = intersection(box_a, box_b)
# compute the area of intersection rectangle
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
if inter_area == 0:
return 0.0
# compute the area of both the prediction and ground-truth
# rectangles
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
# compute the intersection over union by taking the intersection
# area and dividing it by the sum of prediction + ground-truth
# areas - the interesection area
iou = inter_area / float(box_a_area + box_b_area - inter_area)
# return the intersection over union value
return iou
def clipped(obj, frame_shape):
# if the object is within 5 pixels of the region border, and the region is not on the edge
# consider the object to be clipped
box = obj[2]
region = obj[4]
if ((region[0] > 5 and box[0]-region[0] <= 5) or
(region[1] > 5 and box[1]-region[1] <= 5) or
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
return True
else:
return False
class EventsPerSecond:
def __init__(self, max_events=1000):
self._start = None
self._max_events = max_events
self._timestamps = []
def start(self):
self._start = datetime.datetime.now().timestamp()
def update(self):
if self._start is None:
self.start()
self._timestamps.append(datetime.datetime.now().timestamp())
# truncate the list when it goes 100 over the max_size
if len(self._timestamps) > self._max_events+100:
self._timestamps = self._timestamps[(1-self._max_events):]
def eps(self, last_n_seconds=10):
if self._start is None:
self.start()
# compute the (approximate) events in the last n seconds
now = datetime.datetime.now().timestamp()
seconds = min(now-self._start, last_n_seconds)
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
def print_stack(sig, frame):
traceback.print_stack(frame)
def listen():
signal.signal(signal.SIGUSR1, print_stack)
class FrameManager(ABC):
@abstractmethod
def create(self, name, size) -> AnyStr:
pass
@abstractmethod
def get(self, name, timeout_ms=0):
pass
@abstractmethod
def close(self, name):
pass
@abstractmethod
def delete(self, name):
pass
class DictFrameManager(FrameManager):
def __init__(self):
self.frames = {}
def create(self, name, size) -> AnyStr:
mem = bytearray(size)
self.frames[name] = mem
return mem
def get(self, name, shape):
mem = self.frames[name]
return np.ndarray(shape, dtype=np.uint8, buffer=mem)
def close(self, name):
pass
def delete(self, name):
del self.frames[name]
class SharedMemoryFrameManager(FrameManager):
def __init__(self):
self.shm_store = {}
def create(self, name, size) -> AnyStr:
shm = shared_memory.SharedMemory(name=name, create=True, size=size)
self.shm_store[name] = shm
return shm.buf
def get(self, name, shape):
if name in self.shm_store:
shm = self.shm_store[name]
else:
shm = shared_memory.SharedMemory(name=name)
self.shm_store[name] = shm
return np.ndarray(shape, dtype=np.uint8, buffer=shm.buf)
def close(self, name):
if name in self.shm_store:
self.shm_store[name].close()
del self.shm_store[name]
def delete(self, name):
if name in self.shm_store:
self.shm_store[name].close()
self.shm_store[name].unlink()
del self.shm_store[name]

644
frigate/video.py Normal file → Executable file
View File

@@ -1,268 +1,418 @@
import os
import time
import datetime
import cv2
import threading
import base64
import copy
import ctypes
import datetime
import itertools
import json
import logging
import multiprocessing as mp
from object_detection.utils import visualization_utils as vis_util
from . util import tonumpyarray
from . object_detection import FramePrepper
from . objects import ObjectCleaner, BestPersonFrame
from . mqtt import MqttObjectPublisher
import os
import queue
import subprocess as sp
import signal
import threading
import time
from collections import defaultdict
from typing import Dict, List
# fetch the frames as fast a possible and store current frame in a shared memory array
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
# convert shared memory array into numpy and shape into image array
arr = tonumpyarray(shared_arr).reshape(frame_shape)
import cv2
import numpy as np
# start the video capture
video = cv2.VideoCapture()
video.open(rtsp_url)
# keep the buffer small so we minimize old data
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
from frigate.config import CameraConfig
from frigate.edgetpu import RemoteObjectDetector
from frigate.log import LogPipe
from frigate.motion import MotionDetector
