mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-31 19:14:49 +08:00 
			
		
		
		
	Compare commits
	
		
			132 Commits
		
	
	
		
			v0.1.1
			...
			v0.5.0-rc5
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|   | 30ad0e30f8 | ||
|   | 7bad89c9bf | ||
|   | f077c397f4 | ||
|   | cc729d83a8 | ||
|   | c520b81e49 | ||
|   | 9c304391c0 | ||
|   | 9a12b02d22 | ||
|   | 7686c510b3 | ||
|   | 2f5e322d3c | ||
|   | 1cd4c12104 | ||
|   | 1a8b034685 | ||
|   | da6dc03a57 | ||
|   | 7fa3b70d2d | ||
|   | 1fc5a2bfd4 | ||
|   | 7e84da7dad | ||
|   | 128be72e28 | ||
|   | aaddedc95c | ||
|   | ba919fb439 | ||
|   | b1d563f3c4 | ||
|   | 204d8af5df | ||
|   | b507a73d79 | ||
|   | 66eeb8b5cb | ||
|   | efa67067c6 | ||
|   | aeb036f1a4 | ||
|   | 74c528f9dc | ||
|   | f2d54bec43 | ||
|   | f07d57741e | ||
|   | 2c1ec19f98 | ||
|   | 6a9027c002 | ||
|   | 60c15e4419 | ||
|   | 03dbf600aa | ||
|   | fbbb79b31b | ||
|   | 496c6bc6c4 | ||
|   | 869a81c944 | ||
|   | 5b1884cfb3 | ||
|   | cd057370e1 | ||
|   | 6263912655 | ||
|   | af247275cf | ||
|   | 1198c29dac | ||
|   | 169603d3ff | ||
|   | dc7eecebc6 | ||
|   | 0dd4087d5d | ||
|   | 6ecf87fc60 | ||
|   | ebcf1482f8 | ||
|   | 50bcf60893 | ||
|   | 38efbd63ea | ||
|   | 50bcad8b77 | ||
|   | cfffb219ae | ||
|   | 382d7be50a | ||
|   | f43dc36a37 | ||
|   | 38e7fa07d2 | ||
|   | e261c20819 | ||
|   | 3a66e672d3 | ||
|   | 2aada930e3 | ||
|   | d87f4407a0 | ||
|   | be5a114f6a | ||
|   | 32b212c7b6 | ||
|   | 76c8e3a12f | ||
|   | 16f7a361c3 | ||
|   | 634b87307f | ||
|   | 1d4fbbdba3 | ||
|   | 65579e9cbf | ||
|   | 49dc029c43 | ||
|   | 08174d8db2 | ||
|   | 5199242a68 | ||
|   | 725dd3220c | ||
|   | 10dc56f6ea | ||
|   | cc2abe93a6 | ||
|   | 0c6717090c | ||
|   | f5a2252b29 | ||
|   | 02efb6f415 | ||
|   | 5b4c6e50bc | ||
|   | 9cc46a71cb | ||
|   | be1673b00a | ||
|   | b6130e77ff | ||
|   | 4180c710cd | ||
|   | ab3e70b4db | ||
|   | d90e408d50 | ||
|   | 6c87ce0879 | ||
|   | b7b4e38f62 | ||
|   | 480175d70f | ||
|   | bee99ca6ff | ||
|   | 5c01720567 | ||
|   | 262f45c8bc | ||
|   | 22bb17b2fd | ||
|   | 3a3afe14bf | ||
|   | 01f058a482 | ||
|   | d899ef158e | ||
|   | 39d64f7ba7 | ||
|   | f148eb5a7b | ||
|   | 297e2f1c0c | ||
|   | e818744d81 | ||
|   | ceedfae993 | ||
|   | e13563770d | ||
|   | a659019d1a | ||
|   | ba71927d53 | ||
|   | 04fed31eac | ||
|   | ebaa8fac01 | ||
|   | 2ec45cd1b6 | ||
|   | 700bd1e3ef | ||
|   | c9e9f7a735 | ||
|   | aea4dc8724 | ||
|   | 12d5007b90 | ||
|   | 8970e73f75 | ||
|   | 1ba006b24f | ||
|   | 4a58f16637 | ||
|   | 436b876b24 | ||
|   | a770ab7f69 | ||
|   | 806acaf445 | ||
|   | c653567cc1 | ||
|   | 8fee8f86a2 | ||
|   | 59a4b0e650 | ||
|   | 834a3df0bc | ||
|   | c41b104997 | ||
|   | 7028b05856 | ||
|   | 2d22a04391 | ||
|   | baa587028b | ||
|   | 2b51dc3e5b | ||
|   | 9f8278ea8f | ||
|   | 56b9c754f5 | ||
|   | 5c4f5ef3f0 | ||
|   | 8c924896c5 | ||
|   | 2c2f0044b9 | ||
|   | 874e9085a7 | ||
|   | e791d6646b | ||
|   | 3019b0218c | ||
|   | 6900e140d5 | ||
|   | 911c1b2bfa | ||
|   | f4587462cf | ||
|   | cac1faa8ac | ||
|   | 9525bae5a3 | ||
|   | dbcfd109f6 | 
| @@ -1 +1,6 @@ | ||||
| README.md | ||||
| diagram.png | ||||
| .gitignore | ||||
| debug | ||||
| config/ | ||||
| *.pyc | ||||
							
								
								
									
										1
									
								
								.github/FUNDING.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								.github/FUNDING.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | ||||
| github: blakeblackshear | ||||
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,2 +1,4 @@ | ||||
| *.pyc  | ||||
| debug | ||||
| .vscode | ||||
| config/config.yml | ||||
							
								
								
									
										143
									
								
								Dockerfile
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										143
									
								
								Dockerfile
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -1,107 +1,60 @@ | ||||
| FROM ubuntu:16.04 | ||||
| FROM ubuntu:18.04 | ||||
| LABEL maintainer "blakeb@blakeshome.com" | ||||
|  | ||||
| # Install system packages | ||||
| RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \  | ||||
|  python3-dev \ | ||||
|  python-pil \ | ||||
|  python-lxml \ | ||||
|  python-tk \ | ||||
| ENV DEBIAN_FRONTEND=noninteractive | ||||
| # Install packages for apt repo | ||||
| RUN apt -qq update && apt -qq install --no-install-recommends -y \ | ||||
|     software-properties-common \ | ||||
|     # apt-transport-https ca-certificates \ | ||||
|     build-essential \ | ||||
|  cmake \  | ||||
|  git \  | ||||
|  libgtk2.0-dev \  | ||||
|  pkg-config \  | ||||
|  libavcodec-dev \  | ||||
|  libavformat-dev \  | ||||
|  libswscale-dev \  | ||||
|  libtbb2 \ | ||||
|  libtbb-dev \  | ||||
|  libjpeg-dev \ | ||||
|  libpng-dev \ | ||||
|  libtiff-dev \ | ||||
|  libjasper-dev \ | ||||
|  libdc1394-22-dev \ | ||||
|  x11-apps \ | ||||
|  wget \ | ||||
|  vim \ | ||||
|     gnupg wget unzip \ | ||||
|     # libcap-dev \ | ||||
|     && add-apt-repository ppa:deadsnakes/ppa -y \ | ||||
|     && apt -qq install --no-install-recommends -y \ | ||||
|         python3.7 \ | ||||
|         python3.7-dev \ | ||||
|         python3-pip \ | ||||
|         ffmpeg \ | ||||
|  unzip \ | ||||
|  libusb-1.0-0-dev \ | ||||
|  python3-setuptools \ | ||||
|  python3-numpy \ | ||||
|  zlib1g-dev \ | ||||
|  libgoogle-glog-dev \ | ||||
|  swig \ | ||||
|  libunwind-dev \ | ||||
|  libc++-dev \ | ||||
|  libc++abi-dev \ | ||||
|  build-essential \ | ||||
|  && rm -rf /var/lib/apt/lists/*  | ||||
|  | ||||
| # Install core packages  | ||||
| RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py | ||||
| RUN  pip install -U pip \ | ||||
|         # VAAPI drivers for Intel hardware accel | ||||
|         libva-drm2 libva2 i965-va-driver vainfo \ | ||||
|     && python3.7 -m pip install -U wheel setuptools \ | ||||
|     && python3.7 -m pip install -U \ | ||||
|         opencv-python-headless \ | ||||
|         # python-prctl \ | ||||
|         numpy \ | ||||
|  pillow \ | ||||
|  matplotlib \ | ||||
|  notebook \ | ||||
|  Flask \ | ||||
|         imutils \ | ||||
|         scipy \ | ||||
|     && python3.7 -m pip install -U \ | ||||
|         SharedArray \ | ||||
|         Flask \ | ||||
|         paho-mqtt \ | ||||
|  PyYAML | ||||
|         PyYAML \ | ||||
|         matplotlib \ | ||||
|         pyarrow \ | ||||
|     && echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \ | ||||
|     && wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \ | ||||
|     && apt -qq update \ | ||||
|     && echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \ | ||||
|     && apt -qq install --no-install-recommends -y \ | ||||
|         libedgetpu1-max \ | ||||
|     ## Tensorflow lite (python 3.7 only) | ||||
|     && wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||
|     && python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||
|     && rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||
|     && rm -rf /var/lib/apt/lists/* \ | ||||
|     && (apt-get autoremove -y; apt-get autoclean -y) | ||||
|  | ||||
| # Install tensorflow models object detection | ||||
| RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models | ||||
| RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz | ||||
|  | ||||
| # Download & build protobuf-python | ||||
| RUN cd /usr/local/src/ \ | ||||
|  && tar xf protobuf-python-3.5.1.tar.gz \ | ||||
|  && rm protobuf-python-3.5.1.tar.gz \ | ||||
|  && cd /usr/local/src/protobuf-3.5.1/ \ | ||||
|  && ./configure \ | ||||
|  && make \ | ||||
|  && make install \ | ||||
|  && ldconfig \ | ||||
|  && rm -rf /usr/local/src/protobuf-3.5.1/ | ||||
|  | ||||
| # Download & build OpenCV | ||||
| RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip | ||||
| RUN cd /usr/local/src/ \ | ||||
|  && unzip 4.0.1.zip \ | ||||
|  && rm 4.0.1.zip \ | ||||
|  && cd /usr/local/src/opencv-4.0.1/ \ | ||||
|  && mkdir build \ | ||||
|  && cd /usr/local/src/opencv-4.0.1/build \  | ||||
|  && cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \ | ||||
|  && make -j4 \ | ||||
|  && make install \ | ||||
|  && rm -rf /usr/local/src/opencv-4.0.1 | ||||
|  | ||||
| # Download and install EdgeTPU libraries | ||||
| RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz | ||||
|  | ||||
| RUN tar xzf edgetpu_api.tar.gz \ | ||||
|   && cd python-tflite-source \ | ||||
|   && cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \ | ||||
|   && cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \ | ||||
|   && cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \ | ||||
|   && python3 setup.py develop --user | ||||
|  | ||||
| # Minimize image size  | ||||
| RUN (apt-get autoremove -y; \ | ||||
|      apt-get autoclean -y) | ||||
|  | ||||
| # symlink the model and labels | ||||
| RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb | ||||
| RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext | ||||
|  | ||||
| # Set TF object detection available | ||||
| ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim" | ||||
| RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=. | ||||
| # get model and labels | ||||
| RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names | ||||
| RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names | ||||
| RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \ | ||||
|     unzip /cpu_model.zip detect.tflite -d / && \ | ||||
|     mv /detect.tflite /cpu_model.tflite && \ | ||||
|     rm /cpu_model.zip | ||||
|  | ||||
| WORKDIR /opt/frigate/ | ||||
| ADD frigate frigate/ | ||||
| COPY detect_objects.py . | ||||
| COPY benchmark.py . | ||||
|  | ||||
| CMD ["python3", "-u", "detect_objects.py"] | ||||
| CMD ["python3.7", "-u", "detect_objects.py"] | ||||
|   | ||||
							
								
								
									
										124
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										124
									
								
								README.md
									
									
									
