mirror of
				https://github.com/blakeblackshear/frigate.git
				synced 2025-10-31 19:14:49 +08:00 
			
		
		
		
	Compare commits
	
		
			132 Commits
		
	
	
		
			v0.1.1
			...
			v0.5.0-rc5
		
	
	| Author | SHA1 | Date | |
|---|---|---|---|
|   | 30ad0e30f8 | ||
|   | 7bad89c9bf | ||
|   | f077c397f4 | ||
|   | cc729d83a8 | ||
|   | c520b81e49 | ||
|   | 9c304391c0 | ||
|   | 9a12b02d22 | ||
|   | 7686c510b3 | ||
|   | 2f5e322d3c | ||
|   | 1cd4c12104 | ||
|   | 1a8b034685 | ||
|   | da6dc03a57 | ||
|   | 7fa3b70d2d | ||
|   | 1fc5a2bfd4 | ||
|   | 7e84da7dad | ||
|   | 128be72e28 | ||
|   | aaddedc95c | ||
|   | ba919fb439 | ||
|   | b1d563f3c4 | ||
|   | 204d8af5df | ||
|   | b507a73d79 | ||
|   | 66eeb8b5cb | ||
|   | efa67067c6 | ||
|   | aeb036f1a4 | ||
|   | 74c528f9dc | ||
|   | f2d54bec43 | ||
|   | f07d57741e | ||
|   | 2c1ec19f98 | ||
|   | 6a9027c002 | ||
|   | 60c15e4419 | ||
|   | 03dbf600aa | ||
|   | fbbb79b31b | ||
|   | 496c6bc6c4 | ||
|   | 869a81c944 | ||
|   | 5b1884cfb3 | ||
|   | cd057370e1 | ||
|   | 6263912655 | ||
|   | af247275cf | ||
|   | 1198c29dac | ||
|   | 169603d3ff | ||
|   | dc7eecebc6 | ||
|   | 0dd4087d5d | ||
|   | 6ecf87fc60 | ||
|   | ebcf1482f8 | ||
|   | 50bcf60893 | ||
|   | 38efbd63ea | ||
|   | 50bcad8b77 | ||
|   | cfffb219ae | ||
|   | 382d7be50a | ||
|   | f43dc36a37 | ||
|   | 38e7fa07d2 | ||
|   | e261c20819 | ||
|   | 3a66e672d3 | ||
|   | 2aada930e3 | ||
|   | d87f4407a0 | ||
|   | be5a114f6a | ||
|   | 32b212c7b6 | ||
|   | 76c8e3a12f | ||
|   | 16f7a361c3 | ||
|   | 634b87307f | ||
|   | 1d4fbbdba3 | ||
|   | 65579e9cbf | ||
|   | 49dc029c43 | ||
|   | 08174d8db2 | ||
|   | 5199242a68 | ||
|   | 725dd3220c | ||
|   | 10dc56f6ea | ||
|   | cc2abe93a6 | ||
|   | 0c6717090c | ||
|   | f5a2252b29 | ||
|   | 02efb6f415 | ||
|   | 5b4c6e50bc | ||
|   | 9cc46a71cb | ||
|   | be1673b00a | ||
|   | b6130e77ff | ||
|   | 4180c710cd | ||
|   | ab3e70b4db | ||
|   | d90e408d50 | ||
|   | 6c87ce0879 | ||
|   | b7b4e38f62 | ||
|   | 480175d70f | ||
|   | bee99ca6ff | ||
|   | 5c01720567 | ||
|   | 262f45c8bc | ||
|   | 22bb17b2fd | ||
|   | 3a3afe14bf | ||
|   | 01f058a482 | ||
|   | d899ef158e | ||
|   | 39d64f7ba7 | ||
|   | f148eb5a7b | ||
|   | 297e2f1c0c | ||
|   | e818744d81 | ||
|   | ceedfae993 | ||
|   | e13563770d | ||
|   | a659019d1a | ||
|   | ba71927d53 | ||
|   | 04fed31eac | ||
|   | ebaa8fac01 | ||
|   | 2ec45cd1b6 | ||
|   | 700bd1e3ef | ||
|   | c9e9f7a735 | ||
|   | aea4dc8724 | ||
|   | 12d5007b90 | ||
|   | 8970e73f75 | ||
|   | 1ba006b24f | ||
|   | 4a58f16637 | ||
|   | 436b876b24 | ||
|   | a770ab7f69 | ||
|   | 806acaf445 | ||
|   | c653567cc1 | ||
|   | 8fee8f86a2 | ||
|   | 59a4b0e650 | ||
|   | 834a3df0bc | ||
|   | c41b104997 | ||
|   | 7028b05856 | ||
|   | 2d22a04391 | ||
|   | baa587028b | ||
|   | 2b51dc3e5b | ||
|   | 9f8278ea8f | ||
|   | 56b9c754f5 | ||
|   | 5c4f5ef3f0 | ||
|   | 8c924896c5 | ||
|   | 2c2f0044b9 | ||
|   | 874e9085a7 | ||
|   | e791d6646b | ||
|   | 3019b0218c | ||
|   | 6900e140d5 | ||
|   | 911c1b2bfa | ||
|   | f4587462cf | ||
|   | cac1faa8ac | ||
|   | 9525bae5a3 | ||
|   | dbcfd109f6 | 
| @@ -1 +1,6 @@ | |||||||
| README.md | README.md | ||||||
|  | diagram.png | ||||||
|  | .gitignore | ||||||
|  | debug | ||||||
|  | config/ | ||||||
|  | *.pyc | ||||||
							
								
								
									
										1
									
								
								.github/FUNDING.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							
							
						
						
									
										1
									
								
								.github/FUNDING.yml
									
									
									
									
										vendored
									
									
										Normal file
									
								
							| @@ -0,0 +1 @@ | |||||||
|  | github: blakeblackshear | ||||||
							
								
								
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							
							
						
						
									
										2
									
								
								.gitignore
									
									
									
									
										vendored
									
									
								
							| @@ -1,2 +1,4 @@ | |||||||
| *.pyc  | *.pyc  | ||||||
| debug | debug | ||||||
|  | .vscode | ||||||
|  | config/config.yml | ||||||
							
								
								