from frigate.objects import ObjectTracker
from frigate.util import (EventsPerSecond, FrameManager,
SharedMemoryFrameManager, area, calculate_region,
clipped, draw_box_with_label, intersection,
intersection_over_union, listen, yuv_region_2_rgb)
bad_frame_counter = 0
while True:
# check if the video stream is still open, and reopen if needed
if not video.isOpened():
success = video.open(rtsp_url)
if not success:
time.sleep(1)
continue
# grab the frame, but dont decode it yet
ret = video.grab()
# snapshot the time the frame was grabbed
frame_time = datetime.datetime.now()
if ret:
# go ahead and decode the current frame
ret, frame = video.retrieve()
if ret:
# Lock access and update frame
with frame_lock:
arr[:] = frame
shared_frame_time.value = frame_time.timestamp()
# Notify with the condition that a new frame is ready
with frame_ready:
frame_ready.notify_all()
bad_frame_counter = 0
else:
print("Unable to decode frame")
bad_frame_counter += 1
else:
print("Unable to grab a frame")
bad_frame_counter += 1
if bad_frame_counter > 100:
video.release()
logger = logging.getLogger(__name__)
def filtered(obj, objects_to_track, object_filters, mask=None):
object_name = obj[0]
if not object_name in objects_to_track:
return True
video.release()
if object_name in object_filters:
obj_settings = object_filters[object_name]
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
class FrameTracker(threading.Thread):
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
# if the min area is larger than the
# detected object, don't add it to detected objects
if obj_settings.min_area > obj[3]:
return True
# if the detected object is larger than the
# max area, don't add it to detected objects
if obj_settings.max_area < obj[3]:
return True
# if the score is lower than the min_score, skip
if obj_settings.min_score > obj[1]:
return True
# compute the coordinates of the object and make sure
# the location isnt outside the bounds of the image (can happen from rounding)
y_location = min(int(obj[2][3]), len(mask)-1)
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
# if the object is in a masked location, don't add it to detected objects
if (not mask is None) and (mask[y_location][x_location] == 0):
return True
return False
def create_tensor_input(frame, model_shape, region):
cropped_frame = yuv_region_2_rgb(frame, region)
# Resize to 300x300 if needed
if cropped_frame.shape != (model_shape[0], model_shape[1], 3):
cropped_frame = cv2.resize(cropped_frame, dsize=model_shape, interpolation=cv2.INTER_LINEAR)
# Expand dimensions since the model expects images to have shape: [1, height, width, 3]
return np.expand_dims(cropped_frame, axis=0)
def stop_ffmpeg(ffmpeg_process, logger):
logger.info("Terminating the existing ffmpeg process...")
ffmpeg_process.terminate()
try:
logger.info("Waiting for ffmpeg to exit gracefully...")
ffmpeg_process.communicate(timeout=30)
except sp.TimeoutExpired:
logger.info("FFmpeg didnt exit. Force killing...")
ffmpeg_process.kill()
ffmpeg_process.communicate()
ffmpeg_process = None
def start_or_restart_ffmpeg(ffmpeg_cmd, logger, logpipe: LogPipe, frame_size=None, ffmpeg_process=None):
if not ffmpeg_process is None:
stop_ffmpeg(ffmpeg_process, logger)
if frame_size is None:
process = sp.Popen(ffmpeg_cmd, stdout = sp.DEVNULL, stderr=logpipe, stdin = sp.DEVNULL, start_new_session=True)
else:
process = sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, stderr=logpipe, stdin = sp.DEVNULL, bufsize=frame_size*10, start_new_session=True)
return process
def capture_frames(ffmpeg_process, camera_name, frame_shape, frame_manager: FrameManager,
frame_queue, fps:mp.Value, skipped_fps: mp.Value, current_frame: mp.Value):
frame_size = frame_shape[0] * frame_shape[1]
frame_rate = EventsPerSecond()
frame_rate.start()
skipped_eps = EventsPerSecond()
skipped_eps.start()
while True:
fps.value = frame_rate.eps()
skipped_fps = skipped_eps.eps()
current_frame.value = datetime.datetime.now().timestamp()
frame_name = f"{camera_name}{current_frame.value}"
frame_buffer = frame_manager.create(frame_name, frame_size)
try:
frame_buffer[:] = ffmpeg_process.stdout.read(frame_size)
except Exception as e:
logger.info(f"{camera_name}: ffmpeg sent a broken frame. {e}")
if ffmpeg_process.poll() != None:
logger.info(f"{camera_name}: ffmpeg process is not running. exiting capture thread...")