									
									
								
							| @@ -1,14 +1,13 @@ | ||||
| # Frigate - Realtime Object Detection for RTSP Cameras | ||||
| **Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) | ||||
| # Frigate - Realtime Object Detection for IP Cameras | ||||
| Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT. | ||||
|  | ||||
| Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT. | ||||
| Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load. | ||||
|  | ||||
| - Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame | ||||
| - Allows you to define specific regions (squares) in the image to look for objects | ||||
| - No motion detection (for now) | ||||
| - Object detection with Tensorflow runs in a separate thread | ||||
| - Leverages multiprocessing heavily with an emphasis on realtime over processing every frame | ||||
| - Uses a very low overhead motion detection to determine where to run object detection | ||||
| - Object detection with Tensorflow runs in a separate process | ||||
| - Object info is published over MQTT for integration into HomeAssistant as a binary sensor | ||||
| - An endpoint is available to view an MJPEG stream for debugging | ||||
| - An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously | ||||
|  | ||||
|  | ||||
|  | ||||
| @@ -22,77 +21,112 @@ Build the container with | ||||
| docker build -t frigate . | ||||
| ``` | ||||
|  | ||||
| The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/). | ||||
| Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts: | ||||
| - CPU Model: `/cpu_model.tflite` | ||||
| - EdgeTPU Model: `/edgetpu_model.tflite` | ||||
| - Labels: `/labelmap.txt` | ||||
|  | ||||
| Run the container with | ||||
| ``` | ||||
| ```bash | ||||
| docker run --rm \ | ||||
| --privileged \ | ||||
| --shm-size=512m \ # should work for a 2-3 cameras | ||||
| -v /dev/bus/usb:/dev/bus/usb \ | ||||
| -v <path_to_config_dir>:/config:ro \ | ||||
| -v /etc/localtime:/etc/localtime:ro \ | ||||
| -p 5000:5000 \ | ||||
| -e RTSP_PASSWORD='password' \ | ||||
| -e FRIGATE_RTSP_PASSWORD='password' \ | ||||
| frigate:latest | ||||
| ``` | ||||
|  | ||||
| Example docker-compose: | ||||
| ``` | ||||
| ```yaml | ||||
|   frigate: | ||||
|     container_name: frigate | ||||
|     restart: unless-stopped | ||||
|     privileged: true | ||||
|     shm_size: '1g' # should work for 5-7 cameras | ||||
|     image: frigate:latest | ||||
|     volumes: | ||||
|       - /dev/bus/usb:/dev/bus/usb | ||||
|       - /etc/localtime:/etc/localtime:ro | ||||
|       - <path_to_config>:/config | ||||
|     ports: | ||||
|       - "5000:5000" | ||||
|     environment: | ||||
|       RTSP_PASSWORD: "password" | ||||
|       FRIGATE_RTSP_PASSWORD: "password" | ||||
| ``` | ||||
|  | ||||
| A `config.yml` file must exist in the `config` directory. See example [here](config/config.yml). | ||||
| A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md). | ||||
|  | ||||
| Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg` | ||||
| Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg` | ||||
|  | ||||
| Debug info is available at `http://localhost:5000/debug/stats` | ||||
|  | ||||
| ## Integration with HomeAssistant | ||||
| ``` | ||||
| camera: | ||||
|   - name: Camera Last Person | ||||
|     platform: generic | ||||
|     still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg | ||||
|     platform: mqtt | ||||
|     topic: frigate/<camera_name>/person/snapshot | ||||
|   - name: Camera Last Car | ||||
|     platform: mqtt | ||||
|     topic: frigate/<camera_name>/car/snapshot | ||||
|  | ||||
| sensor: | ||||
| binary_sensor: | ||||
|   - name: Camera Person | ||||
|     platform: mqtt | ||||
|     state_topic: "frigate/<camera_name>/objects" | ||||
|     value_template: '{{ value_json.person }}' | ||||
|     device_class: moving | ||||
|     state_topic: "frigate/<camera_name>/person" | ||||
|     device_class: motion | ||||
|     availability_topic: "frigate/available" | ||||
|  | ||||
| automation: | ||||
|   - alias: Alert me if a person is detected while armed away | ||||
|     trigger:  | ||||
|       platform: state | ||||
|       entity_id: binary_sensor.camera_person | ||||
|       from: 'off' | ||||
|       to: 'on' | ||||
|     condition: | ||||
|       - condition: state | ||||
|         entity_id: alarm_control_panel.home_alarm | ||||
|         state: armed_away | ||||
|     action: | ||||
|       - service: notify.user_telegram | ||||
|         data: | ||||
|           message: "A person was detected." | ||||
|           data: | ||||
|             photo: | ||||
|               - url: http://<ip>:5000/<camera_name>/person/best.jpg | ||||
|                 caption: A person was detected. | ||||
|  | ||||
| sensor: | ||||
|   - platform: rest | ||||
|     name: Frigate Debug | ||||
|     resource: http://localhost:5000/debug/stats | ||||
|     scan_interval: 5 | ||||
|     json_attributes: | ||||
|       - back | ||||
|       - coral | ||||
|     value_template: 'OK'   | ||||
|   - platform: template | ||||
|     sensors: | ||||
|       back_fps:  | ||||
|         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}' | ||||
|         unit_of_measurement: 'FPS' | ||||
|       back_skipped_fps:  | ||||
|         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}' | ||||
|         unit_of_measurement: 'FPS' | ||||
|       back_detection_fps:  | ||||
|         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}' | ||||
|         unit_of_measurement: 'FPS' | ||||
|       frigate_coral_fps:  | ||||
|         value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}' | ||||
|         unit_of_measurement: 'FPS' | ||||
|       frigate_coral_inference: | ||||
|         value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'  | ||||
|         unit_of_measurement: 'ms' | ||||
| ``` | ||||
|  | ||||
| ## Tips | ||||
| - Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed | ||||
|  | ||||
| ## Future improvements | ||||
| - [x] Remove motion detection for now | ||||
| - [x] Try running object detection in a thread rather than a process | ||||
| - [x] Implement min person size again | ||||
| - [x] Switch to a config file | ||||
| - [x] Handle multiple cameras in the same container | ||||
| - [ ] Attempt to figure out coral symlinking | ||||
| - [ ] Add object list to config with min scores for mqtt | ||||
| - [ ] Move mjpeg encoding to a separate process | ||||
| - [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur) | ||||
| - [ ] See if motion detection is even worth running | ||||
| - [ ] Scan for people across entire image rather than specfic regions | ||||
| - [ ] Dynamically resize detection area and follow people | ||||
| - [ ] Add ability to turn detection on and off via MQTT | ||||
| - [ ] Output movie clips of people for notifications, etc. | ||||
| - [ ] Integrate with homeassistant push camera | ||||
| - [ ] Merge bounding boxes that span multiple regions | ||||
| - [ ] Implement mode to save labeled objects for training | ||||
| - [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about | ||||
| - [ ] Look into GPU accelerated decoding of RTSP stream | ||||
| - [ ] Send video over a socket and use JSMPEG | ||||
| - [x] Look into neural compute stick | ||||
| - Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed | ||||
|   | ||||
							
								
								
									
										79
									
								
								benchmark.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										79
									
								
								benchmark.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,79 @@ | ||||
| import os | ||||
| from statistics import mean | ||||
| import multiprocessing as mp | ||||
| import numpy as np | ||||
| import datetime | ||||
| from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels | ||||
|  | ||||
| my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0) | ||||
| labels = load_labels('/labelmap.txt') | ||||
|  | ||||
| ###### | ||||
| # Minimal same process runner | ||||
| ###### | ||||
| # object_detector = ObjectDetector() | ||||
| # tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0) | ||||
|  | ||||
| # start = datetime.datetime.now().timestamp() | ||||
|  | ||||
| # frame_times = [] | ||||
| # for x in range(0, 1000): | ||||
| #   start_frame = datetime.datetime.now().timestamp() | ||||
|  | ||||
| #   tensor_input[:] = my_frame | ||||
| #   detections = object_detector.detect_raw(tensor_input) | ||||
| #   parsed_detections = [] | ||||
| #   for d in detections: | ||||
| #       if d[1] < 0.4: | ||||
| #           break | ||||
| #       parsed_detections.append(( | ||||
| #           labels[int(d[0])], | ||||
| #           float(d[1]), | ||||
| #           (d[2], d[3], d[4], d[5]) | ||||
| #       )) | ||||
| #   frame_times.append(datetime.datetime.now().timestamp()-start_frame) | ||||
|  | ||||
| # duration = datetime.datetime.now().timestamp()-start | ||||
| # print(f"Processed for {duration:.2f} seconds.") | ||||
| # print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms") | ||||
|  | ||||
| ###### | ||||
| # Separate process runner | ||||
| ###### | ||||
| def start(id, num_detections, detection_queue): | ||||
|   object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue) | ||||
|   start = datetime.datetime.now().timestamp() | ||||
|  | ||||
|   frame_times = [] | ||||
|   for x in range(0, num_detections): | ||||
|     start_frame = datetime.datetime.now().timestamp() | ||||
|     detections = object_detector.detect(my_frame) | ||||
|     frame_times.append(datetime.datetime.now().timestamp()-start_frame) | ||||
|  | ||||
|   duration = datetime.datetime.now().timestamp()-start | ||||
|   print(f"{id} - Processed for {duration:.2f} seconds.") | ||||
|   print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms") | ||||
|  | ||||
| edgetpu_process = EdgeTPUProcess() | ||||
|  | ||||
| # start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready) | ||||
|  | ||||
| #### | ||||
| # Multiple camera processes | ||||
| #### | ||||
| camera_processes = [] | ||||
| for x in range(0, 10): | ||||
|   camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue)) | ||||
|   camera_process.daemon = True | ||||
|   camera_processes.append(camera_process) | ||||
|  | ||||
| start = datetime.datetime.now().timestamp() | ||||
|  | ||||
| for p in camera_processes: | ||||
|   p.start() | ||||
|  | ||||
| for p in camera_processes: | ||||
|   p.join() | ||||
|  | ||||
| duration = datetime.datetime.now().timestamp()-start | ||||
| print(f"Total - Processed for {duration:.2f} seconds.") | ||||
							
								
								
									
										132
									
								
								config/config.example.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										132
									