									
										153
									
								
								Dockerfile
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										153
									
								
								Dockerfile
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -1,107 +1,60 @@ | |||||||
| FROM ubuntu:16.04 | FROM ubuntu:18.04 | ||||||
|  | LABEL maintainer "blakeb@blakeshome.com" | ||||||
|  |  | ||||||
| # Install system packages | ENV DEBIAN_FRONTEND=noninteractive | ||||||
| RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \  | # Install packages for apt repo | ||||||
|  python3-dev \ | RUN apt -qq update && apt -qq install --no-install-recommends -y \ | ||||||
|  python-pil \ |     software-properties-common \ | ||||||
|  python-lxml \ |     # apt-transport-https ca-certificates \ | ||||||
|  python-tk \ |     build-essential \ | ||||||
|  build-essential \ |     gnupg wget unzip \ | ||||||
|  cmake \  |     # libcap-dev \ | ||||||
|  git \  |     && add-apt-repository ppa:deadsnakes/ppa -y \ | ||||||
|  libgtk2.0-dev \  |     && apt -qq install --no-install-recommends -y \ | ||||||
|  pkg-config \  |         python3.7 \ | ||||||
|  libavcodec-dev \  |         python3.7-dev \ | ||||||
|  libavformat-dev \  |         python3-pip \ | ||||||
|  libswscale-dev \  |         ffmpeg \ | ||||||
|  libtbb2 \ |         # VAAPI drivers for Intel hardware accel | ||||||
|  libtbb-dev \  |         libva-drm2 libva2 i965-va-driver vainfo \ | ||||||
|  libjpeg-dev \ |     && python3.7 -m pip install -U wheel setuptools \ | ||||||
|  libpng-dev \ |     && python3.7 -m pip install -U \ | ||||||
|  libtiff-dev \ |         opencv-python-headless \ | ||||||
|  libjasper-dev \ |         # python-prctl \ | ||||||
|  libdc1394-22-dev \ |         numpy \ | ||||||
|  x11-apps \ |         imutils \ | ||||||
|  wget \ |         scipy \ | ||||||
|  vim \ |     && python3.7 -m pip install -U \ | ||||||
|  ffmpeg \ |         SharedArray \ | ||||||
|  unzip \ |         Flask \ | ||||||
|  libusb-1.0-0-dev \ |         paho-mqtt \ | ||||||
|  python3-setuptools \ |         PyYAML \ | ||||||
|  python3-numpy \ |         matplotlib \ | ||||||
|  zlib1g-dev \ |         pyarrow \ | ||||||
|  libgoogle-glog-dev \ |     && echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \ | ||||||
|  swig \ |     && wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \ | ||||||
|  libunwind-dev \ |     && apt -qq update \ | ||||||
|  libc++-dev \ |     && echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \ | ||||||
|  libc++abi-dev \ |     && apt -qq install --no-install-recommends -y \ | ||||||
|  build-essential \ |         libedgetpu1-max \ | ||||||
|  && rm -rf /var/lib/apt/lists/*  |     ## Tensorflow lite (python 3.7 only) | ||||||
|  |     && wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||||
|  |     && python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||||
|  |     && rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \ | ||||||
|  |     && rm -rf /var/lib/apt/lists/* \ | ||||||
|  |     && (apt-get autoremove -y; apt-get autoclean -y) | ||||||
|  |  | ||||||
| # Install core packages  | # get model and labels | ||||||
| RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py | RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names | ||||||
| RUN  pip install -U pip \ | RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names | ||||||
|  numpy \ | RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \ | ||||||
|  pillow \ |     unzip /cpu_model.zip detect.tflite -d / && \ | ||||||
|  matplotlib \ |     mv /detect.tflite /cpu_model.tflite && \ | ||||||
|  notebook \ |     rm /cpu_model.zip | ||||||
|  Flask \ |  | ||||||
|  imutils \ |  | ||||||
|  paho-mqtt \ |  | ||||||
|  PyYAML |  | ||||||
|  |  | ||||||
| # Install tensorflow models object detection |  | ||||||
| RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models |  | ||||||
| RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz |  | ||||||
|  |  | ||||||
| # Download & build protobuf-python |  | ||||||
| RUN cd /usr/local/src/ \ |  | ||||||
|  && tar xf protobuf-python-3.5.1.tar.gz \ |  | ||||||
|  && rm protobuf-python-3.5.1.tar.gz \ |  | ||||||
|  && cd /usr/local/src/protobuf-3.5.1/ \ |  | ||||||
|  && ./configure \ |  | ||||||
|  && make \ |  | ||||||
|  && make install \ |  | ||||||
|  && ldconfig \ |  | ||||||
|  && rm -rf /usr/local/src/protobuf-3.5.1/ |  | ||||||
|  |  | ||||||
| # Download & build OpenCV |  | ||||||
| RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip |  | ||||||
| RUN cd /usr/local/src/ \ |  | ||||||
|  && unzip 4.0.1.zip \ |  | ||||||
|  && rm 4.0.1.zip \ |  | ||||||
|  && cd /usr/local/src/opencv-4.0.1/ \ |  | ||||||
|  && mkdir build \ |  | ||||||
|  && cd /usr/local/src/opencv-4.0.1/build \  |  | ||||||
|  && cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \ |  | ||||||
|  && make -j4 \ |  | ||||||
|  && make install \ |  | ||||||
|  && rm -rf /usr/local/src/opencv-4.0.1 |  | ||||||
|  |  | ||||||
| # Download and install EdgeTPU libraries |  | ||||||
| RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz |  | ||||||
|  |  | ||||||
| RUN tar xzf edgetpu_api.tar.gz \ |  | ||||||
|   && cd python-tflite-source \ |  | ||||||
|   && cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \ |  | ||||||
|   && cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \ |  | ||||||
|   && cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \ |  | ||||||
|   && python3 setup.py develop --user |  | ||||||
|  |  | ||||||
| # Minimize image size  |  | ||||||
| RUN (apt-get autoremove -y; \ |  | ||||||
|      apt-get autoclean -y) |  | ||||||
|  |  | ||||||
| # symlink the model and labels |  | ||||||
| RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb |  | ||||||
| RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext |  | ||||||
|  |  | ||||||
| # Set TF object detection available |  | ||||||
| ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim" |  | ||||||
| RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=. |  | ||||||
|  |  | ||||||
| WORKDIR /opt/frigate/ | WORKDIR /opt/frigate/ | ||||||
| ADD frigate frigate/ | ADD frigate frigate/ | ||||||
| COPY detect_objects.py . | COPY detect_objects.py . | ||||||
|  | COPY benchmark.py . | ||||||
|  |  | ||||||
| CMD ["python3", "-u", "detect_objects.py"] | CMD ["python3.7", "-u", "detect_objects.py"] | ||||||
|   | |||||||
							
								
								
									
										124
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										124
									
								
								README.md
									
									
									
									
									