frame_manager.delete(frame_name)
break
continue
frame_rate.update()
# if the queue is full, skip this frame
if frame_queue.full():
skipped_eps.update()
frame_manager.delete(frame_name)
continue
# close the frame
frame_manager.close(frame_name)
# add to the queue
frame_queue.put(current_frame.value)
class CameraWatchdog(threading.Thread):
def __init__(self, camera_name, config, frame_queue, camera_fps, ffmpeg_pid, stop_event):
threading.Thread.__init__(self)
self.shared_frame = shared_frame
self.frame_time = frame_time
self.frame_ready = frame_ready
self.frame_lock = frame_lock
self.recent_frames = recent_frames
self.logger = logging.getLogger(f"watchdog.{camera_name}")
self.camera_name = camera_name
self.config = config
self.capture_thread = None
self.ffmpeg_detect_process = None
self.logpipe = LogPipe(f"ffmpeg.{self.camera_name}.detect", logging.ERROR)
self.ffmpeg_other_processes = []
self.camera_fps = camera_fps
self.ffmpeg_pid = ffmpeg_pid
self.frame_queue = frame_queue
self.frame_shape = self.config.frame_shape_yuv
self.frame_size = self.frame_shape[0] * self.frame_shape[1]
self.stop_event = stop_event
def run(self):
frame_time = 0.0
while True:
now = datetime.datetime.now().timestamp()
# wait for a frame
with self.frame_ready:
# if there isnt a frame ready for processing or it is old, wait for a signal
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
self.frame_ready.wait()
# lock and make a copy of the frame
with self.frame_lock:
frame = self.shared_frame.copy()
frame_time = self.frame_time.value
# add the frame to recent frames
self.recent_frames[frame_time] = frame
self.start_ffmpeg_detect()
# delete any old frames
stored_frame_times = list(self.recent_frames.keys())
for k in stored_frame_times:
if (now - k) > 2:
del self.recent_frames[k]
def get_frame_shape(rtsp_url):
# capture a single frame and check the frame shape so the correct array
# size can be allocated in memory
video = cv2.VideoCapture(rtsp_url)
ret, frame = video.read()
frame_shape = frame.shape
video.release()
return frame_shape
def get_rtsp_url(rtsp_config):
if (rtsp_config['password'].startswith('$')):
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
rtsp_config['path'])
class Camera:
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
self.name = name
self.config = config
self.detected_objects = []
self.recent_frames = {}
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
self.regions = self.config['regions']
self.frame_shape = get_frame_shape(self.rtsp_url)
self.mqtt_client = mqtt_client
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
# compute the flattened array length from the shape of the frame
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
# create shared array for storing the full frame image data
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
# create shared value for storing the frame_time
self.shared_frame_time = mp.Value('d', 0.0)
# Lock to control access to the frame
self.frame_lock = mp.Lock()
# Condition for notifying that a new frame is ready
self.frame_ready = mp.Condition()
# Condition for notifying that objects were parsed
self.objects_parsed = mp.Condition()
# shape current frame so it can be treated as a numpy image
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
# create the process to capture frames from the RTSP stream and store in a shared array
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
self.capture_process.daemon = True
# for each region, create a separate thread to resize the region and prep for detection
self.detection_prep_threads = []
for region in self.config['regions']:
self.detection_prep_threads.append(FramePrepper(
self.name,
self.shared_frame_np,
self.shared_frame_time,
self.frame_ready,
self.frame_lock,
region['size'], region['x_offset'], region['y_offset'],
prepped_frame_queue
))
for c in self.config.ffmpeg_cmds:
if 'detect' in c['roles']:
continue
logpipe = LogPipe(f"ffmpeg.{self.camera_name}.{'_'.join(sorted(c['roles']))}", logging.ERROR)
self.ffmpeg_other_processes.append({
'cmd': c['cmd'],
'logpipe': logpipe,
'process': start_or_restart_ffmpeg(c['cmd'], self.logger, logpipe)
})