								
								config/config.example.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,132 @@ | ||||
| web_port: 5000 | ||||
|  | ||||
| mqtt: | ||||
|   host: mqtt.server.com | ||||
|   topic_prefix: frigate | ||||
| #  client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances | ||||
| #  user: username # Optional -- Uncomment for use | ||||
| #  password: password # Optional -- Uncomment for use | ||||
|  | ||||
| ################# | ||||
| # Default ffmpeg args. Optional and can be overwritten per camera. | ||||
| # Should work with most RTSP cameras that send h264 video | ||||
| # Built from the properties below with: | ||||
| # "ffmpeg" + global_args + input_args + "-i" + input + output_args | ||||
| ################# | ||||
| # ffmpeg: | ||||
| #   global_args: | ||||
| #     - -hide_banner | ||||
| #     - -loglevel | ||||
| #     - panic | ||||
| #   hwaccel_args: [] | ||||
| #   input_args: | ||||
| #     - -avoid_negative_ts | ||||
| #     - make_zero | ||||
| #     - -fflags | ||||
| #     - nobuffer | ||||
| #     - -flags | ||||
| #     - low_delay | ||||
| #     - -strict | ||||
| #     - experimental | ||||
| #     - -fflags | ||||
| #     - +genpts+discardcorrupt | ||||
| #     - -vsync | ||||
| #     - drop | ||||
| #     - -rtsp_transport | ||||
| #     - tcp | ||||
| #     - -stimeout | ||||
| #     - '5000000' | ||||
| #     - -use_wallclock_as_timestamps | ||||
| #     - '1' | ||||
| #   output_args: | ||||
| #     - -f | ||||
| #     - rawvideo | ||||
| #     - -pix_fmt | ||||
| #     - rgb24 | ||||
|  | ||||
| #################### | ||||
| # Global object configuration. Applies to all cameras | ||||
| # unless overridden at the camera levels. | ||||
| # Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt). | ||||
| # All labels from the model are reported over MQTT. These values are used to filter out false positives. | ||||
| # min_area (optional): minimum width*height of the bounding box for the detected person | ||||
| # max_area (optional): maximum width*height of the bounding box for the detected person | ||||
| # threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow | ||||
| #################### | ||||
| objects: | ||||
|   track: | ||||
|     - person | ||||
|     - car | ||||
|     - truck | ||||
|   filters: | ||||
|     person: | ||||
|       min_area: 5000 | ||||
|       max_area: 100000 | ||||
|       threshold: 0.5 | ||||
|  | ||||
| cameras: | ||||
|   back: | ||||
|     ffmpeg: | ||||
|       ################ | ||||
|       # Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg. | ||||
|       # Environment variables that begin with 'FRIGATE_' may be referenced in {} | ||||
|       ################ | ||||
|       input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2 | ||||
|       ################# | ||||
|       # These values will override default values for just this camera | ||||
|       ################# | ||||
|       # global_args: [] | ||||
|       # hwaccel_args: [] | ||||
|       # input_args: [] | ||||
|       # output_args: [] | ||||
|      | ||||
|     ################ | ||||
|     ## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified | ||||
|     ################ | ||||
|     # height: 1280 | ||||
|     # width: 720 | ||||
|  | ||||
|     ################ | ||||
|     ## Optional mask. Must be the same aspect ratio as your video feed. | ||||
|     ##  | ||||
|     ## The mask works by looking at the bottom center of the bounding box for the detected | ||||
|     ## person in the image. If that pixel in the mask is a black pixel, it ignores it as a | ||||
|     ## false positive. In my mask, the grass and driveway visible from my backdoor camera  | ||||
|     ## are white. The garage doors, sky, and trees (anywhere it would be impossible for a  | ||||
|     ## person to stand) are black. | ||||
|     ##  | ||||
|     ## Masked areas are also ignored for motion detection. | ||||
|     ################ | ||||
|     # mask: back-mask.bmp | ||||
|  | ||||
|     ################ | ||||
|     # Allows you to limit the framerate within frigate for cameras that do not support | ||||
|     # custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,  | ||||
|     # 3 every 3rd frame, etc. | ||||
|     ################ | ||||
|     take_frame: 1 | ||||
|  | ||||
|     ################ | ||||
|     # The expected framerate for the camera. Frigate will try and ensure it maintains this framerate | ||||
|     # by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate | ||||
|     # to process every frame at the expense of realtime processing. | ||||
|     ################ | ||||
|     fps: 5 | ||||
|  | ||||
|     ################ | ||||
|     # Configuration for the snapshots in the debug view and mqtt | ||||
|     ################ | ||||
|     snapshots: | ||||
|       show_timestamp: True | ||||
|  | ||||
|     ################ | ||||
|     # Camera level object config. This config is merged with the global config above. | ||||
|     ################ | ||||
|     objects: | ||||
|       track: | ||||
|         - person | ||||
|       filters: | ||||
|         person: | ||||
|           min_area: 5000 | ||||
|           max_area: 100000 | ||||
|           threshold: 0.5 | ||||
| @@ -1,29 +0,0 @@ | ||||
| web_port: 5000 | ||||
|  | ||||
| mqtt: | ||||
|   host: mqtt.server.com | ||||
|   topic_prefix: frigate | ||||
|  | ||||
| cameras: | ||||
|   back: | ||||
|     rtsp: | ||||
|       user: viewer | ||||
|       host: 10.0.10.10 | ||||
|       port: 554 | ||||
|       # values that begin with a "$" will be replaced with environment variable | ||||
|       password: $RTSP_PASSWORD | ||||
|       path: /cam/realmonitor?channel=1&subtype=2 | ||||
|     mask: back-mask.bmp | ||||
|     regions: | ||||
|       - size: 350 | ||||
|         x_offset: 0 | ||||
|         y_offset: 300 | ||||
|         min_person_area: 5000 | ||||
|       - size: 400 | ||||
|         x_offset: 350 | ||||
|         y_offset: 250 | ||||
|         min_person_area: 2000 | ||||
|       - size: 400 | ||||
|         x_offset: 750 | ||||
|         y_offset: 250 | ||||
|         min_person_area: 2000 | ||||
| @@ -1,13 +1,23 @@ | ||||
| import os | ||||
| import cv2 | ||||
| import time | ||||
| import datetime | ||||
| import queue | ||||
| import yaml | ||||
| import threading | ||||
| import multiprocessing as mp | ||||
| import subprocess as sp | ||||
| import numpy as np | ||||
| from flask import Flask, Response, make_response | ||||
| import logging | ||||
| from flask import Flask, Response, make_response, jsonify | ||||
| import paho.mqtt.client as mqtt | ||||
|  | ||||
| from frigate.video import Camera | ||||
| from frigate.object_detection import PreppedQueueProcessor | ||||
| from frigate.video import track_camera | ||||
| from frigate.object_processing import TrackedObjectProcessor | ||||
| from frigate.util import EventsPerSecond | ||||
| from frigate.edgetpu import EdgeTPUProcess | ||||
|  | ||||
| FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')} | ||||
|  | ||||
| with open('/config/config.yml') as f: | ||||
|     CONFIG = yaml.safe_load(f) | ||||
| @@ -17,17 +27,88 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883) | ||||
| MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate') | ||||
| MQTT_USER = CONFIG.get('mqtt', {}).get('user') | ||||
| MQTT_PASS = CONFIG.get('mqtt', {}).get('password') | ||||
| if not MQTT_PASS is None: | ||||
|     MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS) | ||||
| MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate') | ||||
|  | ||||
| # Set the default FFmpeg config | ||||
| FFMPEG_CONFIG = CONFIG.get('ffmpeg', {}) | ||||
| FFMPEG_DEFAULT_CONFIG = { | ||||
|     'global_args': FFMPEG_CONFIG.get('global_args',  | ||||
|         ['-hide_banner','-loglevel','panic']), | ||||
|     'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args', | ||||
|         []), | ||||
|     'input_args': FFMPEG_CONFIG.get('input_args', | ||||
|         ['-avoid_negative_ts', 'make_zero', | ||||
|          '-fflags', 'nobuffer', | ||||
|          '-flags', 'low_delay', | ||||
|          '-strict', 'experimental', | ||||
|          '-fflags', '+genpts+discardcorrupt', | ||||
|          '-vsync', 'drop', | ||||
|          '-rtsp_transport', 'tcp', | ||||
|          '-stimeout', '5000000', | ||||
|          '-use_wallclock_as_timestamps', '1']), | ||||
|     'output_args': FFMPEG_CONFIG.get('output_args', | ||||
|         ['-f', 'rawvideo', | ||||
|          '-pix_fmt', 'rgb24']) | ||||
| } | ||||
|  | ||||
| GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {}) | ||||
|  | ||||
| WEB_PORT = CONFIG.get('web_port', 5000) | ||||
| DEBUG = (CONFIG.get('debug', '0') == '1') | ||||
|  | ||||
| class CameraWatchdog(threading.Thread): | ||||
|     def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor): | ||||
|         threading.Thread.__init__(self) | ||||
|         self.camera_processes = camera_processes | ||||
|         self.config = config | ||||
|         self.tflite_process = tflite_process | ||||
|         self.tracked_objects_queue = tracked_objects_queue | ||||
|         self.object_processor = object_processor | ||||
|  | ||||
|     def run(self): | ||||
|         time.sleep(10) | ||||
|         while True: | ||||
|             # wait a bit before checking | ||||
|             time.sleep(30) | ||||
|  | ||||
|             if (self.tflite_process.detection_start.value > 0.0 and  | ||||
|                 datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10): | ||||
|                 print("Detection appears to be stuck. Restarting detection process") | ||||
|                 time.sleep(30) | ||||
|  | ||||
|             for name, camera_process in self.camera_processes.items(): | ||||
|                 process = camera_process['process'] | ||||
|                 if not process.is_alive(): | ||||
|                     print(f"Process for {name} is not alive. Starting again...") | ||||
|                     camera_process['fps'].value = float(self.config[name]['fps']) | ||||
|                     camera_process['skipped_fps'].value = 0.0 | ||||
|                     camera_process['detection_fps'].value = 0.0 | ||||
|                     process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,  | ||||
|                         self.tflite_process.detection_queue, self.tracked_objects_queue,  | ||||
|                         camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'])) | ||||
|                     process.daemon = True | ||||
|                     camera_process['process'] = process | ||||
|                     process.start() | ||||
|                     print(f"Camera_process started for {name}: {process.pid}") | ||||
|  | ||||
| def main(): | ||||
|     # connect to mqtt and setup last will | ||||
|     def on_connect(client, userdata, flags, rc): | ||||
|         print("On connect called") | ||||
|         if rc != 0: | ||||
|             if rc == 3: | ||||
|                 print ("MQTT Server unavailable") | ||||
|             elif rc == 4: | ||||
|                 print ("MQTT Bad username or password") | ||||
|             elif rc == 5: | ||||
|                 print ("MQTT Not authorized") | ||||
|             else: | ||||
|                 print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc)) | ||||
|         # publish a message to signal that the service is running | ||||
|         client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True) | ||||
|     client = mqtt.Client() | ||||
|     client = mqtt.Client(client_id=MQTT_CLIENT_ID) | ||||
|     client.on_connect = on_connect | ||||
|     client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True) | ||||
|     if not MQTT_USER is None: | ||||
| @@ -35,56 +116,131 @@ def main(): | ||||
|     client.connect(MQTT_HOST, MQTT_PORT, 60) | ||||
|     client.loop_start() | ||||
|  | ||||
|     # Queue for prepped frames, max size set to (number of cameras * 5) | ||||
|     max_queue_size = len(CONFIG['cameras'].items())*5 | ||||
|     prepped_frame_queue = queue.Queue(max_queue_size) | ||||
|     # start plasma store | ||||
|     plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma'] | ||||
|     plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL) | ||||
|     time.sleep(1) | ||||
|     rc = plasma_process.poll() | ||||
|     if rc is not None: | ||||
|         raise RuntimeError("plasma_store exited unexpectedly with " | ||||
|                             "code %d" % (rc,)) | ||||
|  | ||||
|     cameras = {} | ||||
|     ## | ||||
|     # Setup config defaults for cameras | ||||
|     ## | ||||
|     for name, config in CONFIG['cameras'].items(): | ||||
|         cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX) | ||||
|         config['snapshots'] = { | ||||
|             'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True) | ||||
|         } | ||||
|  | ||||
|     prepped_queue_processor = PreppedQueueProcessor( | ||||
|         cameras, | ||||
|         prepped_frame_queue | ||||
|     ) | ||||
|     prepped_queue_processor.start() | ||||
|     # Queue for cameras to push tracked objects to | ||||
|     tracked_objects_queue = mp.Queue() | ||||
|      | ||||
|     for name, camera in cameras.items(): | ||||
|         camera.start() | ||||
|         print("Capture process for {}: {}".format(name, camera.get_capture_pid())) | ||||
|     # Start the shared tflite process | ||||
|     tflite_process = EdgeTPUProcess() | ||||
|  | ||||
|     # start the camera processes | ||||
|     camera_processes = {} | ||||
|     for name, config in CONFIG['cameras'].items(): | ||||
|         camera_processes[name] = { | ||||
|             'fps': mp.Value('d', float(config['fps'])), | ||||
|             'skipped_fps': mp.Value('d', 0.0), | ||||
|             'detection_fps': mp.Value('d', 0.0) | ||||
|         } | ||||
|         camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,  | ||||
|             tflite_process.detection_queue, tracked_objects_queue,  | ||||
|             camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'])) | ||||
|         camera_process.daemon = True | ||||
|         camera_processes[name]['process'] = camera_process | ||||
|  | ||||
|     for name, camera_process in camera_processes.items(): | ||||
|         camera_process['process'].start() | ||||
|         print(f"Camera_process started for {name}: {camera_process['process'].pid}") | ||||
|      | ||||
|     object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue) | ||||
|     object_processor.start() | ||||
|      | ||||
|     camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor) | ||||
|     camera_watchdog.start() | ||||
|  | ||||
|     # create a flask app that encodes frames a mjpeg on demand | ||||
|     app = Flask(__name__) | ||||
|     log = logging.getLogger('werkzeug') | ||||
|     log.setLevel(logging.ERROR) | ||||
|  | ||||
|     @app.route('/<camera_name>/best_person.jpg') | ||||
|     def best_person(camera_name): | ||||
|         best_person_frame = cameras[camera_name].get_best_person() | ||||
|         if best_person_frame is None: | ||||
|             best_person_frame = np.zeros((720,1280,3), np.uint8) | ||||
|         ret, jpg = cv2.imencode('.jpg', best_person_frame) | ||||
|     @app.route('/') | ||||
|     def ishealthy(): | ||||
|         # return a healh | ||||
|         return "Frigate is running. Alive and healthy!" | ||||
|  | ||||
|     @app.route('/debug/stats') | ||||
|     def stats(): | ||||
|         stats = {} | ||||
|  | ||||
|         total_detection_fps = 0 | ||||
|  | ||||
|         for name, camera_stats in camera_processes.items(): | ||||
|             total_detection_fps += camera_stats['detection_fps'].value | ||||
|             stats[name] = { | ||||
|                 'fps': round(camera_stats['fps'].value, 2), | ||||
|                 'skipped_fps': round(camera_stats['skipped_fps'].value, 2), | ||||
|                 'detection_fps': round(camera_stats['detection_fps'].value, 2) | ||||
|             } | ||||
|          | ||||
|         stats['coral'] = { | ||||
|             'fps': round(total_detection_fps, 2), | ||||
|             'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2), | ||||
|             'detection_queue': tflite_process.detection_queue.qsize(), | ||||
|             'detection_start': tflite_process.detection_start.value | ||||
|         } | ||||
|  | ||||
|         rc = plasma_process.poll() | ||||
|         stats['plasma_store_rc'] = rc | ||||
|  | ||||
|         stats['tracked_objects_queue'] = tracked_objects_queue.qsize() | ||||
|  | ||||
|         return jsonify(stats) | ||||
|  | ||||
|     @app.route('/<camera_name>/<label>/best.jpg') | ||||
|     def best(camera_name, label): | ||||
|         if camera_name in CONFIG['cameras']: | ||||
|             best_frame = object_processor.get_best(camera_name, label) | ||||
|             if best_frame is None: | ||||
|                 best_frame = np.zeros((720,1280,3), np.uint8) | ||||
|             best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) | ||||
|             ret, jpg = cv2.imencode('.jpg', best_frame) | ||||
|             response = make_response(jpg.tobytes()) | ||||
|             response.headers['Content-Type'] = 'image/jpg' | ||||
|             return response | ||||
|         else: | ||||
|             return "Camera named {} not found".format(camera_name), 404 | ||||
|  | ||||
|     @app.route('/<camera_name>') | ||||
|     def mjpeg_feed(camera_name): | ||||
|         if camera_name in CONFIG['cameras']: | ||||
|             # return a multipart response | ||||
|             return Response(imagestream(camera_name), | ||||
|                             mimetype='multipart/x-mixed-replace; boundary=frame') | ||||
|         else: | ||||
|             return "Camera named {} not found".format(camera_name), 404 | ||||
|  | ||||
|     def imagestream(camera_name): | ||||
|         while True: | ||||
|             # max out at 5 FPS | ||||
|             time.sleep(0.2) | ||||
|             frame = cameras[camera_name].get_current_frame_with_objects() | ||||
|             # encode the image into a jpg | ||||
|             # max out at 1 FPS | ||||
|             time.sleep(1) | ||||
|             frame = object_processor.get_current_frame(camera_name) | ||||
|             if frame is None: | ||||
|                 frame = np.zeros((720,1280,3), np.uint8) | ||||
|             frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | ||||
|             ret, jpg = cv2.imencode('.jpg', frame) | ||||
|             yield (b'--frame\r\n' | ||||
|                 b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') | ||||
|  | ||||
|     app.run(host='0.0.0.0', port=WEB_PORT, debug=False) | ||||
|  | ||||
|     camera.join() | ||||
|     camera_watchdog.join() | ||||
|      | ||||
|     plasma_process.terminate() | ||||
|  | ||||
| if __name__ == '__main__': | ||||
|     main() | ||||
							