								
							| @@ -1,14 +1,13 @@ | |||||||
| # Frigate - Realtime Object Detection for RTSP Cameras | # Frigate - Realtime Object Detection for IP Cameras | ||||||
| **Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) | Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT. | ||||||
|  |  | ||||||
| Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT. | Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load. | ||||||
|  |  | ||||||
| - Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame | - Leverages multiprocessing heavily with an emphasis on realtime over processing every frame | ||||||
| - Allows you to define specific regions (squares) in the image to look for objects | - Uses a very low overhead motion detection to determine where to run object detection | ||||||
| - No motion detection (for now) | - Object detection with Tensorflow runs in a separate process | ||||||
| - Object detection with Tensorflow runs in a separate thread |  | ||||||
| - Object info is published over MQTT for integration into HomeAssistant as a binary sensor | - Object info is published over MQTT for integration into HomeAssistant as a binary sensor | ||||||
| - An endpoint is available to view an MJPEG stream for debugging | - An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously | ||||||
|  |  | ||||||
|  |  | ||||||
|  |  | ||||||
| @@ -22,77 +21,112 @@ Build the container with | |||||||
| docker build -t frigate . | docker build -t frigate . | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/). | Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts: | ||||||
|  | - CPU Model: `/cpu_model.tflite` | ||||||
|  | - EdgeTPU Model: `/edgetpu_model.tflite` | ||||||
|  | - Labels: `/labelmap.txt` | ||||||
|  |  | ||||||
| Run the container with | Run the container with | ||||||
| ``` | ```bash | ||||||
| docker run --rm \ | docker run --rm \ | ||||||
| --privileged \ | --privileged \ | ||||||
|  | --shm-size=512m \ # should work for a 2-3 cameras | ||||||
| -v /dev/bus/usb:/dev/bus/usb \ | -v /dev/bus/usb:/dev/bus/usb \ | ||||||
| -v <path_to_config_dir>:/config:ro \ | -v <path_to_config_dir>:/config:ro \ | ||||||
|  | -v /etc/localtime:/etc/localtime:ro \ | ||||||
| -p 5000:5000 \ | -p 5000:5000 \ | ||||||
| -e RTSP_PASSWORD='password' \ | -e FRIGATE_RTSP_PASSWORD='password' \ | ||||||
| frigate:latest | frigate:latest | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| Example docker-compose: | Example docker-compose: | ||||||
| ``` | ```yaml | ||||||
|   frigate: |   frigate: | ||||||
|     container_name: frigate |     container_name: frigate | ||||||
|     restart: unless-stopped |     restart: unless-stopped | ||||||
|     privileged: true |     privileged: true | ||||||
|  |     shm_size: '1g' # should work for 5-7 cameras | ||||||
|     image: frigate:latest |     image: frigate:latest | ||||||
|     volumes: |     volumes: | ||||||
|       - /dev/bus/usb:/dev/bus/usb |       - /dev/bus/usb:/dev/bus/usb | ||||||
|  |       - /etc/localtime:/etc/localtime:ro | ||||||
|       - <path_to_config>:/config |       - <path_to_config>:/config | ||||||
|     ports: |     ports: | ||||||
|       - "5000:5000" |       - "5000:5000" | ||||||
|     environment: |     environment: | ||||||
|       RTSP_PASSWORD: "password" |       FRIGATE_RTSP_PASSWORD: "password" | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| A `config.yml` file must exist in the `config` directory. See example [here](config/config.yml). | A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md). | ||||||
|  |  | ||||||
| Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg` | Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg` | ||||||
|  |  | ||||||
|  | Debug info is available at `http://localhost:5000/debug/stats` | ||||||
|  |  | ||||||
| ## Integration with HomeAssistant | ## Integration with HomeAssistant | ||||||
| ``` | ``` | ||||||
| camera: | camera: | ||||||
|   - name: Camera Last Person |   - name: Camera Last Person | ||||||
|     platform: generic |     platform: mqtt | ||||||
|     still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg |     topic: frigate/<camera_name>/person/snapshot | ||||||
|  |   - name: Camera Last Car | ||||||
|  |     platform: mqtt | ||||||
|  |     topic: frigate/<camera_name>/car/snapshot | ||||||
|  |  | ||||||
| sensor: | binary_sensor: | ||||||
|   - name: Camera Person |   - name: Camera Person | ||||||
|     platform: mqtt |     platform: mqtt | ||||||
|     state_topic: "frigate/<camera_name>/objects" |     state_topic: "frigate/<camera_name>/person" | ||||||
|     value_template: '{{ value_json.person }}' |     device_class: motion | ||||||
|     device_class: moving |  | ||||||
|     availability_topic: "frigate/available" |     availability_topic: "frigate/available" | ||||||
|  |  | ||||||
|  | automation: | ||||||
|  |   - alias: Alert me if a person is detected while armed away | ||||||
|  |     trigger:  | ||||||
|  |       platform: state | ||||||
|  |       entity_id: binary_sensor.camera_person | ||||||
|  |       from: 'off' | ||||||
|  |       to: 'on' | ||||||
|  |     condition: | ||||||
|  |       - condition: state | ||||||
|  |         entity_id: alarm_control_panel.home_alarm | ||||||
|  |         state: armed_away | ||||||
|  |     action: | ||||||
|  |       - service: notify.user_telegram | ||||||
|  |         data: | ||||||
|  |           message: "A person was detected." | ||||||
|  |           data: | ||||||
|  |             photo: | ||||||
|  |               - url: http://<ip>:5000/<camera_name>/person/best.jpg | ||||||
|  |                 caption: A person was detected. | ||||||
|  |  | ||||||
|  | sensor: | ||||||
|  |   - platform: rest | ||||||
|  |     name: Frigate Debug | ||||||
|  |     resource: http://localhost:5000/debug/stats | ||||||
|  |     scan_interval: 5 | ||||||
|  |     json_attributes: | ||||||
|  |       - back | ||||||
|  |       - coral | ||||||
|  |     value_template: 'OK'   | ||||||
|  |   - platform: template | ||||||
|  |     sensors: | ||||||
|  |       back_fps:  | ||||||
|  |         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}' | ||||||
|  |         unit_of_measurement: 'FPS' | ||||||
|  |       back_skipped_fps:  | ||||||
|  |         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}' | ||||||
|  |         unit_of_measurement: 'FPS' | ||||||
|  |       back_detection_fps:  | ||||||
|  |         value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}' | ||||||
|  |         unit_of_measurement: 'FPS' | ||||||
|  |       frigate_coral_fps:  | ||||||
|  |         value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}' | ||||||
|  |         unit_of_measurement: 'FPS' | ||||||
|  |       frigate_coral_inference: | ||||||
|  |         value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'  | ||||||
|  |         unit_of_measurement: 'ms' | ||||||
| ``` | ``` | ||||||
|  |  | ||||||
| ## Tips | ## Tips | ||||||
| - Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed | - Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed | ||||||
|  |  | ||||||
| ## Future improvements |  | ||||||
| - [x] Remove motion detection for now |  | ||||||
| - [x] Try running object detection in a thread rather than a process |  | ||||||
| - [x] Implement min person size again |  | ||||||
| - [x] Switch to a config file |  | ||||||
| - [x] Handle multiple cameras in the same container |  | ||||||
| - [ ] Attempt to figure out coral symlinking |  | ||||||
| - [ ] Add object list to config with min scores for mqtt |  | ||||||
| - [ ] Move mjpeg encoding to a separate process |  | ||||||
| - [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur) |  | ||||||
| - [ ] See if motion detection is even worth running |  | ||||||
| - [ ] Scan for people across entire image rather than specfic regions |  | ||||||
| - [ ] Dynamically resize detection area and follow people |  | ||||||
| - [ ] Add ability to turn detection on and off via MQTT |  | ||||||
| - [ ] Output movie clips of people for notifications, etc. |  | ||||||
| - [ ] Integrate with homeassistant push camera |  | ||||||
| - [ ] Merge bounding boxes that span multiple regions |  | ||||||
| - [ ] Implement mode to save labeled objects for training |  | ||||||
| - [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about |  | ||||||
| - [ ] Look into GPU accelerated decoding of RTSP stream |  | ||||||
| - [ ] Send video over a socket and use JSMPEG |  | ||||||
| - [x] Look into neural compute stick |  | ||||||
|   | |||||||
							
								
								
									
										79
									
								
								benchmark.py
									
									
									
									
									
										Executable file
									
								
							
							
						
						
									
										79
									
								
								benchmark.py
									
									
									
									
									