# start a thread to store recent motion frames for processing
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
self.frame_ready, self.frame_lock, self.recent_frames)
self.frame_tracker.start()
time.sleep(10)
while True:
if self.stop_event.is_set():
stop_ffmpeg(self.ffmpeg_detect_process, self.logger)
for p in self.ffmpeg_other_processes:
stop_ffmpeg(p['process'], self.logger)
p['logpipe'].close()
self.logpipe.close()
break
# start a thread to store the highest scoring recent person frame
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
self.best_person_frame.start()
now = datetime.datetime.now().timestamp()
# start a thread to expire objects from the detected objects list
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
self.object_cleaner.start()
# start a thread to publish object scores (currently only person)
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
mqtt_publisher.start()
# load in the mask for person detection
if 'mask' in self.config:
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
else:
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
self.mask[:] = 255
def start(self):
self.capture_process.start()
# start the object detection prep threads
for detection_prep_thread in self.detection_prep_threads:
detection_prep_thread.start()
def join(self):
self.capture_process.join()
def get_capture_pid(self):
return self.capture_process.pid
def add_objects(self, objects):
if len(objects) == 0:
return
for obj in objects:
if obj['name'] == 'person':
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
# find the matching region
region = None
for r in self.regions:
if (
obj['xmin'] >= r['x_offset'] and
obj['ymin'] >= r['y_offset'] and
obj['xmax'] <= r['x_offset']+r['size'] and
obj['ymax'] <= r['y_offset']+r['size']
):
region = r
break
# if the min person area is larger than the
# detected person, don't add it to detected objects
if region and region['min_person_area'] > person_area:
continue
if not self.capture_thread.is_alive():
self.start_ffmpeg_detect()
elif now - self.capture_thread.current_frame.value > 20:
self.logger.info(f"No frames received from {self.camera_name} in 20 seconds. Exiting ffmpeg...")
self.ffmpeg_detect_process.terminate()
try:
self.logger.info("Waiting for ffmpeg to exit gracefully...")
self.ffmpeg_detect_process.communicate(timeout=30)
except sp.TimeoutExpired:
self.logger.info("FFmpeg didnt exit. Force killing...")
self.ffmpeg_detect_process.kill()
self.ffmpeg_detect_process.communicate()
# compute the coordinates of the person and make sure
# the location isnt outide the bounds of the image (can happen from rounding)
y_location = min(int(obj['ymax']), len(self.mask)-1)
x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1)
# if the person is in a masked location, continue
if self.mask[y_location][x_location] == [0]:
for p in self.ffmpeg_other_processes:
poll = p['process'].poll()
if poll == None:
continue
self.detected_objects.append(obj)
with self.objects_parsed:
self.objects_parsed.notify_all()
def get_best_person(self):
return self.best_person_frame.best_frame
p['process'] = start_or_restart_ffmpeg(p['cmd'], self.logger, p['logpipe'], ffmpeg_process=p['process'])
# wait a bit before checking again
time.sleep(10)
def get_current_frame_with_objects(self):
# make a copy of the current detected objects
detected_objects = self.detected_objects.copy()
# lock and make a copy of the current frame
with self.frame_lock:
frame = self.shared_frame_np.copy()
def start_ffmpeg_detect(self):
ffmpeg_cmd = [c['cmd'] for c in self.config.ffmpeg_cmds if 'detect' in c['roles']][0]
self.ffmpeg_detect_process = start_or_restart_ffmpeg(ffmpeg_cmd, self.logger, self.logpipe, self.frame_size)
self.ffmpeg_pid.value = self.ffmpeg_detect_process.pid
self.capture_thread = CameraCapture(self.camera_name, self.ffmpeg_detect_process, self.frame_shape, self.frame_queue,
self.camera_fps)
self.capture_thread.start()
# convert to RGB for drawing
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
# draw the bounding boxes on the screen
for obj in detected_objects:
vis_util.draw_bounding_box_on_image_array(frame,
obj['ymin'],
obj['xmin'],
obj['ymax'],
obj['xmax'],
color='red',
thickness=2,
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