								
								
									
										
											BIN
										
									
								
								diagram.png
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								diagram.png
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							| Before Width: | Height: | Size: 283 KiB After Width: | Height: | Size: 132 KiB | 
							
								
								
									
										74
									
								
								docs/DEVICES.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								docs/DEVICES.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | ||||
| # Configuration Examples | ||||
|  | ||||
| ### Default (most RTSP cameras) | ||||
| This is the default ffmpeg command and should work with most RTSP cameras that send h264 video | ||||
| ```yaml | ||||
| ffmpeg: | ||||
|   global_args: | ||||
|     - -hide_banner | ||||
|     - -loglevel | ||||
|     - panic | ||||
|   hwaccel_args: [] | ||||
|   input_args: | ||||
|     - -avoid_negative_ts | ||||
|     - make_zero  | ||||
|     - -fflags | ||||
|     - nobuffer | ||||
|     - -flags | ||||
|     - low_delay | ||||
|     - -strict | ||||
|     - experimental | ||||
|     - -fflags | ||||
|     - +genpts+discardcorrupt | ||||
|     - -vsync | ||||
|     - drop | ||||
|     - -rtsp_transport | ||||
|     - tcp | ||||
|     - -stimeout | ||||
|     - '5000000'  | ||||
|     - -use_wallclock_as_timestamps | ||||
|     - '1' | ||||
|   output_args: | ||||
|     - -vf | ||||
|     - mpdecimate | ||||
|     - -f | ||||
|     - rawvideo | ||||
|     - -pix_fmt | ||||
|     - rgb24 | ||||
| ``` | ||||
|  | ||||
| ### RTMP Cameras | ||||
| The input parameters need to be adjusted for RTMP cameras | ||||
| ```yaml | ||||
| ffmpeg: | ||||
| input_args: | ||||
|     - -avoid_negative_ts | ||||
|     - make_zero | ||||
|     - -fflags | ||||
|     - nobuffer | ||||
|     - -flags | ||||
|     - low_delay | ||||
|     - -strict | ||||
|     - experimental | ||||
|     - -fflags | ||||
|     - +genpts+discardcorrupt | ||||
|     - -vsync | ||||
|     - drop | ||||
|     - -use_wallclock_as_timestamps | ||||
|     - '1' | ||||
| ``` | ||||
|  | ||||
|  | ||||
| ### Hardware Acceleration | ||||
|  | ||||
| Intel Quicksync | ||||
| ```yaml | ||||
| ffmpeg: | ||||
|   hwaccel_args: | ||||
|     - -hwaccel | ||||
|     - vaapi | ||||
|     - -hwaccel_device | ||||
|     - /dev/dri/renderD128 | ||||
|     - -hwaccel_output_format | ||||
|     - yuv420p | ||||
| ``` | ||||
							
								
								
									
										136
									
								
								frigate/edgetpu.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										136
									
								
								frigate/edgetpu.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,136 @@ | ||||
| import os | ||||
| import datetime | ||||
| import hashlib | ||||
| import multiprocessing as mp | ||||
| import numpy as np | ||||
| import SharedArray as sa | ||||
| import pyarrow.plasma as plasma | ||||
| import tflite_runtime.interpreter as tflite | ||||
| from tflite_runtime.interpreter import load_delegate | ||||
| from frigate.util import EventsPerSecond | ||||
|  | ||||
| def load_labels(path, encoding='utf-8'): | ||||
|   """Loads labels from file (with or without index numbers). | ||||
|   Args: | ||||
|     path: path to label file. | ||||
|     encoding: label file encoding. | ||||
|   Returns: | ||||
|     Dictionary mapping indices to labels. | ||||
|   """ | ||||
|   with open(path, 'r', encoding=encoding) as f: | ||||
|     lines = f.readlines() | ||||
|     if not lines: | ||||
|         return {} | ||||
|  | ||||
|     if lines[0].split(' ', maxsplit=1)[0].isdigit(): | ||||
|         pairs = [line.split(' ', maxsplit=1) for line in lines] | ||||
|         return {int(index): label.strip() for index, label in pairs} | ||||
|     else: | ||||
|         return {index: line.strip() for index, line in enumerate(lines)} | ||||
|  | ||||
| class ObjectDetector(): | ||||
|     def __init__(self): | ||||
|         edge_tpu_delegate = None | ||||
|         try: | ||||
|             edge_tpu_delegate = load_delegate('libedgetpu.so.1.0') | ||||
|         except ValueError: | ||||
|             print("No EdgeTPU detected. Falling back to CPU.") | ||||
|          | ||||
|         if edge_tpu_delegate is None: | ||||
|             self.interpreter = tflite.Interpreter( | ||||
|                 model_path='/cpu_model.tflite') | ||||
|         else: | ||||
|             self.interpreter = tflite.Interpreter( | ||||
|                 model_path='/edgetpu_model.tflite', | ||||
|                 experimental_delegates=[edge_tpu_delegate]) | ||||
|          | ||||
|         self.interpreter.allocate_tensors() | ||||
|  | ||||
|         self.tensor_input_details = self.interpreter.get_input_details() | ||||
|         self.tensor_output_details = self.interpreter.get_output_details() | ||||
|      | ||||
|     def detect_raw(self, tensor_input): | ||||
|         self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input) | ||||
|         self.interpreter.invoke() | ||||
|         boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index'])) | ||||
|         label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index'])) | ||||
|         scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index'])) | ||||
|  | ||||
|         detections = np.zeros((20,6), np.float32) | ||||
|         for i, score in enumerate(scores): | ||||
|             detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]] | ||||
|          | ||||
|         return detections | ||||
|  | ||||
| def run_detector(detection_queue, avg_speed, start): | ||||
|     print(f"Starting detection process: {os.getpid()}") | ||||
|     plasma_client = plasma.connect("/tmp/plasma") | ||||
|     object_detector = ObjectDetector() | ||||
|  | ||||
|     while True: | ||||
|         object_id_str = detection_queue.get() | ||||
|         object_id_hash = hashlib.sha1(str.encode(object_id_str)) | ||||
|         object_id = plasma.ObjectID(object_id_hash.digest()) | ||||
|         input_frame = plasma_client.get(object_id, timeout_ms=0) | ||||
|  | ||||
|         start.value = datetime.datetime.now().timestamp() | ||||
|  | ||||
|         # detect and put the output in the plasma store | ||||
|         object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest() | ||||
|         plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out)) | ||||
|  | ||||
|         duration = datetime.datetime.now().timestamp()-start.value | ||||
|         start.value = 0.0 | ||||
|         avg_speed.value = (avg_speed.value*9 + duration)/10 | ||||
|          | ||||
| class EdgeTPUProcess(): | ||||
|     def __init__(self): | ||||
|         self.detection_queue = mp.Queue() | ||||
|         self.avg_inference_speed = mp.Value('d', 0.01) | ||||
|         self.detection_start = mp.Value('d', 0.0) | ||||
|         self.detect_process = None | ||||
|         self.start_or_restart() | ||||
|  | ||||
|     def start_or_restart(self): | ||||
|         self.detection_start.value = 0.0 | ||||
|         if (not self.detect_process is None) and self.detect_process.is_alive(): | ||||
|             self.detect_process.terminate() | ||||
|             print("Waiting for detection process to exit gracefully...") | ||||
|             self.detect_process.join(timeout=30) | ||||
|             if self.detect_process.exitcode is None: | ||||
|                 print("Detection process didnt exit. Force killing...") | ||||
|                 self.detect_process.kill() | ||||
|                 self.detect_process.join() | ||||
|         self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start)) | ||||
|         self.detect_process.daemon = True | ||||
|         self.detect_process.start() | ||||
|  | ||||
| class RemoteObjectDetector(): | ||||
|     def __init__(self, name, labels, detection_queue): | ||||
|         self.labels = load_labels(labels) | ||||
|         self.name = name | ||||
|         self.fps = EventsPerSecond() | ||||
|         self.plasma_client = plasma.connect("/tmp/plasma") | ||||
|         self.detection_queue = detection_queue | ||||
|      | ||||
|     def detect(self, tensor_input, threshold=.4): | ||||
|         detections = [] | ||||
|  | ||||
|         now = f"{self.name}-{str(datetime.datetime.now().timestamp())}" | ||||
|         object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest()) | ||||
|         object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest()) | ||||
|         self.plasma_client.put(tensor_input, object_id_frame) | ||||
|         self.detection_queue.put(now) | ||||
|         raw_detections = self.plasma_client.get(object_id_detections) | ||||
|  | ||||
|         for d in raw_detections: | ||||
|             if d[1] < threshold: | ||||
|                 break | ||||
|             detections.append(( | ||||
|                 self.labels[int(d[0])], | ||||
|                 float(d[1]), | ||||
|                 (d[2], d[3], d[4], d[5]) | ||||
|             )) | ||||
|         self.plasma_client.delete([object_id_frame, object_id_detections]) | ||||
|         self.fps.update() | ||||
|         return detections | ||||
							
								
								