										Executable file
									
								
							| @@ -0,0 +1,79 @@ | |||||||
|  | import os | ||||||
|  | from statistics import mean | ||||||
|  | import multiprocessing as mp | ||||||
|  | import numpy as np | ||||||
|  | import datetime | ||||||
|  | from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels | ||||||
|  |  | ||||||
|  | my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0) | ||||||
|  | labels = load_labels('/labelmap.txt') | ||||||
|  |  | ||||||
|  | ###### | ||||||
|  | # Minimal same process runner | ||||||
|  | ###### | ||||||
|  | # object_detector = ObjectDetector() | ||||||
|  | # tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0) | ||||||
|  |  | ||||||
|  | # start = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  | # frame_times = [] | ||||||
|  | # for x in range(0, 1000): | ||||||
|  | #   start_frame = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  | #   tensor_input[:] = my_frame | ||||||
|  | #   detections = object_detector.detect_raw(tensor_input) | ||||||
|  | #   parsed_detections = [] | ||||||
|  | #   for d in detections: | ||||||
|  | #       if d[1] < 0.4: | ||||||
|  | #           break | ||||||
|  | #       parsed_detections.append(( | ||||||
|  | #           labels[int(d[0])], | ||||||
|  | #           float(d[1]), | ||||||
|  | #           (d[2], d[3], d[4], d[5]) | ||||||
|  | #       )) | ||||||
|  | #   frame_times.append(datetime.datetime.now().timestamp()-start_frame) | ||||||
|  |  | ||||||
|  | # duration = datetime.datetime.now().timestamp()-start | ||||||
|  | # print(f"Processed for {duration:.2f} seconds.") | ||||||
|  | # print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms") | ||||||
|  |  | ||||||
|  | ###### | ||||||
|  | # Separate process runner | ||||||
|  | ###### | ||||||
|  | def start(id, num_detections, detection_queue): | ||||||
|  |   object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue) | ||||||
|  |   start = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  |   frame_times = [] | ||||||
|  |   for x in range(0, num_detections): | ||||||
|  |     start_frame = datetime.datetime.now().timestamp() | ||||||
|  |     detections = object_detector.detect(my_frame) | ||||||
|  |     frame_times.append(datetime.datetime.now().timestamp()-start_frame) | ||||||
|  |  | ||||||
|  |   duration = datetime.datetime.now().timestamp()-start | ||||||
|  |   print(f"{id} - Processed for {duration:.2f} seconds.") | ||||||
|  |   print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms") | ||||||
|  |  | ||||||
|  | edgetpu_process = EdgeTPUProcess() | ||||||
|  |  | ||||||
|  | # start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready) | ||||||
|  |  | ||||||
|  | #### | ||||||
|  | # Multiple camera processes | ||||||
|  | #### | ||||||
|  | camera_processes = [] | ||||||
|  | for x in range(0, 10): | ||||||
|  |   camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue)) | ||||||
|  |   camera_process.daemon = True | ||||||
|  |   camera_processes.append(camera_process) | ||||||
|  |  | ||||||
|  | start = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  | for p in camera_processes: | ||||||
|  |   p.start() | ||||||
|  |  | ||||||
|  | for p in camera_processes: | ||||||
|  |   p.join() | ||||||
|  |  | ||||||
|  | duration = datetime.datetime.now().timestamp()-start | ||||||
|  | print(f"Total - Processed for {duration:.2f} seconds.") | ||||||
							
								
								
									
										132
									
								
								config/config.example.yml
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										132
									