use_normalized_coordinates=False)
for region in self.regions:
color = (255,255,255)
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
(region['x_offset']+region['size'], region['y_offset']+region['size']),
color, 2)
# convert back to BGR
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
return frame
class CameraCapture(threading.Thread):
def __init__(self, camera_name, ffmpeg_process, frame_shape, frame_queue, fps):
threading.Thread.__init__(self)
self.name = f"capture:{camera_name}"
self.camera_name = camera_name
self.frame_shape = frame_shape
self.frame_queue = frame_queue
self.fps = fps
self.skipped_fps = EventsPerSecond()
self.frame_manager = SharedMemoryFrameManager()
self.ffmpeg_process = ffmpeg_process
self.current_frame = mp.Value('d', 0.0)
self.last_frame = 0
def run(self):
self.skipped_fps.start()
capture_frames(self.ffmpeg_process, self.camera_name, self.frame_shape, self.frame_manager, self.frame_queue,
self.fps, self.skipped_fps, self.current_frame)
def capture_camera(name, config: CameraConfig, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
frame_queue = process_info['frame_queue']
camera_watchdog = CameraWatchdog(name, config, frame_queue, process_info['camera_fps'], process_info['ffmpeg_pid'], stop_event)
camera_watchdog.start()
camera_watchdog.join()
def track_camera(name, config: CameraConfig, model_shape, detection_queue, result_connection, detected_objects_queue, process_info):
stop_event = mp.Event()
def receiveSignal(signalNumber, frame):
stop_event.set()
signal.signal(signal.SIGTERM, receiveSignal)
signal.signal(signal.SIGINT, receiveSignal)
threading.current_thread().name = f"process:{name}"
listen()
frame_queue = process_info['frame_queue']
frame_shape = config.frame_shape
objects_to_track = config.objects.track
object_filters = config.objects.filters
mask = config.mask
motion_detector = MotionDetector(frame_shape, mask, config.motion)
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue, result_connection, model_shape)
object_tracker = ObjectTracker(config.detect)
frame_manager = SharedMemoryFrameManager()
process_frames(name, frame_queue, frame_shape, model_shape, frame_manager, motion_detector, object_detector,
object_tracker, detected_objects_queue, process_info, objects_to_track, object_filters, mask, stop_event)
logger.info(f"{name}: exiting subprocess")
def reduce_boxes(boxes):
if len(boxes) == 0:
return []
reduced_boxes = cv2.groupRectangles([list(b) for b in itertools.chain(boxes, boxes)], 1, 0.2)[0]
return [tuple(b) for b in reduced_boxes]
def detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask):
tensor_input = create_tensor_input(frame, model_shape, region)
detections = []
region_detections = object_detector.detect(tensor_input)
for d in region_detections:
box = d[2]
size = region[2]-region[0]
x_min = int((box[1] * size) + region[0])
y_min = int((box[0] * size) + region[1])
x_max = int((box[3] * size) + region[0])
y_max = int((box[2] * size) + region[1])
det = (d[0],
d[1],
(x_min, y_min, x_max, y_max),
(x_max-x_min)*(y_max-y_min),
region)
# apply object filters
if filtered(det, objects_to_track, object_filters, mask):
continue
detections.append(det)
return detections
def process_frames(camera_name: str, frame_queue: mp.Queue, frame_shape, model_shape,
frame_manager: FrameManager, motion_detector: MotionDetector,
object_detector: RemoteObjectDetector, object_tracker: ObjectTracker,
detected_objects_queue: mp.Queue, process_info: Dict,
objects_to_track: List[str], object_filters, mask, stop_event,
exit_on_empty: bool = False):
fps = process_info['process_fps']
detection_fps = process_info['detection_fps']
current_frame_time = process_info['detection_frame']
fps_tracker = EventsPerSecond()
fps_tracker.start()
while True:
if stop_event.is_set():
break
if exit_on_empty and frame_queue.empty():
logger.info(f"Exiting track_objects...")
break
try:
frame_time = frame_queue.get(True, 10)
except queue.Empty:
continue
current_frame_time.value = frame_time
frame = frame_manager.get(f"{camera_name}{frame_time}", (frame_shape[0]*3//2, frame_shape[1]))
if frame is None:
logger.info(f"{camera_name}: frame {frame_time} is not in memory store.")