									
										79
									
								
								frigate/motion.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								frigate/motion.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,79 @@ | ||||
| import cv2 | ||||
| import imutils | ||||
| import numpy as np | ||||
|  | ||||
| class MotionDetector(): | ||||
|     def __init__(self, frame_shape, mask, resize_factor=4): | ||||
|         self.resize_factor = resize_factor | ||||
|         self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor)) | ||||
|         self.avg_frame = np.zeros(self.motion_frame_size, np.float) | ||||
|         self.avg_delta = np.zeros(self.motion_frame_size, np.float) | ||||
|         self.motion_frame_count = 0 | ||||
|         self.frame_counter = 0 | ||||
|         resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) | ||||
|         self.mask = np.where(resized_mask==[0]) | ||||
|  | ||||
|     def detect(self, frame): | ||||
|         motion_boxes = [] | ||||
|  | ||||
|         # resize frame | ||||
|         resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) | ||||
|  | ||||
|         # convert to grayscale | ||||
|         gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY) | ||||
|  | ||||
|         # mask frame | ||||
|         gray[self.mask] = [255] | ||||
|  | ||||
|         # it takes ~30 frames to establish a baseline | ||||
|         # dont bother looking for motion | ||||
|         if self.frame_counter < 30: | ||||
|             self.frame_counter += 1 | ||||
|         else: | ||||
|             # compare to average | ||||
|             frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame)) | ||||
|  | ||||
|             # compute the average delta over the past few frames | ||||
|             # the alpha value can be modified to configure how sensitive the motion detection is. | ||||
|             # higher values mean the current frame impacts the delta a lot, and a single raindrop may | ||||
|             # register as motion, too low and a fast moving person wont be detected as motion | ||||
|             # this also assumes that a person is in the same location across more than a single frame | ||||
|             cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2) | ||||
|  | ||||
|             # compute the threshold image for the current frame | ||||
|             current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] | ||||
|  | ||||
|             # black out everything in the avg_delta where there isnt motion in the current frame | ||||
|             avg_delta_image = cv2.convertScaleAbs(self.avg_delta) | ||||
|             avg_delta_image[np.where(current_thresh==[0])] = [0] | ||||
|  | ||||
|             # then look for deltas above the threshold, but only in areas where there is a delta | ||||
|             # in the current frame. this prevents deltas from previous frames from being included | ||||
|             thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1] | ||||
|  | ||||
|             # dilate the thresholded image to fill in holes, then find contours | ||||
|             # on thresholded image | ||||
|             thresh = cv2.dilate(thresh, None, iterations=2) | ||||
|             cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||||
|             cnts = imutils.grab_contours(cnts) | ||||
|  | ||||
|             # loop over the contours | ||||
|             for c in cnts: | ||||
|                 # if the contour is big enough, count it as motion | ||||
|                 contour_area = cv2.contourArea(c) | ||||
|                 if contour_area > 100: | ||||
|                     x, y, w, h = cv2.boundingRect(c) | ||||
|                     motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor)) | ||||
|          | ||||
|         if len(motion_boxes) > 0: | ||||
|             self.motion_frame_count += 1 | ||||
|             # TODO: this really depends on FPS | ||||
|             if self.motion_frame_count >= 10: | ||||
|                 # only average in the current frame if the difference persists for at least 3 frames | ||||
|                 cv2.accumulateWeighted(gray, self.avg_frame, 0.2) | ||||
|         else: | ||||
|             # when no motion, just keep averaging the frames together | ||||
|             cv2.accumulateWeighted(gray, self.avg_frame, 0.2) | ||||
|             self.motion_frame_count = 0 | ||||
|  | ||||
|         return motion_boxes | ||||
| @@ -1,33 +0,0 @@ | ||||
| import json | ||||
| import threading | ||||
|  | ||||
| class MqttObjectPublisher(threading.Thread): | ||||
|     def __init__(self, client, topic_prefix, objects_parsed, detected_objects): | ||||
|         threading.Thread.__init__(self) | ||||
|         self.client = client | ||||
|         self.topic_prefix = topic_prefix | ||||
|         self.objects_parsed = objects_parsed | ||||
|         self._detected_objects = detected_objects | ||||
|  | ||||
|     def run(self): | ||||
|         last_sent_payload = "" | ||||
|         while True: | ||||
|  | ||||
|             # initialize the payload | ||||
|             payload = {} | ||||
|  | ||||
|             # wait until objects have been parsed | ||||
|             with self.objects_parsed: | ||||
|                 self.objects_parsed.wait() | ||||
|  | ||||
|             # add all the person scores in detected objects | ||||
|             detected_objects = self._detected_objects.copy() | ||||
|             person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person']) | ||||
|             # if the person score is more than 100, set person to ON | ||||
|             payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF' | ||||
|  | ||||
|             # send message for objects if different | ||||
|             new_payload = json.dumps(payload, sort_keys=True) | ||||
|             if new_payload != last_sent_payload: | ||||
|                 last_sent_payload = new_payload | ||||
|                 self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False) | ||||
| @@ -1,110 +0,0 @@ | ||||
| import datetime | ||||
| import time | ||||
| import cv2 | ||||
| import threading | ||||
| import numpy as np | ||||
| from edgetpu.detection.engine import DetectionEngine | ||||
| from . util import tonumpyarray | ||||
|  | ||||
| # Path to frozen detection graph. This is the actual model that is used for the object detection. | ||||
| PATH_TO_CKPT = '/frozen_inference_graph.pb' | ||||
| # List of the strings that is used to add correct label for each box. | ||||
| PATH_TO_LABELS = '/label_map.pbtext' | ||||
|  | ||||
| # Function to read labels from text files. | ||||
| def ReadLabelFile(file_path): | ||||
|     with open(file_path, 'r') as f: | ||||
|         lines = f.readlines() | ||||
|     ret = {} | ||||
|     for line in lines: | ||||
|         pair = line.strip().split(maxsplit=1) | ||||
|         ret[int(pair[0])] = pair[1].strip() | ||||
|     return ret | ||||
|  | ||||
| class PreppedQueueProcessor(threading.Thread): | ||||
|     def __init__(self, cameras, prepped_frame_queue): | ||||
|  | ||||
|         threading.Thread.__init__(self) | ||||
|         self.cameras = cameras | ||||
|         self.prepped_frame_queue = prepped_frame_queue | ||||
|          | ||||
|         # Load the edgetpu engine and labels | ||||
|         self.engine = DetectionEngine(PATH_TO_CKPT) | ||||
|         self.labels = ReadLabelFile(PATH_TO_LABELS) | ||||
|  | ||||
|     def run(self): | ||||
|         # process queue... | ||||
|         while True: | ||||
|             frame = self.prepped_frame_queue.get() | ||||
|  | ||||
|             # Actual detection. | ||||
|             objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3) | ||||
|             # parse and pass detected objects back to the camera | ||||
|             parsed_objects = [] | ||||
|             for obj in objects: | ||||
|                 box = obj.bounding_box.flatten().tolist() | ||||
|                 parsed_objects.append({ | ||||
|                             'frame_time': frame['frame_time'], | ||||
|                             'name': str(self.labels[obj.label_id]), | ||||
|                             'score': float(obj.score), | ||||
|                             'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']), | ||||
|                             'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']), | ||||
|                             'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']), | ||||
|                             'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset']) | ||||
|                         }) | ||||
|             self.cameras[frame['camera_name']].add_objects(parsed_objects) | ||||
|  | ||||
|  | ||||
| # should this be a region class? | ||||
| class FramePrepper(threading.Thread): | ||||
|     def __init__(self, camera_name, shared_frame, frame_time, frame_ready,  | ||||
|         frame_lock, | ||||
|         region_size, region_x_offset, region_y_offset, | ||||
|         prepped_frame_queue): | ||||
|  | ||||
|         threading.Thread.__init__(self) | ||||
|         self.camera_name = camera_name | ||||
|         self.shared_frame = shared_frame | ||||
|         self.frame_time = frame_time | ||||
|         self.frame_ready = frame_ready | ||||
|         self.frame_lock = frame_lock | ||||
|         self.region_size = region_size | ||||
|         self.region_x_offset = region_x_offset | ||||
|         self.region_y_offset = region_y_offset | ||||
|         self.prepped_frame_queue = prepped_frame_queue | ||||
|  | ||||
|     def run(self): | ||||
|         frame_time = 0.0 | ||||
|         while True: | ||||
|             now = datetime.datetime.now().timestamp() | ||||
|  | ||||
|             with self.frame_ready: | ||||
|                 # if there isnt a frame ready for processing or it is old, wait for a new frame | ||||
|                 if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: | ||||
|                     self.frame_ready.wait() | ||||
|              | ||||
|             # make a copy of the cropped frame | ||||
|             with self.frame_lock: | ||||
|                 cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy() | ||||
|                 frame_time = self.frame_time.value | ||||
|              | ||||
|             # convert to RGB | ||||
|             cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB) | ||||
|             # Resize to 300x300 if needed | ||||
|             if cropped_frame_rgb.shape != (300, 300, 3): | ||||
|                 cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) | ||||
|             # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] | ||||
|             frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0) | ||||
|  | ||||
|             # add the frame to the queue | ||||
|             if not self.prepped_frame_queue.full(): | ||||
|                 self.prepped_frame_queue.put({ | ||||
|                     'camera_name': self.camera_name, | ||||
|                     'frame_time': frame_time, | ||||
|                     'frame': frame_expanded.flatten().copy(), | ||||
|                     'region_size': self.region_size, | ||||
|                     'region_x_offset': self.region_x_offset, | ||||
|                     'region_y_offset': self.region_y_offset | ||||
|                 }) | ||||
|             else: | ||||
|                 print("queue full. moving on") | ||||
							
								
								