								
								config/config.example.yml
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,132 @@ | |||||||
|  | web_port: 5000 | ||||||
|  |  | ||||||
|  | mqtt: | ||||||
|  |   host: mqtt.server.com | ||||||
|  |   topic_prefix: frigate | ||||||
|  | #  client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances | ||||||
|  | #  user: username # Optional -- Uncomment for use | ||||||
|  | #  password: password # Optional -- Uncomment for use | ||||||
|  |  | ||||||
|  | ################# | ||||||
|  | # Default ffmpeg args. Optional and can be overwritten per camera. | ||||||
|  | # Should work with most RTSP cameras that send h264 video | ||||||
|  | # Built from the properties below with: | ||||||
|  | # "ffmpeg" + global_args + input_args + "-i" + input + output_args | ||||||
|  | ################# | ||||||
|  | # ffmpeg: | ||||||
|  | #   global_args: | ||||||
|  | #     - -hide_banner | ||||||
|  | #     - -loglevel | ||||||
|  | #     - panic | ||||||
|  | #   hwaccel_args: [] | ||||||
|  | #   input_args: | ||||||
|  | #     - -avoid_negative_ts | ||||||
|  | #     - make_zero | ||||||
|  | #     - -fflags | ||||||
|  | #     - nobuffer | ||||||
|  | #     - -flags | ||||||
|  | #     - low_delay | ||||||
|  | #     - -strict | ||||||
|  | #     - experimental | ||||||
|  | #     - -fflags | ||||||
|  | #     - +genpts+discardcorrupt | ||||||
|  | #     - -vsync | ||||||
|  | #     - drop | ||||||
|  | #     - -rtsp_transport | ||||||
|  | #     - tcp | ||||||
|  | #     - -stimeout | ||||||
|  | #     - '5000000' | ||||||
|  | #     - -use_wallclock_as_timestamps | ||||||
|  | #     - '1' | ||||||
|  | #   output_args: | ||||||
|  | #     - -f | ||||||
|  | #     - rawvideo | ||||||
|  | #     - -pix_fmt | ||||||
|  | #     - rgb24 | ||||||
|  |  | ||||||
|  | #################### | ||||||
|  | # Global object configuration. Applies to all cameras | ||||||
|  | # unless overridden at the camera levels. | ||||||
|  | # Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt). | ||||||
|  | # All labels from the model are reported over MQTT. These values are used to filter out false positives. | ||||||
|  | # min_area (optional): minimum width*height of the bounding box for the detected person | ||||||
|  | # max_area (optional): maximum width*height of the bounding box for the detected person | ||||||
|  | # threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow | ||||||
|  | #################### | ||||||
|  | objects: | ||||||
|  |   track: | ||||||
|  |     - person | ||||||
|  |     - car | ||||||
|  |     - truck | ||||||
|  |   filters: | ||||||
|  |     person: | ||||||
|  |       min_area: 5000 | ||||||
|  |       max_area: 100000 | ||||||
|  |       threshold: 0.5 | ||||||
|  |  | ||||||
|  | cameras: | ||||||
|  |   back: | ||||||
|  |     ffmpeg: | ||||||
|  |       ################ | ||||||
|  |       # Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg. | ||||||
|  |       # Environment variables that begin with 'FRIGATE_' may be referenced in {} | ||||||
|  |       ################ | ||||||
|  |       input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2 | ||||||
|  |       ################# | ||||||
|  |       # These values will override default values for just this camera | ||||||
|  |       ################# | ||||||
|  |       # global_args: [] | ||||||
|  |       # hwaccel_args: [] | ||||||
|  |       # input_args: [] | ||||||
|  |       # output_args: [] | ||||||
|  |      | ||||||
|  |     ################ | ||||||
|  |     ## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified | ||||||
|  |     ################ | ||||||
|  |     # height: 1280 | ||||||
|  |     # width: 720 | ||||||
|  |  | ||||||
|  |     ################ | ||||||
|  |     ## Optional mask. Must be the same aspect ratio as your video feed. | ||||||
|  |     ##  | ||||||
|  |     ## The mask works by looking at the bottom center of the bounding box for the detected | ||||||
|  |     ## person in the image. If that pixel in the mask is a black pixel, it ignores it as a | ||||||
|  |     ## false positive. In my mask, the grass and driveway visible from my backdoor camera  | ||||||
|  |     ## are white. The garage doors, sky, and trees (anywhere it would be impossible for a  | ||||||
|  |     ## person to stand) are black. | ||||||
|  |     ##  | ||||||
|  |     ## Masked areas are also ignored for motion detection. | ||||||
|  |     ################ | ||||||
|  |     # mask: back-mask.bmp | ||||||
|  |  | ||||||
|  |     ################ | ||||||
|  |     # Allows you to limit the framerate within frigate for cameras that do not support | ||||||
|  |     # custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,  | ||||||
|  |     # 3 every 3rd frame, etc. | ||||||
|  |     ################ | ||||||
|  |     take_frame: 1 | ||||||
|  |  | ||||||
|  |     ################ | ||||||
|  |     # The expected framerate for the camera. Frigate will try and ensure it maintains this framerate | ||||||
|  |     # by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate | ||||||
|  |     # to process every frame at the expense of realtime processing. | ||||||
|  |     ################ | ||||||
|  |     fps: 5 | ||||||
|  |  | ||||||
|  |     ################ | ||||||
|  |     # Configuration for the snapshots in the debug view and mqtt | ||||||
|  |     ################ | ||||||
|  |     snapshots: | ||||||
|  |       show_timestamp: True | ||||||
|  |  | ||||||
|  |     ################ | ||||||
|  |     # Camera level object config. This config is merged with the global config above. | ||||||
|  |     ################ | ||||||
|  |     objects: | ||||||
|  |       track: | ||||||
|  |         - person | ||||||
|  |       filters: | ||||||
|  |         person: | ||||||
|  |           min_area: 5000 | ||||||
|  |           max_area: 100000 | ||||||
|  |           threshold: 0.5 | ||||||
| @@ -1,29 +0,0 @@ | |||||||
| web_port: 5000 |  | ||||||
|  |  | ||||||
| mqtt: |  | ||||||
|   host: mqtt.server.com |  | ||||||
|   topic_prefix: frigate |  | ||||||
|  |  | ||||||
| cameras: |  | ||||||
|   back: |  | ||||||
|     rtsp: |  | ||||||
|       user: viewer |  | ||||||
|       host: 10.0.10.10 |  | ||||||
|       port: 554 |  | ||||||
|       # values that begin with a "$" will be replaced with environment variable |  | ||||||
|       password: $RTSP_PASSWORD |  | ||||||
|       path: /cam/realmonitor?channel=1&subtype=2 |  | ||||||
|     mask: back-mask.bmp |  | ||||||
|     regions: |  | ||||||
|       - size: 350 |  | ||||||
|         x_offset: 0 |  | ||||||
|         y_offset: 300 |  | ||||||
|         min_person_area: 5000 |  | ||||||
|       - size: 400 |  | ||||||
|         x_offset: 350 |  | ||||||
|         y_offset: 250 |  | ||||||
|         min_person_area: 2000 |  | ||||||
|       - size: 400 |  | ||||||
|         x_offset: 750 |  | ||||||
|         y_offset: 250 |  | ||||||
|         min_person_area: 2000 |  | ||||||
| @@ -1,13 +1,23 @@ | |||||||
|  | import os | ||||||
| import cv2 | import cv2 | ||||||
| import time | import time | ||||||
|  | import datetime | ||||||
| import queue | import queue | ||||||
| import yaml | import yaml | ||||||
|  | import threading | ||||||
|  | import multiprocessing as mp | ||||||
|  | import subprocess as sp | ||||||
| import numpy as np | import numpy as np | ||||||
| from flask import Flask, Response, make_response | import logging | ||||||
|  | from flask import Flask, Response, make_response, jsonify | ||||||
| import paho.mqtt.client as mqtt | import paho.mqtt.client as mqtt | ||||||
|  |  | ||||||
| from frigate.video import Camera | from frigate.video import track_camera | ||||||
| from frigate.object_detection import PreppedQueueProcessor | from frigate.object_processing import TrackedObjectProcessor | ||||||
|  | from frigate.util import EventsPerSecond | ||||||
|  | from frigate.edgetpu import EdgeTPUProcess | ||||||
|  |  | ||||||
|  | FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')} | ||||||
|  |  | ||||||
| with open('/config/config.yml') as f: | with open('/config/config.yml') as f: | ||||||
|     CONFIG = yaml.safe_load(f) |     CONFIG = yaml.safe_load(f) | ||||||
| @@ -17,74 +27,220 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883) | |||||||
| MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate') | MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate') | ||||||
| MQTT_USER = CONFIG.get('mqtt', {}).get('user') | MQTT_USER = CONFIG.get('mqtt', {}).get('user') | ||||||
| MQTT_PASS = CONFIG.get('mqtt', {}).get('password') | MQTT_PASS = CONFIG.get('mqtt', {}).get('password') | ||||||
|  | if not MQTT_PASS is None: | ||||||
|  |     MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS) | ||||||
|  | MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate') | ||||||
|  |  | ||||||
|  | # Set the default FFmpeg config | ||||||
|  | FFMPEG_CONFIG = CONFIG.get('ffmpeg', {}) | ||||||
|  | FFMPEG_DEFAULT_CONFIG = { | ||||||
|  |     'global_args': FFMPEG_CONFIG.get('global_args',  | ||||||
|  |         ['-hide_banner','-loglevel','panic']), | ||||||
|  |     'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args', | ||||||
|  |         []), | ||||||
|  |     'input_args': FFMPEG_CONFIG.get('input_args', | ||||||
|  |         ['-avoid_negative_ts', 'make_zero', | ||||||
|  |          '-fflags', 'nobuffer', | ||||||
|  |          '-flags', 'low_delay', | ||||||
|  |          '-strict', 'experimental', | ||||||
|  |          '-fflags', '+genpts+discardcorrupt', | ||||||
|  |          '-vsync', 'drop', | ||||||
|  |          '-rtsp_transport', 'tcp', | ||||||
|  |          '-stimeout', '5000000', | ||||||
|  |          '-use_wallclock_as_timestamps', '1']), | ||||||
|  |     'output_args': FFMPEG_CONFIG.get('output_args', | ||||||
|  |         ['-f', 'rawvideo', | ||||||
|  |          '-pix_fmt', 'rgb24']) | ||||||
|  | } | ||||||
|  |  | ||||||
|  | GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {}) | ||||||
|  |  | ||||||
| WEB_PORT = CONFIG.get('web_port', 5000) | WEB_PORT = CONFIG.get('web_port', 5000) | ||||||
| DEBUG = (CONFIG.get('debug', '0') == '1') | DEBUG = (CONFIG.get('debug', '0') == '1') | ||||||
|  |  | ||||||
|  | class CameraWatchdog(threading.Thread): | ||||||
|  |     def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor): | ||||||
|  |         threading.Thread.__init__(self) | ||||||
|  |         self.camera_processes = camera_processes | ||||||
|  |         self.config = config | ||||||
|  |         self.tflite_process = tflite_process | ||||||
|  |         self.tracked_objects_queue = tracked_objects_queue | ||||||
|  |         self.object_processor = object_processor | ||||||
|  |  | ||||||
|  |     def run(self): | ||||||
|  |         time.sleep(10) | ||||||
|  |         while True: | ||||||
|  |             # wait a bit before checking | ||||||
|  |             time.sleep(30) | ||||||
|  |  | ||||||
|  |             if (self.tflite_process.detection_start.value > 0.0 and  | ||||||
|  |                 datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10): | ||||||
|  |                 print("Detection appears to be stuck. Restarting detection process") | ||||||
|  |                 time.sleep(30) | ||||||
|  |  | ||||||