continue
# look for motion
motion_boxes = motion_detector.detect(frame)
tracked_object_boxes = [obj['box'] for obj in object_tracker.tracked_objects.values()]
# combine motion boxes with known locations of existing objects
combined_boxes = reduce_boxes(motion_boxes + tracked_object_boxes)
# compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
for a in combined_boxes]
# combine overlapping regions
combined_regions = reduce_boxes(regions)
# re-compute regions
regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.0)
for a in combined_regions]
# resize regions and detect
detections = []
for region in regions:
detections.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
#########
# merge objects, check for clipped objects and look again up to 4 times
#########
refining = True
refine_count = 0
while refining and refine_count < 4:
refining = False
# group by name
detected_object_groups = defaultdict(lambda: [])
for detection in detections:
detected_object_groups[detection[0]].append(detection)
selected_objects = []
for group in detected_object_groups.values():
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
for o in group]
confidences = [o[1] for o in group]
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
for index in idxs:
obj = group[index[0]]
if clipped(obj, frame_shape):
box = obj[2]
# calculate a new region that will hopefully get the entire object
region = calculate_region(frame_shape,
box[0], box[1],
box[2], box[3])
regions.append(region)
selected_objects.extend(detect(object_detector, frame, model_shape, region, objects_to_track, object_filters, mask))
refining = True
else:
selected_objects.append(obj)
# set the detections list to only include top, complete objects
# and new detections
detections = selected_objects
if refining:
refine_count += 1
# now that we have refined our detections, we need to track objects
object_tracker.match_and_update(frame_time, detections)
# add to the queue if not full
if(detected_objects_queue.full()):
frame_manager.delete(f"{camera_name}{frame_time}")
continue
else:
fps_tracker.update()
fps.value = fps_tracker.eps()
detected_objects_queue.put((camera_name, frame_time, object_tracker.tracked_objects, motion_boxes, regions))
detection_fps.value = object_detector.fps.eps()
frame_manager.close(f"{camera_name}{frame_time}")

36
frigate/watchdog.py Normal file
View File

@@ -0,0 +1,36 @@
import datetime
import logging
import threading
import time
logger = logging.getLogger(__name__)
class FrigateWatchdog(threading.Thread):
def __init__(self, detectors, stop_event):
threading.Thread.__init__(self)
self.name = 'frigate_watchdog'
self.detectors = detectors
self.stop_event = stop_event
def run(self):
time.sleep(10)
while True:
# wait a bit before checking
time.sleep(10)
if self.stop_event.is_set():
logger.info(f"Exiting watchdog...")
break
now = datetime.datetime.now().timestamp()
# check the detection processes
for detector in self.detectors.values():
detection_start = detector.detection_start.value
if (detection_start > 0.0 and
now - detection_start > 10):
logger.info("Detection appears to be stuck. Restarting detection process")
detector.start_or_restart()
elif not detector.detect_process.is_alive():
logger.info("Detection appears to have stopped. Restarting detection process")
detector.start_or_restart()

58
frigate/zeroconf.py Normal file
View File

@@ -0,0 +1,58 @@
import logging
import socket
from zeroconf import (
ServiceInfo,
NonUniqueNameException,
InterfaceChoice,
IPVersion,
Zeroconf,
)
logger = logging.getLogger(__name__)
ZEROCONF_TYPE = "_frigate._tcp.local."
# Taken from: http://stackoverflow.com/a/11735897
def get_local_ip() -> str:
"""Try to determine the local IP address of the machine."""