									
										149
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,149 @@ | ||||
| import json | ||||
| import hashlib | ||||
| import datetime | ||||
| import copy | ||||
| import cv2 | ||||
| import threading | ||||
| import numpy as np | ||||
| from collections import Counter, defaultdict | ||||
| import itertools | ||||
| import pyarrow.plasma as plasma | ||||
| import SharedArray as sa | ||||
| import matplotlib.pyplot as plt | ||||
| from frigate.util import draw_box_with_label | ||||
| from frigate.edgetpu import load_labels | ||||
|  | ||||
| PATH_TO_LABELS = '/labelmap.txt' | ||||
|  | ||||
| LABELS = load_labels(PATH_TO_LABELS) | ||||
| cmap = plt.cm.get_cmap('tab10', len(LABELS.keys())) | ||||
|  | ||||
| COLOR_MAP = {} | ||||
| for key, val in LABELS.items(): | ||||
|     COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3]) | ||||
|  | ||||
| class TrackedObjectProcessor(threading.Thread): | ||||
|     def __init__(self, config, client, topic_prefix, tracked_objects_queue): | ||||
|         threading.Thread.__init__(self) | ||||
|         self.config = config | ||||
|         self.client = client | ||||
|         self.topic_prefix = topic_prefix | ||||
|         self.tracked_objects_queue = tracked_objects_queue | ||||
|         self.plasma_client = plasma.connect("/tmp/plasma") | ||||
|         self.camera_data = defaultdict(lambda: { | ||||
|             'best_objects': {}, | ||||
|             'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), | ||||
|             'tracked_objects': {}, | ||||
|             'current_frame': np.zeros((720,1280,3), np.uint8), | ||||
|             'object_id': None | ||||
|         }) | ||||
|          | ||||
|     def get_best(self, camera, label): | ||||
|         if label in self.camera_data[camera]['best_objects']: | ||||
|             return self.camera_data[camera]['best_objects'][label]['frame'] | ||||
|         else: | ||||
|             return None | ||||
|      | ||||
|     def get_current_frame(self, camera): | ||||
|         return self.camera_data[camera]['current_frame'] | ||||
|  | ||||
|     def run(self): | ||||
|         while True: | ||||
|             camera, frame_time, tracked_objects = self.tracked_objects_queue.get() | ||||
|  | ||||
|             config = self.config[camera] | ||||
|             best_objects = self.camera_data[camera]['best_objects'] | ||||
|             current_object_status = self.camera_data[camera]['object_status'] | ||||
|             self.camera_data[camera]['tracked_objects'] = tracked_objects | ||||
|  | ||||
|             ### | ||||
|             # Draw tracked objects on the frame | ||||
|             ### | ||||
|             object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) | ||||
|             object_id_bytes = object_id_hash.digest() | ||||
|             object_id = plasma.ObjectID(object_id_bytes) | ||||
|             current_frame = self.plasma_client.get(object_id, timeout_ms=0) | ||||
|  | ||||
|             if not current_frame is plasma.ObjectNotAvailable: | ||||
|                 # draw the bounding boxes on the frame | ||||
|                 for obj in tracked_objects.values(): | ||||
|                     thickness = 2 | ||||
|                     color = COLOR_MAP[obj['label']] | ||||
|                      | ||||
|                     if obj['frame_time'] != frame_time: | ||||
|                         thickness = 1 | ||||
|                         color = (255,0,0) | ||||
|  | ||||
|                     # draw the bounding boxes on the frame | ||||
|                     box = obj['box'] | ||||
|                     draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) | ||||
|                     # draw the regions on the frame | ||||
|                     region = obj['region'] | ||||
|                     cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) | ||||
|                  | ||||
|                 if config['snapshots']['show_timestamp']: | ||||
|                     time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") | ||||
|                     cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) | ||||
|  | ||||
|                 ### | ||||
|                 # Set the current frame as ready | ||||
|                 ### | ||||
|                 self.camera_data[camera]['current_frame'] = current_frame | ||||
|  | ||||
|                 # store the object id, so you can delete it at the next loop | ||||
|                 previous_object_id = self.camera_data[camera]['object_id'] | ||||
|                 if not previous_object_id is None: | ||||
|                     self.plasma_client.delete([previous_object_id]) | ||||
|                 self.camera_data[camera]['object_id'] = object_id | ||||
|              | ||||
|             ### | ||||
|             # Maintain the highest scoring recent object and frame for each label | ||||
|             ### | ||||
|             for obj in tracked_objects.values(): | ||||
|                 # if the object wasn't seen on the current frame, skip it | ||||
|                 if obj['frame_time'] != frame_time: | ||||
|                     continue | ||||
|                 if obj['label'] in best_objects: | ||||
|                     now = datetime.datetime.now().timestamp() | ||||
|                     # if the object is a higher score than the current best score  | ||||
|                     # or the current object is more than 1 minute old, use the new object | ||||
|                     if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: | ||||
|                         obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) | ||||
|                         best_objects[obj['label']] = obj | ||||
|                 else: | ||||
|                     obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) | ||||
|                     best_objects[obj['label']] = obj | ||||
|  | ||||
|             ### | ||||
|             # Report over MQTT | ||||
|             ### | ||||
|             # count objects with more than 2 entries in history by type | ||||
|             obj_counter = Counter() | ||||
|             for obj in tracked_objects.values(): | ||||
|                 if len(obj['history']) > 1: | ||||
|                     obj_counter[obj['label']] += 1 | ||||
|                      | ||||
|             # report on detected objects | ||||
|             for obj_name, count in obj_counter.items(): | ||||
|                 new_status = 'ON' if count > 0 else 'OFF' | ||||
|                 if new_status != current_object_status[obj_name]: | ||||
|                     current_object_status[obj_name] = new_status | ||||
|                     self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False) | ||||
|                     # send the best snapshot over mqtt | ||||
|                     best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) | ||||
|                     ret, jpg = cv2.imencode('.jpg', best_frame) | ||||
|                     if ret: | ||||
|                         jpg_bytes = jpg.tobytes() | ||||
|                         self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True) | ||||
|  | ||||
|             # expire any objects that are ON and no longer detected | ||||
|             expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter] | ||||
|             for obj_name in expired_objects: | ||||
|                 current_object_status[obj_name] = 'OFF' | ||||
|                 self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False) | ||||
|                 # send updated snapshot over mqtt | ||||
|                 best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) | ||||
|                 ret, jpg = cv2.imencode('.jpg', best_frame) | ||||
|                 if ret: | ||||
|                     jpg_bytes = jpg.tobytes() | ||||
|                     self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True) | ||||
| @@ -2,95 +2,158 @@ import time | ||||
| import datetime | ||||
| import threading | ||||
| import cv2 | ||||
| from object_detection.utils import visualization_utils as vis_util | ||||
| import itertools | ||||
| import copy | ||||
| import numpy as np | ||||
| import multiprocessing as mp | ||||
| from collections import defaultdict | ||||
| from scipy.spatial import distance as dist | ||||
| from frigate.util import draw_box_with_label, calculate_region | ||||
|  | ||||
| class ObjectCleaner(threading.Thread): | ||||
|     def __init__(self, objects_parsed, detected_objects): | ||||
|         threading.Thread.__init__(self) | ||||
|         self._objects_parsed = objects_parsed | ||||
|         self._detected_objects = detected_objects | ||||
| class ObjectTracker(): | ||||
|     def __init__(self, max_disappeared): | ||||
|         self.tracked_objects = {} | ||||
|         self.disappeared = {} | ||||
|         self.max_disappeared = max_disappeared | ||||
|  | ||||
|     def run(self): | ||||
|         while True: | ||||
|     def register(self, index, obj): | ||||
|         id = f"{obj['frame_time']}-{index}" | ||||
|         obj['id'] = id | ||||
|         obj['top_score'] = obj['score'] | ||||
|         self.add_history(obj) | ||||
|         self.tracked_objects[id] = obj | ||||
|         self.disappeared[id] = 0 | ||||
|  | ||||
|             # wait a bit before checking for expired frames | ||||
|             time.sleep(0.2) | ||||
|     def deregister(self, id): | ||||
|         del self.tracked_objects[id] | ||||
|         del self.disappeared[id] | ||||
|      | ||||
|             # expire the objects that are more than 1 second old | ||||
|             now = datetime.datetime.now().timestamp() | ||||
|             # look for the first object found within the last second | ||||
|             # (newest objects are appended to the end) | ||||
|             detected_objects = self._detected_objects.copy() | ||||
|     def update(self, id, new_obj): | ||||
|         self.disappeared[id] = 0 | ||||
|         self.tracked_objects[id].update(new_obj) | ||||
|         self.add_history(self.tracked_objects[id]) | ||||
|         if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']: | ||||
|             self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score'] | ||||
|      | ||||
|             num_to_delete = 0 | ||||
|             for obj in detected_objects: | ||||
|                 if now-obj['frame_time']<2: | ||||
|                     break | ||||
|                 num_to_delete += 1 | ||||
|             if num_to_delete > 0: | ||||
|                 del self._detected_objects[:num_to_delete] | ||||
|     def add_history(self, obj): | ||||
|         entry = { | ||||
|             'score': obj['score'], | ||||
|             'box': obj['box'], | ||||
|             'region': obj['region'], | ||||
|             'centroid': obj['centroid'], | ||||
|             'frame_time': obj['frame_time'] | ||||
|         } | ||||
|         if 'history' in obj: | ||||
|             obj['history'].append(entry) | ||||
|         else: | ||||
|             obj['history'] = [entry] | ||||
|  | ||||
|                 # notify that parsed objects were changed | ||||
|                 with self._objects_parsed: | ||||
|                     self._objects_parsed.notify_all() | ||||
|     def match_and_update(self, frame_time, new_objects): | ||||
|         # group by name | ||||
|         new_object_groups = defaultdict(lambda: []) | ||||
|         for obj in new_objects: | ||||
|             new_object_groups[obj[0]].append({ | ||||
|                 'label': obj[0], | ||||
|                 'score': obj[1], | ||||
|                 'box': obj[2], | ||||
|                 'area': obj[3], | ||||
|                 'region': obj[4], | ||||
|                 'frame_time': frame_time | ||||
|             }) | ||||
|          | ||||
|         # update any tracked objects with labels that are not | ||||
|         # seen in the current objects and deregister if needed | ||||
|         for obj in list(self.tracked_objects.values()): | ||||
|             if not obj['label'] in new_object_groups: | ||||
|                 if self.disappeared[obj['id']] >= self.max_disappeared: | ||||
|                     self.deregister(obj['id']) | ||||
|                 else: | ||||
|                     self.disappeared[obj['id']] += 1 | ||||
|          | ||||
| # Maintains the frame and person with the highest score from the most recent | ||||
| # motion event | ||||
| class BestPersonFrame(threading.Thread): | ||||
|     def __init__(self, objects_parsed, recent_frames, detected_objects): | ||||
|         threading.Thread.__init__(self) | ||||
|         self.objects_parsed = objects_parsed | ||||
|         self.recent_frames = recent_frames | ||||
|         self.detected_objects = detected_objects | ||||
|         self.best_person = None | ||||
|         self.best_frame = None | ||||
|         if len(new_objects) == 0: | ||||
|             return | ||||
|          | ||||
|     def run(self): | ||||
|         while True: | ||||
|         # track objects for each label type | ||||
|         for label, group in new_object_groups.items(): | ||||
|             current_objects = [o for o in self.tracked_objects.values() if o['label'] == label] | ||||
|             current_ids = [o['id'] for o in current_objects] | ||||
|             current_centroids = np.array([o['centroid'] for o in current_objects]) | ||||
|  | ||||
|             # wait until objects have been parsed | ||||
|             with self.objects_parsed: | ||||
|                 self.objects_parsed.wait() | ||||
|             # compute centroids of new objects | ||||
|             for obj in group: | ||||
|                 centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0) | ||||
|                 centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0) | ||||
|                 obj['centroid'] = (centroid_x, centroid_y) | ||||
|  | ||||
|             # make a copy of detected objects | ||||
|             detected_objects = self.detected_objects.copy() | ||||
|             detected_people = [obj for obj in detected_objects if obj['name'] == 'person'] | ||||
|             if len(current_objects) == 0: | ||||
|                 for index, obj in enumerate(group): | ||||
|                     self.register(index, obj) | ||||
|                 return | ||||
|              | ||||
|             # get the highest scoring person | ||||
|             new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person) | ||||
|             new_centroids = np.array([o['centroid'] for o in group]) | ||||
|  | ||||
|             # if there isnt a person, continue | ||||
|             if new_best_person is None: | ||||
|             # compute the distance between each pair of tracked | ||||
|             # centroids and new centroids, respectively -- our | ||||
|             # goal will be to match each new centroid to an existing | ||||
|             # object centroid | ||||
|             D = dist.cdist(current_centroids, new_centroids) | ||||
|  | ||||
|             # in order to perform this matching we must (1) find the | ||||
|             # smallest value in each row and then (2) sort the row | ||||
|             # indexes based on their minimum values so that the row | ||||
|             # with the smallest value is at the *front* of the index | ||||
|             # list | ||||
|             rows = D.min(axis=1).argsort() | ||||
|  | ||||
|             # next, we perform a similar process on the columns by | ||||
|             # finding the smallest value in each column and then | ||||
|             # sorting using the previously computed row index list | ||||
|             cols = D.argmin(axis=1)[rows] | ||||
|  | ||||
|             # in order to determine if we need to update, register, | ||||
|             # or deregister an object we need to keep track of which | ||||
|             # of the rows and column indexes we have already examined | ||||
|             usedRows = set() | ||||
|             usedCols = set() | ||||
|  | ||||
|             # loop over the combination of the (row, column) index | ||||
|             # tuples | ||||
|             for (row, col) in zip(rows, cols): | ||||
|                 # if we have already examined either the row or | ||||
|                 # column value before, ignore it | ||||
|                 if row in usedRows or col in usedCols: | ||||
|                     continue | ||||
|  | ||||
|             # if there is no current best_person | ||||
|             if self.best_person is None: | ||||
|                 self.best_person = new_best_person | ||||
|             # if there is already a best_person | ||||
|                 # otherwise, grab the object ID for the current row, | ||||
|                 # set its new centroid, and reset the disappeared | ||||
|                 # counter | ||||
|                 objectID = current_ids[row] | ||||
|                 self.update(objectID, group[col]) | ||||
|  | ||||
|                 # indicate that we have examined each of the row and | ||||
|                 # column indexes, respectively | ||||
|                 usedRows.add(row) | ||||
|                 usedCols.add(col) | ||||
|  | ||||
|             # compute the column index we have NOT yet examined | ||||
|             unusedRows = set(range(0, D.shape[0])).difference(usedRows) | ||||
|             unusedCols = set(range(0, D.shape[1])).difference(usedCols) | ||||
|  | ||||
|             # in the event that the number of object centroids is | ||||
| 			# equal or greater than the number of input centroids | ||||
| 			# we need to check and see if some of these objects have | ||||
| 			# potentially disappeared | ||||
|             if D.shape[0] >= D.shape[1]: | ||||
|                 for row in unusedRows: | ||||
|                     id = current_ids[row] | ||||
|  | ||||
|                     if self.disappeared[id] >= self.max_disappeared: | ||||
|                         self.deregister(id) | ||||
|                     else: | ||||
|                 now = datetime.datetime.now().timestamp() | ||||
|                 # if the new best person is a higher score than the current best person  | ||||
|                 # or the current person is more than 1 minute old, use the new best person | ||||
|                 if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60: | ||||
|                     self.best_person = new_best_person | ||||
|              | ||||
|             # make a copy of the recent frames | ||||
|             recent_frames = self.recent_frames.copy() | ||||
|              | ||||
|             if not self.best_person is None and self.best_person['frame_time'] in recent_frames: | ||||
|                 best_frame = recent_frames[self.best_person['frame_time']] | ||||
|                 best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB) | ||||
|                 # draw the bounding box on the frame | ||||
|                 vis_util.draw_bounding_box_on_image_array(best_frame, | ||||
|                     self.best_person['ymin'], | ||||
|                     self.best_person['xmin'], | ||||
|                     self.best_person['ymax'], | ||||
|                     self.best_person['xmax'], | ||||
|                     color='red', | ||||
|                     thickness=2, | ||||
|                     display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))], | ||||
|                     use_normalized_coordinates=False) | ||||
|  | ||||
|                 # convert back to BGR | ||||
|                 self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) | ||||
|                         self.disappeared[id] += 1 | ||||
|             # if the number of input centroids is greater | ||||
|             # than the number of existing object centroids we need to | ||||
|             # register each new input centroid as a trackable object | ||||
|             else: | ||||
|                 for col in unusedCols: | ||||
|                     self.register(col, group[col]) | ||||
|   | ||||
							
								
								
									
										130
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										130
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -1,5 +1,129 @@ | ||||
| import datetime | ||||
| import collections | ||||
| import numpy as np | ||||
| import cv2 | ||||
| import threading | ||||
| import matplotlib.pyplot as plt | ||||
|  | ||||
| # convert shared memory array into numpy array | ||||
| def tonumpyarray(mp_arr): | ||||
|     return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8) | ||||
| def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): | ||||
|     if color is None: | ||||
|         color = (0,0,255) | ||||
|     display_text = "{}: {}".format(label, info) | ||||
|     cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness) | ||||
|     font_scale = 0.5 | ||||
|     font = cv2.FONT_HERSHEY_SIMPLEX | ||||
|     # get the width and height of the text box | ||||
|     size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2) | ||||
|     text_width = size[0][0] | ||||
|     text_height = size[0][1] | ||||
|     line_height = text_height + size[1] | ||||
|     # set the text start position | ||||
|     if position == 'ul': | ||||
|         text_offset_x = x_min | ||||
|         text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) | ||||
|     elif position == 'ur': | ||||
|         text_offset_x = x_max - (text_width+8) | ||||
|         text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) | ||||
|     elif position == 'bl': | ||||
|         text_offset_x = x_min | ||||
|         text_offset_y = y_max | ||||
|     elif position == 'br': | ||||
|         text_offset_x = x_max - (text_width+8) | ||||
|         text_offset_y = y_max | ||||
|     # make the coords of the box with a small padding of two pixels | ||||
|     textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height)) | ||||
|     cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED) | ||||
|     cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2) | ||||
|  | ||||
| def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):     | ||||
|     # size is larger than longest edge | ||||
|     size = int(max(xmax-xmin, ymax-ymin)*multiplier) | ||||
|     # if the size is too big to fit in the frame | ||||
|     if size > min(frame_shape[0], frame_shape[1]): | ||||
|         size = min(frame_shape[0], frame_shape[1]) | ||||
|  | ||||
|     # x_offset is midpoint of bounding box minus half the size | ||||
|     x_offset = int((xmax-xmin)/2.0+xmin-size/2.0) | ||||
|     # if outside the image | ||||
|     if x_offset < 0: | ||||
|         x_offset = 0 | ||||
|     elif x_offset > (frame_shape[1]-size): | ||||
|         x_offset = (frame_shape[1]-size) | ||||
|  | ||||
|     # y_offset is midpoint of bounding box minus half the size | ||||
|     y_offset = int((ymax-ymin)/2.0+ymin-size/2.0) | ||||
|     # if outside the image | ||||
|     if y_offset < 0: | ||||
|         y_offset = 0 | ||||
|     elif y_offset > (frame_shape[0]-size): | ||||
|         y_offset = (frame_shape[0]-size) | ||||
|  | ||||
|     return (x_offset, y_offset, x_offset+size, y_offset+size) | ||||
|  | ||||
| def intersection(box_a, box_b): | ||||
|     return ( | ||||
|         max(box_a[0], box_b[0]), | ||||
|         max(box_a[1], box_b[1]), | ||||
|         min(box_a[2], box_b[2]), | ||||
|         min(box_a[3], box_b[3]) | ||||
|     ) | ||||
|  | ||||
| def area(box): | ||||
|     return (box[2]-box[0] + 1)*(box[3]-box[1] + 1) | ||||
|      | ||||
| def intersection_over_union(box_a, box_b): | ||||
|     # determine the (x, y)-coordinates of the intersection rectangle | ||||
|     intersect = intersection(box_a, box_b) | ||||
|  | ||||
|     # compute the area of intersection rectangle | ||||
|     inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1) | ||||
|  | ||||
|     if inter_area == 0: | ||||
|         return 0.0 | ||||
|      | ||||
|     # compute the area of both the prediction and ground-truth | ||||
|     # rectangles | ||||
|     box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1) | ||||
|     box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1) | ||||
|  | ||||
|     # compute the intersection over union by taking the intersection | ||||
|     # area and dividing it by the sum of prediction + ground-truth | ||||
|     # areas - the interesection area | ||||
|     iou = inter_area / float(box_a_area + box_b_area - inter_area) | ||||
|  | ||||
|     # return the intersection over union value | ||||
|     return iou | ||||
|  | ||||
| def clipped(obj, frame_shape): | ||||
|     # if the object is within 5 pixels of the region border, and the region is not on the edge | ||||
|     # consider the object to be clipped | ||||
|     box = obj[2] | ||||
|     region = obj[4] | ||||
|     if ((region[0] > 5 and box[0]-region[0] <= 5) or  | ||||
|         (region[1] > 5 and box[1]-region[1] <= 5) or | ||||
|         (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or | ||||
|         (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)): | ||||
|         return True | ||||
|     else: | ||||
|         return False | ||||
|  | ||||
| class EventsPerSecond: | ||||
|     def __init__(self, max_events=1000): | ||||
|         self._start = None | ||||
|         self._max_events = max_events | ||||
|         self._timestamps = [] | ||||
|      | ||||
|     def start(self): | ||||
|         self._start = datetime.datetime.now().timestamp() | ||||
|  | ||||
|     def update(self): | ||||
|         self._timestamps.append(datetime.datetime.now().timestamp()) | ||||
|         # truncate the list when it goes 100 over the max_size | ||||
|         if len(self._timestamps) > self._max_events+100: | ||||
|             self._timestamps = self._timestamps[(1-self._max_events):] | ||||
|  | ||||
|     def eps(self, last_n_seconds=10): | ||||
| 		# compute the (approximate) events in the last n seconds | ||||
|         now = datetime.datetime.now().timestamp() | ||||
|         seconds = min(now-self._start, last_n_seconds) | ||||
|         return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds | ||||
|   | ||||
							