|  |             for name, camera_process in self.camera_processes.items(): | ||||||
|  |                 process = camera_process['process'] | ||||||
|  |                 if not process.is_alive(): | ||||||
|  |                     print(f"Process for {name} is not alive. Starting again...") | ||||||
|  |                     camera_process['fps'].value = float(self.config[name]['fps']) | ||||||
|  |                     camera_process['skipped_fps'].value = 0.0 | ||||||
|  |                     camera_process['detection_fps'].value = 0.0 | ||||||
|  |                     process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,  | ||||||
|  |                         self.tflite_process.detection_queue, self.tracked_objects_queue,  | ||||||
|  |                         camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps'])) | ||||||
|  |                     process.daemon = True | ||||||
|  |                     camera_process['process'] = process | ||||||
|  |                     process.start() | ||||||
|  |                     print(f"Camera_process started for {name}: {process.pid}") | ||||||
|  |  | ||||||
| def main(): | def main(): | ||||||
|     # connect to mqtt and setup last will |     # connect to mqtt and setup last will | ||||||
|     def on_connect(client, userdata, flags, rc): |     def on_connect(client, userdata, flags, rc): | ||||||
|         print("On connect called") |         print("On connect called") | ||||||
|  |         if rc != 0: | ||||||
|  |             if rc == 3: | ||||||
|  |                 print ("MQTT Server unavailable") | ||||||
|  |             elif rc == 4: | ||||||
|  |                 print ("MQTT Bad username or password") | ||||||
|  |             elif rc == 5: | ||||||
|  |                 print ("MQTT Not authorized") | ||||||
|  |             else: | ||||||
|  |                 print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc)) | ||||||
|         # publish a message to signal that the service is running |         # publish a message to signal that the service is running | ||||||
|         client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True) |         client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True) | ||||||
|     client = mqtt.Client() |     client = mqtt.Client(client_id=MQTT_CLIENT_ID) | ||||||
|     client.on_connect = on_connect |     client.on_connect = on_connect | ||||||
|     client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True) |     client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True) | ||||||
|     if not MQTT_USER is None: |     if not MQTT_USER is None: | ||||||
|         client.username_pw_set(MQTT_USER, password=MQTT_PASS) |         client.username_pw_set(MQTT_USER, password=MQTT_PASS) | ||||||
|     client.connect(MQTT_HOST, MQTT_PORT, 60) |     client.connect(MQTT_HOST, MQTT_PORT, 60) | ||||||
|     client.loop_start() |     client.loop_start() | ||||||
|      |  | ||||||
|     # Queue for prepped frames, max size set to (number of cameras * 5) |  | ||||||
|     max_queue_size = len(CONFIG['cameras'].items())*5 |  | ||||||
|     prepped_frame_queue = queue.Queue(max_queue_size) |  | ||||||
|  |  | ||||||
|     cameras = {} |     # start plasma store | ||||||
|  |     plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma'] | ||||||
|  |     plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL) | ||||||
|  |     time.sleep(1) | ||||||
|  |     rc = plasma_process.poll() | ||||||
|  |     if rc is not None: | ||||||
|  |         raise RuntimeError("plasma_store exited unexpectedly with " | ||||||
|  |                             "code %d" % (rc,)) | ||||||
|  |  | ||||||
|  |     ## | ||||||
|  |     # Setup config defaults for cameras | ||||||
|  |     ## | ||||||
|     for name, config in CONFIG['cameras'].items(): |     for name, config in CONFIG['cameras'].items(): | ||||||
|         cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX) |         config['snapshots'] = { | ||||||
|  |             'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True) | ||||||
|  |         } | ||||||
|  |  | ||||||
|     prepped_queue_processor = PreppedQueueProcessor( |     # Queue for cameras to push tracked objects to | ||||||
|         cameras, |     tracked_objects_queue = mp.Queue() | ||||||
|         prepped_frame_queue |      | ||||||
|     ) |     # Start the shared tflite process | ||||||
|     prepped_queue_processor.start() |     tflite_process = EdgeTPUProcess() | ||||||
|  |  | ||||||
|     for name, camera in cameras.items(): |     # start the camera processes | ||||||
|         camera.start() |     camera_processes = {} | ||||||
|         print("Capture process for {}: {}".format(name, camera.get_capture_pid())) |     for name, config in CONFIG['cameras'].items(): | ||||||
|  |         camera_processes[name] = { | ||||||
|  |             'fps': mp.Value('d', float(config['fps'])), | ||||||
|  |             'skipped_fps': mp.Value('d', 0.0), | ||||||
|  |             'detection_fps': mp.Value('d', 0.0) | ||||||
|  |         } | ||||||
|  |         camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,  | ||||||
|  |             tflite_process.detection_queue, tracked_objects_queue,  | ||||||
|  |             camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps'])) | ||||||
|  |         camera_process.daemon = True | ||||||
|  |         camera_processes[name]['process'] = camera_process | ||||||
|  |  | ||||||
|  |     for name, camera_process in camera_processes.items(): | ||||||
|  |         camera_process['process'].start() | ||||||
|  |         print(f"Camera_process started for {name}: {camera_process['process'].pid}") | ||||||
|  |      | ||||||
|  |     object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue) | ||||||
|  |     object_processor.start() | ||||||
|  |      | ||||||
|  |     camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor) | ||||||
|  |     camera_watchdog.start() | ||||||
|  |  | ||||||
|     # create a flask app that encodes frames a mjpeg on demand |     # create a flask app that encodes frames a mjpeg on demand | ||||||
|     app = Flask(__name__) |     app = Flask(__name__) | ||||||
|  |     log = logging.getLogger('werkzeug') | ||||||
|  |     log.setLevel(logging.ERROR) | ||||||
|  |  | ||||||
|     @app.route('/<camera_name>/best_person.jpg') |     @app.route('/') | ||||||
|     def best_person(camera_name): |     def ishealthy(): | ||||||
|         best_person_frame = cameras[camera_name].get_best_person() |         # return a healh | ||||||
|         if best_person_frame is None: |         return "Frigate is running. Alive and healthy!" | ||||||
|             best_person_frame = np.zeros((720,1280,3), np.uint8) |  | ||||||
|         ret, jpg = cv2.imencode('.jpg', best_person_frame) |     @app.route('/debug/stats') | ||||||
|         response = make_response(jpg.tobytes()) |     def stats(): | ||||||
|         response.headers['Content-Type'] = 'image/jpg' |         stats = {} | ||||||
|         return response |  | ||||||
|  |         total_detection_fps = 0 | ||||||
|  |  | ||||||
|  |         for name, camera_stats in camera_processes.items(): | ||||||
|  |             total_detection_fps += camera_stats['detection_fps'].value | ||||||
|  |             stats[name] = { | ||||||
|  |                 'fps': round(camera_stats['fps'].value, 2), | ||||||
|  |                 'skipped_fps': round(camera_stats['skipped_fps'].value, 2), | ||||||
|  |                 'detection_fps': round(camera_stats['detection_fps'].value, 2) | ||||||
|  |             } | ||||||
|  |          | ||||||
|  |         stats['coral'] = { | ||||||
|  |             'fps': round(total_detection_fps, 2), | ||||||
|  |             'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2), | ||||||
|  |             'detection_queue': tflite_process.detection_queue.qsize(), | ||||||
|  |             'detection_start': tflite_process.detection_start.value | ||||||
|  |         } | ||||||
|  |  | ||||||
|  |         rc = plasma_process.poll() | ||||||
|  |         stats['plasma_store_rc'] = rc | ||||||
|  |  | ||||||
|  |         stats['tracked_objects_queue'] = tracked_objects_queue.qsize() | ||||||
|  |  | ||||||
|  |         return jsonify(stats) | ||||||
|  |  | ||||||
|  |     @app.route('/<camera_name>/<label>/best.jpg') | ||||||
|  |     def best(camera_name, label): | ||||||
|  |         if camera_name in CONFIG['cameras']: | ||||||
|  |             best_frame = object_processor.get_best(camera_name, label) | ||||||
|  |             if best_frame is None: | ||||||
|  |                 best_frame = np.zeros((720,1280,3), np.uint8) | ||||||
|  |             best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) | ||||||
|  |             ret, jpg = cv2.imencode('.jpg', best_frame) | ||||||
|  |             response = make_response(jpg.tobytes()) | ||||||
|  |             response.headers['Content-Type'] = 'image/jpg' | ||||||
|  |             return response | ||||||
|  |         else: | ||||||
|  |             return "Camera named {} not found".format(camera_name), 404 | ||||||
|  |  | ||||||
|     @app.route('/<camera_name>') |     @app.route('/<camera_name>') | ||||||
|     def mjpeg_feed(camera_name): |     def mjpeg_feed(camera_name): | ||||||
|         # return a multipart response |         if camera_name in CONFIG['cameras']: | ||||||
|         return Response(imagestream(camera_name), |             # return a multipart response | ||||||
|                         mimetype='multipart/x-mixed-replace; boundary=frame') |             return Response(imagestream(camera_name), | ||||||
|  |                             mimetype='multipart/x-mixed-replace; boundary=frame') | ||||||
|  |         else: | ||||||
|  |             return "Camera named {} not found".format(camera_name), 404 | ||||||
|  |  | ||||||
|     def imagestream(camera_name): |     def imagestream(camera_name): | ||||||
|         while True: |         while True: | ||||||
|             # max out at 5 FPS |             # max out at 1 FPS | ||||||
|             time.sleep(0.2) |             time.sleep(1) | ||||||
|             frame = cameras[camera_name].get_current_frame_with_objects() |             frame = object_processor.get_current_frame(camera_name) | ||||||
|             # encode the image into a jpg |             if frame is None: | ||||||
|  |                 frame = np.zeros((720,1280,3), np.uint8) | ||||||
|  |             frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) | ||||||
|             ret, jpg = cv2.imencode('.jpg', frame) |             ret, jpg = cv2.imencode('.jpg', frame) | ||||||
|             yield (b'--frame\r\n' |             yield (b'--frame\r\n' | ||||||
|                 b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') |                 b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n') | ||||||
|  |  | ||||||
|     app.run(host='0.0.0.0', port=WEB_PORT, debug=False) |     app.run(host='0.0.0.0', port=WEB_PORT, debug=False) | ||||||
|  |  | ||||||
|     camera.join() |     camera_watchdog.join() | ||||||
|  |      | ||||||
|  |     plasma_process.terminate() | ||||||
|  |  | ||||||
| if __name__ == '__main__': | if __name__ == '__main__': | ||||||
|     main() |     main() | ||||||
|   | |||||||
							