try:
sock = socket.socket(socket.AF_INET, socket.SOCK_DGRAM)
# Use Google Public DNS server to determine own IP
sock.connect(("8.8.8.8", 80))
return sock.getsockname()[0] # type: ignore
except OSError:
try:
return socket.gethostbyname(socket.gethostname())
except socket.gaierror:
return "127.0.0.1"
finally:
sock.close()
def broadcast_zeroconf(frigate_id):
zeroconf = Zeroconf(interfaces=InterfaceChoice.Default, ip_version=IPVersion.V4Only)
host_ip = get_local_ip()
try:
host_ip_pton = socket.inet_pton(socket.AF_INET, host_ip)
except OSError:
host_ip_pton = socket.inet_pton(socket.AF_INET6, host_ip)
info = ServiceInfo(
ZEROCONF_TYPE,
name=f"{frigate_id}.{ZEROCONF_TYPE}",
addresses=[host_ip_pton],
port=5000,
)
logger.info("Starting Zeroconf broadcast")
try:
zeroconf.register_service(info)
except NonUniqueNameException:
logger.error(
"Frigate instance with identical name present in the local network"
)
return zeroconf

80
labelmap.txt Normal file
View File

@@ -0,0 +1,80 @@
0 person
1 bicycle
2 car
3 motorcycle
4 airplane
5 bus
6 train
7 car
8 boat
9 traffic light
10 fire hydrant
12 stop sign
13 parking meter
14 bench
15 bird
16 cat
17 dog
18 horse
19 sheep
20 cow
21 elephant
22 bear
23 zebra
24 giraffe
26 backpack
27 umbrella
30 handbag
31 tie
32 suitcase
33 frisbee
34 skis
35 snowboard
36 sports ball
37 kite
38 baseball bat
39 baseball glove
40 skateboard
41 surfboard
42 tennis racket
43 bottle
45 wine glass
46 cup
47 fork
48 knife
49 spoon
50 bowl
51 banana
52 apple
53 sandwich
54 orange
55 broccoli
56 carrot
57 hot dog
58 pizza
59 donut
60 cake
61 chair
62 couch
63 potted plant
64 bed
66 dining table
69 toilet
71 tv
72 laptop
73 mouse
74 remote
75 keyboard
76 cell phone
77 microwave
78 oven
79 toaster
80 sink
81 refrigerator
83 book
84 clock
85 vase
86 scissors
87 teddy bear
88 hair drier
89 toothbrush

122
nginx/nginx.conf Normal file
View File

@@ -0,0 +1,122 @@
worker_processes 1;
error_log /var/log/nginx/error.log warn;
pid /var/run/nginx.pid;
load_module "modules/ngx_rtmp_module.so";
events {
worker_connections 1024;
}
http {
include /etc/nginx/mime.types;
default_type application/octet-stream;
log_format main '$remote_addr - $remote_user [$time_local] "$request" '
'$status $body_bytes_sent "$http_referer" '
'"$http_user_agent" "$http_x_forwarded_for"';
access_log /var/log/nginx/access.log main;
sendfile on;
keepalive_timeout 65;
upstream frigate_api {
server localhost:5001;
keepalive 1024;
}
server {
listen 5000;
location /stream/ {
add_header 'Cache-Control' 'no-cache';
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
application/dash+xml mpd;
application/vnd.apple.mpegurl m3u8;
video/mp2t ts;
image/jpeg jpg;
}
root /tmp;
}
location /clips/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
image/jpeg jpg;
}
autoindex on;
root /media/frigate;
}
location /recordings/ {
add_header 'Access-Control-Allow-Origin' "$http_origin" always;
add_header 'Access-Control-Allow-Credentials' 'true';
add_header 'Access-Control-Expose-Headers' 'Content-Length';
if ($request_method = 'OPTIONS') {
add_header 'Access-Control-Allow-Origin' "$http_origin";
add_header 'Access-Control-Max-Age' 1728000;
add_header 'Content-Type' 'text/plain charset=UTF-8';
add_header 'Content-Length' 0;
return 204;
}
types {
video/mp4 mp4;
}
autoindex on;
autoindex_format json;
root /media/frigate;
}
location / {
proxy_pass http://frigate_api/;
proxy_pass_request_headers on;
proxy_set_header Host $host;
proxy_set_header X-Forwarded-For $proxy_add_x_forwarded_for;
proxy_set_header X-Forwarded-Proto $scheme;
}
}
}
rtmp {
server {
listen 1935;
chunk_size 4096;
allow publish 127.0.0.1;
deny publish all;
allow play all;
application live {
live on;
record off;
meta copy;
}
}
}

4
run.sh Normal file
View File

@@ -0,0 +1,4 @@
#!/usr/bin/env bash
service nginx start
exec python3 -u -m frigate