								
								
									
										557
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										557
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -2,267 +2,376 @@ import os | ||||
| import time | ||||
| import datetime | ||||
| import cv2 | ||||
| import queue | ||||
| import threading | ||||
| import ctypes | ||||
| import multiprocessing as mp | ||||
| from object_detection.utils import visualization_utils as vis_util | ||||
| from . util import tonumpyarray | ||||
| from . object_detection import FramePrepper | ||||
| from . objects import ObjectCleaner, BestPersonFrame | ||||
| from . mqtt import MqttObjectPublisher | ||||
| import subprocess as sp | ||||
| import numpy as np | ||||
| import hashlib | ||||
| import pyarrow.plasma as plasma | ||||
| import SharedArray as sa | ||||
| import copy | ||||
| import itertools | ||||
| import json | ||||
| from collections import defaultdict | ||||
| from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond | ||||
| from frigate.objects import ObjectTracker | ||||
| from frigate.edgetpu import RemoteObjectDetector | ||||
| from frigate.motion import MotionDetector | ||||
|  | ||||
| # fetch the frames as fast a possible and store current frame in a shared memory array | ||||
| def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url): | ||||
|     # convert shared memory array into numpy and shape into image array | ||||
|     arr = tonumpyarray(shared_arr).reshape(frame_shape) | ||||
| def get_frame_shape(source): | ||||
|     ffprobe_cmd = " ".join([ | ||||
|         'ffprobe', | ||||
|         '-v', | ||||
|         'panic', | ||||
|         '-show_error', | ||||
|         '-show_streams', | ||||
|         '-of', | ||||
|         'json', | ||||
|         '"'+source+'"' | ||||
|     ]) | ||||
|     print(ffprobe_cmd) | ||||
|     p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True) | ||||
|     (output, err) = p.communicate() | ||||
|     p_status = p.wait() | ||||
|     info = json.loads(output) | ||||
|     print(info) | ||||
|  | ||||
|     # start the video capture | ||||
|     video = cv2.VideoCapture() | ||||
|     video.open(rtsp_url) | ||||
|     # keep the buffer small so we minimize old data | ||||
|     video.set(cv2.CAP_PROP_BUFFERSIZE,1) | ||||
|     video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0] | ||||
|  | ||||
|     bad_frame_counter = 0 | ||||
|     while True: | ||||
|         # check if the video stream is still open, and reopen if needed | ||||
|         if not video.isOpened(): | ||||
|             success = video.open(rtsp_url) | ||||
|             if not success: | ||||
|                 time.sleep(1) | ||||
|                 continue | ||||
|         # grab the frame, but dont decode it yet | ||||
|         ret = video.grab() | ||||
|         # snapshot the time the frame was grabbed | ||||
|         frame_time = datetime.datetime.now() | ||||
|         if ret: | ||||
|             # go ahead and decode the current frame | ||||
|             ret, frame = video.retrieve() | ||||
|             if ret: | ||||
|                 # Lock access and update frame | ||||
|                 with frame_lock: | ||||
|                     arr[:] = frame | ||||
|                     shared_frame_time.value = frame_time.timestamp() | ||||
|                 # Notify with the condition that a new frame is ready | ||||
|                 with frame_ready: | ||||
|                     frame_ready.notify_all() | ||||
|                 bad_frame_counter = 0 | ||||
|             else: | ||||
|                 print("Unable to decode frame") | ||||
|                 bad_frame_counter += 1 | ||||
|         else: | ||||
|             print("Unable to grab a frame") | ||||
|             bad_frame_counter += 1 | ||||
|     if video_info['height'] != 0 and video_info['width'] != 0: | ||||
|         return (video_info['height'], video_info['width'], 3) | ||||
|      | ||||
|         if bad_frame_counter > 100: | ||||
|             video.release() | ||||
|      | ||||
|     video.release() | ||||
|  | ||||
| # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads | ||||
| class FrameTracker(threading.Thread): | ||||
|     def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames): | ||||
|         threading.Thread.__init__(self) | ||||
|         self.shared_frame = shared_frame | ||||
|         self.frame_time = frame_time | ||||
|         self.frame_ready = frame_ready | ||||
|         self.frame_lock = frame_lock | ||||
|         self.recent_frames = recent_frames | ||||
|  | ||||
|     def run(self): | ||||
|         frame_time = 0.0 | ||||
|         while True: | ||||
|             now = datetime.datetime.now().timestamp() | ||||
|             # wait for a frame | ||||
|             with self.frame_ready: | ||||
|                 # if there isnt a frame ready for processing or it is old, wait for a signal | ||||
|                 if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: | ||||
|                     self.frame_ready.wait() | ||||
|              | ||||
|             # lock and make a copy of the frame | ||||
|             with self.frame_lock:  | ||||
|                 frame = self.shared_frame.copy() | ||||
|                 frame_time = self.frame_time.value | ||||
|              | ||||
|             # add the frame to recent frames | ||||
|             self.recent_frames[frame_time] = frame | ||||
|  | ||||
|             # delete any old frames | ||||
|             stored_frame_times = list(self.recent_frames.keys()) | ||||
|             for k in stored_frame_times: | ||||
|                 if (now - k) > 2: | ||||
|                     del self.recent_frames[k] | ||||
|  | ||||
| def get_frame_shape(rtsp_url): | ||||
|     # capture a single frame and check the frame shape so the correct array | ||||
|     # size can be allocated in memory | ||||
|     video = cv2.VideoCapture(rtsp_url) | ||||
|     # fallback to using opencv if ffprobe didnt succeed | ||||
|     video = cv2.VideoCapture(source) | ||||
|     ret, frame = video.read() | ||||
|     frame_shape = frame.shape | ||||
|     video.release() | ||||
|     return frame_shape | ||||
|  | ||||
| def get_rtsp_url(rtsp_config): | ||||
|     if (rtsp_config['password'].startswith('$')): | ||||
|         rtsp_config['password'] = os.getenv(rtsp_config['password'][1:]) | ||||
|     return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],  | ||||
|         rtsp_config['password'], rtsp_config['host'], rtsp_config['port'], | ||||
|         rtsp_config['path']) | ||||
| def get_ffmpeg_input(ffmpeg_input): | ||||
|     frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')} | ||||
|     return ffmpeg_input.format(**frigate_vars) | ||||
|  | ||||
| class Camera: | ||||
|     def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix): | ||||
|         self.name = name | ||||
|         self.config = config | ||||
|         self.detected_objects = [] | ||||
|         self.recent_frames = {} | ||||
|         self.rtsp_url = get_rtsp_url(self.config['rtsp']) | ||||
|         self.regions = self.config['regions'] | ||||
|         self.frame_shape = get_frame_shape(self.rtsp_url) | ||||
|         self.mqtt_client = mqtt_client | ||||
|         self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name) | ||||
| def filtered(obj, objects_to_track, object_filters, mask): | ||||
|     object_name = obj[0] | ||||
|  | ||||
|         # compute the flattened array length from the shape of the frame | ||||
|         flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2] | ||||
|         # create shared array for storing the full frame image data | ||||
|         self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length) | ||||
|         # create shared value for storing the frame_time | ||||
|         self.shared_frame_time = mp.Value('d', 0.0) | ||||
|         # Lock to control access to the frame | ||||
|         self.frame_lock = mp.Lock() | ||||
|         # Condition for notifying that a new frame is ready | ||||
|         self.frame_ready = mp.Condition() | ||||
|         # Condition for notifying that objects were parsed | ||||
|         self.objects_parsed = mp.Condition() | ||||
|     if not object_name in objects_to_track: | ||||
|         return True | ||||
|      | ||||
|         # shape current frame so it can be treated as a numpy image | ||||
|         self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape) | ||||
|     if object_name in object_filters: | ||||
|         obj_settings = object_filters[object_name] | ||||
|  | ||||
|         # create the process to capture frames from the RTSP stream and store in a shared array | ||||
|         self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,  | ||||
|             self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url)) | ||||
|         self.capture_process.daemon = True | ||||
|         # if the min area is larger than the | ||||
|         # detected object, don't add it to detected objects | ||||
|         if obj_settings.get('min_area',-1) > obj[3]: | ||||
|             return True | ||||
|          | ||||
|         # for each region, create a separate thread to resize the region and prep for detection | ||||
|         self.detection_prep_threads = [] | ||||
|         for region in self.config['regions']: | ||||
|             self.detection_prep_threads.append(FramePrepper( | ||||
|                 self.name, | ||||
|                 self.shared_frame_np, | ||||
|                 self.shared_frame_time, | ||||
|                 self.frame_ready, | ||||
|                 self.frame_lock, | ||||
|                 region['size'], region['x_offset'], region['y_offset'], | ||||
|                 prepped_frame_queue | ||||
|             )) | ||||
|         # if the detected object is larger than the | ||||
|         # max area, don't add it to detected objects | ||||
|         if obj_settings.get('max_area', 24000000) < obj[3]: | ||||
|             return True | ||||
|  | ||||
|         # start a thread to store recent motion frames for processing | ||||
|         self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,  | ||||
|             self.frame_ready, self.frame_lock, self.recent_frames) | ||||
|         self.frame_tracker.start() | ||||
|         # if the score is lower than the threshold, skip | ||||
|         if obj_settings.get('threshold', 0) > obj[1]: | ||||
|             return True | ||||
|      | ||||
|         # start a thread to store the highest scoring recent person frame | ||||
|         self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects) | ||||
|         self.best_person_frame.start() | ||||
|         # compute the coordinates of the object and make sure | ||||
|         # the location isnt outside the bounds of the image (can happen from rounding) | ||||
|         y_location = min(int(obj[2][3]), len(mask)-1) | ||||
|         x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1) | ||||
|  | ||||
|         # start a thread to expire objects from the detected objects list | ||||
|         self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects) | ||||
|         self.object_cleaner.start() | ||||
|         # if the object is in a masked location, don't add it to detected objects | ||||
|         if mask[y_location][x_location] == [0]: | ||||
|             return True | ||||
|          | ||||
|         # start a thread to publish object scores (currently only person) | ||||
|         mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects) | ||||
|         mqtt_publisher.start() | ||||
|         return False | ||||
|  | ||||
|         # load in the mask for person detection | ||||
|         if 'mask' in self.config: | ||||
|             self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE) | ||||
| def create_tensor_input(frame, region): | ||||
|     cropped_frame = frame[region[1]:region[3], region[0]:region[2]] | ||||
|  | ||||
|     # Resize to 300x300 if needed | ||||
|     if cropped_frame.shape != (300, 300, 3): | ||||
|         cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) | ||||
|      | ||||
|     # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] | ||||
|     return np.expand_dims(cropped_frame, axis=0) | ||||
|  | ||||
| def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None): | ||||
|     if not ffmpeg_process is None: | ||||
|         print("Terminating the existing ffmpeg process...") | ||||
|         ffmpeg_process.terminate() | ||||
|         try: | ||||
|             print("Waiting for ffmpeg to exit gracefully...") | ||||
|             ffmpeg_process.wait(timeout=30) | ||||
|         except sp.TimeoutExpired: | ||||
|             print("FFmpeg didnt exit. Force killing...") | ||||
|             ffmpeg_process.kill() | ||||
|             ffmpeg_process.wait() | ||||
|  | ||||
|     print("Creating ffmpeg process...") | ||||
|     print(" ".join(ffmpeg_cmd)) | ||||
|     return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10) | ||||
|  | ||||
| def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps): | ||||
|     print(f"Starting process for {name}: {os.getpid()}") | ||||
|  | ||||
|     # Merge the ffmpeg config with the global config | ||||
|     ffmpeg = config.get('ffmpeg', {}) | ||||
|     ffmpeg_input = get_ffmpeg_input(ffmpeg['input']) | ||||
|     ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args']) | ||||
|     ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args']) | ||||
|     ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args']) | ||||
|     ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args']) | ||||
|     ffmpeg_cmd = (['ffmpeg'] + | ||||
|             ffmpeg_global_args + | ||||
|             ffmpeg_hwaccel_args + | ||||
|             ffmpeg_input_args + | ||||
|             ['-i', ffmpeg_input] + | ||||
|             ffmpeg_output_args + | ||||
|             ['pipe:']) | ||||
|  | ||||
|     # Merge the tracked object config with the global config | ||||
|     camera_objects_config = config.get('objects', {})     | ||||
|     # combine tracked objects lists | ||||
|     objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', [])) | ||||
|     # merge object filters | ||||
|     global_object_filters = global_objects_config.get('filters', {}) | ||||
|     camera_object_filters = camera_objects_config.get('filters', {}) | ||||
|     objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys()) | ||||
|     object_filters = {} | ||||
|     for obj in objects_with_config: | ||||
|         object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})} | ||||
|  | ||||
|     expected_fps = config['fps'] | ||||
|     take_frame = config.get('take_frame', 1) | ||||
|  | ||||
|     if 'width' in config and 'height' in config: | ||||
|         frame_shape = (config['height'], config['width'], 3) | ||||
|     else: | ||||