								
								
									
										
											BIN
										
									
								
								diagram.png
									
									
									
									
									
								
							
							
						
						
									
										
											BIN
										
									
								
								diagram.png
									
									
									
									
									
								
							
										
											Binary file not shown.
										
									
								
							| Before Width: | Height: | Size: 283 KiB After Width: | Height: | Size: 132 KiB | 
							
								
								
									
										74
									
								
								docs/DEVICES.md
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										74
									
								
								docs/DEVICES.md
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,74 @@ | |||||||
|  | # Configuration Examples | ||||||
|  |  | ||||||
|  | ### Default (most RTSP cameras) | ||||||
|  | This is the default ffmpeg command and should work with most RTSP cameras that send h264 video | ||||||
|  | ```yaml | ||||||
|  | ffmpeg: | ||||||
|  |   global_args: | ||||||
|  |     - -hide_banner | ||||||
|  |     - -loglevel | ||||||
|  |     - panic | ||||||
|  |   hwaccel_args: [] | ||||||
|  |   input_args: | ||||||
|  |     - -avoid_negative_ts | ||||||
|  |     - make_zero  | ||||||
|  |     - -fflags | ||||||
|  |     - nobuffer | ||||||
|  |     - -flags | ||||||
|  |     - low_delay | ||||||
|  |     - -strict | ||||||
|  |     - experimental | ||||||
|  |     - -fflags | ||||||
|  |     - +genpts+discardcorrupt | ||||||
|  |     - -vsync | ||||||
|  |     - drop | ||||||
|  |     - -rtsp_transport | ||||||
|  |     - tcp | ||||||
|  |     - -stimeout | ||||||
|  |     - '5000000'  | ||||||
|  |     - -use_wallclock_as_timestamps | ||||||
|  |     - '1' | ||||||
|  |   output_args: | ||||||
|  |     - -vf | ||||||
|  |     - mpdecimate | ||||||
|  |     - -f | ||||||
|  |     - rawvideo | ||||||
|  |     - -pix_fmt | ||||||
|  |     - rgb24 | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  | ### RTMP Cameras | ||||||
|  | The input parameters need to be adjusted for RTMP cameras | ||||||
|  | ```yaml | ||||||
|  | ffmpeg: | ||||||
|  | input_args: | ||||||
|  |     - -avoid_negative_ts | ||||||
|  |     - make_zero | ||||||
|  |     - -fflags | ||||||
|  |     - nobuffer | ||||||
|  |     - -flags | ||||||
|  |     - low_delay | ||||||
|  |     - -strict | ||||||
|  |     - experimental | ||||||
|  |     - -fflags | ||||||
|  |     - +genpts+discardcorrupt | ||||||
|  |     - -vsync | ||||||
|  |     - drop | ||||||
|  |     - -use_wallclock_as_timestamps | ||||||
|  |     - '1' | ||||||
|  | ``` | ||||||
|  |  | ||||||
|  |  | ||||||
|  | ### Hardware Acceleration | ||||||
|  |  | ||||||
|  | Intel Quicksync | ||||||
|  | ```yaml | ||||||
|  | ffmpeg: | ||||||
|  |   hwaccel_args: | ||||||
|  |     - -hwaccel | ||||||
|  |     - vaapi | ||||||
|  |     - -hwaccel_device | ||||||
|  |     - /dev/dri/renderD128 | ||||||
|  |     - -hwaccel_output_format | ||||||
|  |     - yuv420p | ||||||
|  | ``` | ||||||
							
								
								
									
										136
									
								
								frigate/edgetpu.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										136
									