|             self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8) | ||||
|             self.mask[:] = 255 | ||||
|         frame_shape = get_frame_shape(ffmpeg_input) | ||||
|  | ||||
|     def start(self): | ||||
|         self.capture_process.start() | ||||
|         # start the object detection prep threads | ||||
|         for detection_prep_thread in self.detection_prep_threads: | ||||
|             detection_prep_thread.start() | ||||
|     frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] | ||||
|  | ||||
|     def join(self): | ||||
|         self.capture_process.join() | ||||
|     try: | ||||
|         sa.delete(name) | ||||
|     except: | ||||
|         pass | ||||
|  | ||||
|     def get_capture_pid(self): | ||||
|         return self.capture_process.pid | ||||
|     frame = sa.create(name, shape=frame_shape, dtype=np.uint8) | ||||
|  | ||||
|     def add_objects(self, objects): | ||||
|         if len(objects) == 0: | ||||
|             return | ||||
|     # load in the mask for object detection | ||||
|     if 'mask' in config: | ||||
|         mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE) | ||||
|     else: | ||||
|         mask = None | ||||
|  | ||||
|         for obj in objects: | ||||
|             if obj['name'] == 'person': | ||||
|                 person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) | ||||
|                 # find the matching region | ||||
|                 region = None | ||||
|                 for r in self.regions: | ||||
|                     if ( | ||||
|                             obj['xmin'] >= r['x_offset'] and | ||||
|                             obj['ymin'] >= r['y_offset'] and | ||||
|                             obj['xmax'] <= r['x_offset']+r['size'] and | ||||
|                             obj['ymax'] <= r['y_offset']+r['size'] | ||||
|                         ):  | ||||
|                         region = r | ||||
|     if mask is None: | ||||
|         mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8) | ||||
|         mask[:] = 255 | ||||
|  | ||||
|     motion_detector = MotionDetector(frame_shape, mask, resize_factor=6) | ||||
|     object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue) | ||||
|  | ||||
|     object_tracker = ObjectTracker(10) | ||||
|      | ||||
|     ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size) | ||||
|      | ||||
|     plasma_client = plasma.connect("/tmp/plasma") | ||||
|     frame_num = 0 | ||||
|     avg_wait = 0.0 | ||||
|     fps_tracker = EventsPerSecond() | ||||
|     skipped_fps_tracker = EventsPerSecond() | ||||
|     fps_tracker.start() | ||||
|     skipped_fps_tracker.start() | ||||
|     object_detector.fps.start() | ||||
|     while True: | ||||
|         start = datetime.datetime.now().timestamp() | ||||
|         frame_bytes = ffmpeg_process.stdout.read(frame_size) | ||||
|         duration = datetime.datetime.now().timestamp()-start | ||||
|         avg_wait = (avg_wait*99+duration)/100 | ||||
|  | ||||
|         if not frame_bytes: | ||||
|             rc = ffmpeg_process.poll() | ||||
|             if rc is not None: | ||||
|                 print(f"{name}: ffmpeg_process exited unexpectedly with {rc}") | ||||
|                 ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process) | ||||
|                 time.sleep(10) | ||||
|             else: | ||||
|                 print(f"{name}: ffmpeg_process is still running but didnt return any bytes") | ||||
|             continue | ||||
|  | ||||
|         # limit frame rate | ||||
|         frame_num += 1 | ||||
|         if (frame_num % take_frame) != 0: | ||||
|             continue | ||||
|  | ||||
|         fps_tracker.update() | ||||
|         fps.value = fps_tracker.eps() | ||||
|         detection_fps.value = object_detector.fps.eps() | ||||
|  | ||||
|         frame_time = datetime.datetime.now().timestamp() | ||||
|          | ||||
|         # Store frame in numpy array | ||||
|         frame[:] = (np | ||||
|                     .frombuffer(frame_bytes, np.uint8) | ||||
|                     .reshape(frame_shape)) | ||||
|          | ||||
|         # look for motion | ||||
|         motion_boxes = motion_detector.detect(frame) | ||||
|  | ||||
|         # skip object detection if we are below the min_fps and wait time is less than half the average | ||||
|         if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait: | ||||
|             skipped_fps_tracker.update() | ||||
|             skipped_fps.value = skipped_fps_tracker.eps() | ||||
|             continue | ||||
|          | ||||
|         skipped_fps.value = skipped_fps_tracker.eps() | ||||
|  | ||||
|         tracked_objects = object_tracker.tracked_objects.values() | ||||
|  | ||||
|         # merge areas of motion that intersect with a known tracked object into a single area to look at | ||||
|         areas_of_interest = [] | ||||
|         used_motion_boxes = [] | ||||
|         for obj in tracked_objects: | ||||
|             x_min, y_min, x_max, y_max = obj['box'] | ||||
|             for m_index, motion_box in enumerate(motion_boxes): | ||||
|                 if area(intersection(obj['box'], motion_box))/area(motion_box) > .5: | ||||
|                     used_motion_boxes.append(m_index) | ||||
|                     x_min = min(obj['box'][0], motion_box[0]) | ||||
|                     y_min = min(obj['box'][1], motion_box[1]) | ||||
|                     x_max = max(obj['box'][2], motion_box[2]) | ||||
|                     y_max = max(obj['box'][3], motion_box[3]) | ||||
|             areas_of_interest.append((x_min, y_min, x_max, y_max)) | ||||
|         unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes) | ||||
|          | ||||
|         # compute motion regions | ||||
|         motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2) | ||||
|             for i in unused_motion_boxes] | ||||
|          | ||||
|         # compute tracked object regions | ||||
|         object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2) | ||||
|             for a in areas_of_interest] | ||||
|          | ||||
|         # merge regions with high IOU | ||||
|         merged_regions = motion_regions+object_regions | ||||
|         while True: | ||||
|             max_iou = 0.0 | ||||
|             max_indices = None | ||||
|             region_indices = range(len(merged_regions)) | ||||
|             for a, b in itertools.combinations(region_indices, 2): | ||||
|                 iou = intersection_over_union(merged_regions[a], merged_regions[b]) | ||||
|                 if iou > max_iou: | ||||
|                     max_iou = iou | ||||
|                     max_indices = (a, b) | ||||
|             if max_iou > 0.1: | ||||
|                 a = merged_regions[max_indices[0]] | ||||
|                 b = merged_regions[max_indices[1]] | ||||
|                 merged_regions.append(calculate_region(frame_shape, | ||||
|                     min(a[0], b[0]), | ||||
|                     min(a[1], b[1]), | ||||
|                     max(a[2], b[2]), | ||||
|                     max(a[3], b[3]), | ||||
|                     1 | ||||
|                 )) | ||||
|                 del merged_regions[max(max_indices[0], max_indices[1])] | ||||
|                 del merged_regions[min(max_indices[0], max_indices[1])] | ||||
|             else: | ||||
|                 break | ||||
|  | ||||
|                 # if the min person area is larger than the | ||||
|                 # detected person, don't add it to detected objects | ||||
|                 if region and region['min_person_area'] > person_area: | ||||
|         # resize regions and detect | ||||
|         detections = [] | ||||
|         for region in merged_regions: | ||||
|  | ||||
|             tensor_input = create_tensor_input(frame, region) | ||||
|  | ||||
|             region_detections = object_detector.detect(tensor_input) | ||||
|  | ||||
|             for d in region_detections: | ||||
|                 box = d[2] | ||||
|                 size = region[2]-region[0] | ||||
|                 x_min = int((box[1] * size) + region[0]) | ||||
|                 y_min = int((box[0] * size) + region[1]) | ||||
|                 x_max = int((box[3] * size) + region[0]) | ||||
|                 y_max = int((box[2] * size) + region[1]) | ||||
|                 det = (d[0], | ||||
|                     d[1], | ||||
|                     (x_min, y_min, x_max, y_max), | ||||
|                     (x_max-x_min)*(y_max-y_min), | ||||
|                     region) | ||||
|                 if filtered(det, objects_to_track, object_filters, mask): | ||||
|                     continue | ||||
|                 detections.append(det) | ||||
|  | ||||
|                 # compute the coordinates of the person and make sure | ||||
|                 # the location isnt outide the bounds of the image (can happen from rounding) | ||||
|                 y_location = min(int(obj['ymax']), len(self.mask)-1) | ||||
|                 x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1) | ||||
|         ######### | ||||
|         # merge objects, check for clipped objects and look again up to N times | ||||
|         ######### | ||||
|         refining = True | ||||
|         refine_count = 0 | ||||
|         while refining and refine_count < 4: | ||||
|             refining = False | ||||
|  | ||||
|                 # if the person is in a masked location, continue | ||||
|                 if self.mask[y_location][x_location] == [0]: | ||||
|             # group by name | ||||
|             detected_object_groups = defaultdict(lambda: []) | ||||
|             for detection in detections: | ||||
|                 detected_object_groups[detection[0]].append(detection) | ||||
|  | ||||
|             selected_objects = [] | ||||
|             for group in detected_object_groups.values(): | ||||
|  | ||||
|                 # apply non-maxima suppression to suppress weak, overlapping bounding boxes | ||||
|                 boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1]) | ||||
|                     for o in group] | ||||
|                 confidences = [o[1] for o in group] | ||||
|                 idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) | ||||
|  | ||||
|                 for index in idxs: | ||||
|                     obj = group[index[0]] | ||||
|                     if clipped(obj, frame_shape): #obj['clipped']: | ||||
|                         box = obj[2] | ||||
|                         # calculate a new region that will hopefully get the entire object | ||||
|                         region = calculate_region(frame_shape,  | ||||
|                             box[0], box[1], | ||||
|                             box[2], box[3]) | ||||
|                          | ||||
|                         tensor_input = create_tensor_input(frame, region) | ||||
|                         # run detection on new region | ||||
|                         refined_detections = object_detector.detect(tensor_input) | ||||
|                         for d in refined_detections: | ||||
|                             box = d[2] | ||||
|                             size = region[2]-region[0] | ||||
|                             x_min = int((box[1] * size) + region[0]) | ||||
|                             y_min = int((box[0] * size) + region[1]) | ||||
|                             x_max = int((box[3] * size) + region[0]) | ||||
|                             y_max = int((box[2] * size) + region[1]) | ||||
|                             det = (d[0], | ||||
|                                 d[1], | ||||
|                                 (x_min, y_min, x_max, y_max), | ||||
|                                 (x_max-x_min)*(y_max-y_min), | ||||
|                                 region) | ||||
|                             if filtered(det, objects_to_track, object_filters, mask): | ||||
|                                 continue | ||||
|                             selected_objects.append(det) | ||||
|  | ||||
|             self.detected_objects.append(obj) | ||||
|                         refining = True | ||||
|                     else: | ||||
|                         selected_objects.append(obj) | ||||
|                  | ||||
|         with self.objects_parsed: | ||||
|             self.objects_parsed.notify_all() | ||||
|  | ||||
|     def get_best_person(self): | ||||
|         return self.best_person_frame.best_frame | ||||
|      | ||||
|     def get_current_frame_with_objects(self): | ||||
|         # make a copy of the current detected objects | ||||
|         detected_objects = self.detected_objects.copy() | ||||
|         # lock and make a copy of the current frame | ||||
|         with self.frame_lock: | ||||
|             frame = self.shared_frame_np.copy() | ||||
|  | ||||
|         # convert to RGB for drawing | ||||
|         frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) | ||||
|         # draw the bounding boxes on the screen | ||||
|         for obj in detected_objects: | ||||
|             vis_util.draw_bounding_box_on_image_array(frame, | ||||
|                 obj['ymin'], | ||||
|                 obj['xmin'], | ||||
|                 obj['ymax'], | ||||
|                 obj['xmax'], | ||||
|                 color='red', | ||||
|                 thickness=2, | ||||
|                 display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))], | ||||
|                 use_normalized_coordinates=False) | ||||
|  | ||||
|         for region in self.regions: | ||||
|             color = (255,255,255) | ||||
|             cv2.rectangle(frame, (region['x_offset'], region['y_offset']),  | ||||
|                 (region['x_offset']+region['size'], region['y_offset']+region['size']),  | ||||
|                 color, 2) | ||||
|  | ||||
|         # convert back to BGR | ||||
|         frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | ||||
|  | ||||
|         return frame | ||||
|             # set the detections list to only include top, complete objects | ||||
|             # and new detections | ||||
|             detections = selected_objects | ||||
|  | ||||
|             if refining: | ||||
|                 refine_count += 1 | ||||
|          | ||||
|         # now that we have refined our detections, we need to track objects | ||||
|         object_tracker.match_and_update(frame_time, detections) | ||||
|  | ||||
|         # put the frame in the plasma store | ||||
|         object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest() | ||||
|         plasma_client.put(frame, plasma.ObjectID(object_id)) | ||||
|         # add to the queue | ||||
|         detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects)) | ||||
|  | ||||
|     print(f"{name}: exiting subprocess") | ||||
		Reference in New Issue
	
	Block a user