								
								frigate/edgetpu.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,136 @@ | |||||||
|  | import os | ||||||
|  | import datetime | ||||||
|  | import hashlib | ||||||
|  | import multiprocessing as mp | ||||||
|  | import numpy as np | ||||||
|  | import SharedArray as sa | ||||||
|  | import pyarrow.plasma as plasma | ||||||
|  | import tflite_runtime.interpreter as tflite | ||||||
|  | from tflite_runtime.interpreter import load_delegate | ||||||
|  | from frigate.util import EventsPerSecond | ||||||
|  |  | ||||||
|  | def load_labels(path, encoding='utf-8'): | ||||||
|  |   """Loads labels from file (with or without index numbers). | ||||||
|  |   Args: | ||||||
|  |     path: path to label file. | ||||||
|  |     encoding: label file encoding. | ||||||
|  |   Returns: | ||||||
|  |     Dictionary mapping indices to labels. | ||||||
|  |   """ | ||||||
|  |   with open(path, 'r', encoding=encoding) as f: | ||||||
|  |     lines = f.readlines() | ||||||
|  |     if not lines: | ||||||
|  |         return {} | ||||||
|  |  | ||||||
|  |     if lines[0].split(' ', maxsplit=1)[0].isdigit(): | ||||||
|  |         pairs = [line.split(' ', maxsplit=1) for line in lines] | ||||||
|  |         return {int(index): label.strip() for index, label in pairs} | ||||||
|  |     else: | ||||||
|  |         return {index: line.strip() for index, line in enumerate(lines)} | ||||||
|  |  | ||||||
|  | class ObjectDetector(): | ||||||
|  |     def __init__(self): | ||||||
|  |         edge_tpu_delegate = None | ||||||
|  |         try: | ||||||
|  |             edge_tpu_delegate = load_delegate('libedgetpu.so.1.0') | ||||||
|  |         except ValueError: | ||||||
|  |             print("No EdgeTPU detected. Falling back to CPU.") | ||||||
|  |          | ||||||
|  |         if edge_tpu_delegate is None: | ||||||
|  |             self.interpreter = tflite.Interpreter( | ||||||
|  |                 model_path='/cpu_model.tflite') | ||||||
|  |         else: | ||||||
|  |             self.interpreter = tflite.Interpreter( | ||||||
|  |                 model_path='/edgetpu_model.tflite', | ||||||
|  |                 experimental_delegates=[edge_tpu_delegate]) | ||||||
|  |          | ||||||
|  |         self.interpreter.allocate_tensors() | ||||||
|  |  | ||||||
|  |         self.tensor_input_details = self.interpreter.get_input_details() | ||||||
|  |         self.tensor_output_details = self.interpreter.get_output_details() | ||||||
|  |      | ||||||
|  |     def detect_raw(self, tensor_input): | ||||||
|  |         self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input) | ||||||
|  |         self.interpreter.invoke() | ||||||
|  |         boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index'])) | ||||||
|  |         label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index'])) | ||||||
|  |         scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index'])) | ||||||
|  |  | ||||||
|  |         detections = np.zeros((20,6), np.float32) | ||||||
|  |         for i, score in enumerate(scores): | ||||||
|  |             detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]] | ||||||
|  |          | ||||||
|  |         return detections | ||||||
|  |  | ||||||
|  | def run_detector(detection_queue, avg_speed, start): | ||||||
|  |     print(f"Starting detection process: {os.getpid()}") | ||||||
|  |     plasma_client = plasma.connect("/tmp/plasma") | ||||||
|  |     object_detector = ObjectDetector() | ||||||
|  |  | ||||||
|  |     while True: | ||||||
|  |         object_id_str = detection_queue.get() | ||||||
|  |         object_id_hash = hashlib.sha1(str.encode(object_id_str)) | ||||||
|  |         object_id = plasma.ObjectID(object_id_hash.digest()) | ||||||
|  |         input_frame = plasma_client.get(object_id, timeout_ms=0) | ||||||
|  |  | ||||||
|  |         start.value = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  |         # detect and put the output in the plasma store | ||||||
|  |         object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest() | ||||||
|  |         plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out)) | ||||||
|  |  | ||||||
|  |         duration = datetime.datetime.now().timestamp()-start.value | ||||||
|  |         start.value = 0.0 | ||||||
|  |         avg_speed.value = (avg_speed.value*9 + duration)/10 | ||||||
|  |          | ||||||
|  | class EdgeTPUProcess(): | ||||||
|  |     def __init__(self): | ||||||
|  |         self.detection_queue = mp.Queue() | ||||||
|  |         self.avg_inference_speed = mp.Value('d', 0.01) | ||||||
|  |         self.detection_start = mp.Value('d', 0.0) | ||||||
|  |         self.detect_process = None | ||||||
|  |         self.start_or_restart() | ||||||
|  |  | ||||||
|  |     def start_or_restart(self): | ||||||
|  |         self.detection_start.value = 0.0 | ||||||
|  |         if (not self.detect_process is None) and self.detect_process.is_alive(): | ||||||
|  |             self.detect_process.terminate() | ||||||
|  |             print("Waiting for detection process to exit gracefully...") | ||||||
|  |             self.detect_process.join(timeout=30) | ||||||
|  |             if self.detect_process.exitcode is None: | ||||||
|  |                 print("Detection process didnt exit. Force killing...") | ||||||
|  |                 self.detect_process.kill() | ||||||
|  |                 self.detect_process.join() | ||||||
|  |         self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start)) | ||||||
|  |         self.detect_process.daemon = True | ||||||
|  |         self.detect_process.start() | ||||||
|  |  | ||||||
|  | class RemoteObjectDetector(): | ||||||
|  |     def __init__(self, name, labels, detection_queue): | ||||||
|  |         self.labels = load_labels(labels) | ||||||
|  |         self.name = name | ||||||
|  |         self.fps = EventsPerSecond() | ||||||
|  |         self.plasma_client = plasma.connect("/tmp/plasma") | ||||||
|  |         self.detection_queue = detection_queue | ||||||
|  |      | ||||||
|  |     def detect(self, tensor_input, threshold=.4): | ||||||
|  |         detections = [] | ||||||
|  |  | ||||||
|  |         now = f"{self.name}-{str(datetime.datetime.now().timestamp())}" | ||||||
|  |         object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest()) | ||||||
|  |         object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest()) | ||||||
|  |         self.plasma_client.put(tensor_input, object_id_frame) | ||||||
|  |         self.detection_queue.put(now) | ||||||
|  |         raw_detections = self.plasma_client.get(object_id_detections) | ||||||
|  |  | ||||||
|  |         for d in raw_detections: | ||||||
|  |             if d[1] < threshold: | ||||||
|  |                 break | ||||||
|  |             detections.append(( | ||||||
|  |                 self.labels[int(d[0])], | ||||||
|  |                 float(d[1]), | ||||||
|  |                 (d[2], d[3], d[4], d[5]) | ||||||
|  |             )) | ||||||
|  |         self.plasma_client.delete([object_id_frame, object_id_detections]) | ||||||
|  |         self.fps.update() | ||||||
|  |         return detections | ||||||
							
								
								
									
										79
									
								
								frigate/motion.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										79
									
								
								frigate/motion.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,79 @@ | |||||||
|  | import cv2 | ||||||
|  | import imutils | ||||||
|  | import numpy as np | ||||||
|  |  | ||||||
|  | class MotionDetector(): | ||||||
|  |     def __init__(self, frame_shape, mask, resize_factor=4): | ||||||
|  |         self.resize_factor = resize_factor | ||||||
|  |         self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor)) | ||||||
|  |         self.avg_frame = np.zeros(self.motion_frame_size, np.float) | ||||||
|  |         self.avg_delta = np.zeros(self.motion_frame_size, np.float) | ||||||
|  |         self.motion_frame_count = 0 | ||||||
|  |         self.frame_counter = 0 | ||||||
|  |         resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) | ||||||
|  |         self.mask = np.where(resized_mask==[0]) | ||||||
|  |  | ||||||
|  |     def detect(self, frame): | ||||||
|  |         motion_boxes = [] | ||||||
|  |  | ||||||
|  |         # resize frame | ||||||
|  |         resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR) | ||||||
|  |  | ||||||
|  |         # convert to grayscale | ||||||
|  |         gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY) | ||||||
|  |  | ||||||
|  |         # mask frame | ||||||
|  |         gray[self.mask] = [255] | ||||||
|  |  | ||||||
|  |         # it takes ~30 frames to establish a baseline | ||||||
|  |         # dont bother looking for motion | ||||||
|  |         if self.frame_counter < 30: | ||||||
|  |             self.frame_counter += 1 | ||||||
|  |         else: | ||||||
|  |             # compare to average | ||||||
|  |             frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame)) | ||||||
|  |  | ||||||
|  |             # compute the average delta over the past few frames | ||||||
|  |             # the alpha value can be modified to configure how sensitive the motion detection is. | ||||||
|  |             # higher values mean the current frame impacts the delta a lot, and a single raindrop may | ||||||
|  |             # register as motion, too low and a fast moving person wont be detected as motion | ||||||
|  |             # this also assumes that a person is in the same location across more than a single frame | ||||||
|  |             cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2) | ||||||
|  |  | ||||||
|  |             # compute the threshold image for the current frame | ||||||
|  |             current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1] | ||||||
|  |  | ||||||
|  |             # black out everything in the avg_delta where there isnt motion in the current frame | ||||||
|  |             avg_delta_image = cv2.convertScaleAbs(self.avg_delta) | ||||||
|  |             avg_delta_image[np.where(current_thresh==[0])] = [0] | ||||||
|  |  | ||||||
|  |             # then look for deltas above the threshold, but only in areas where there is a delta | ||||||
|  |             # in the current frame. this prevents deltas from previous frames from being included | ||||||
|  |             thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1] | ||||||
|  |  | ||||||
|  |             # dilate the thresholded image to fill in holes, then find contours | ||||||
|  |             # on thresholded image | ||||||
|  |             thresh = cv2.dilate(thresh, None, iterations=2) | ||||||
|  |             cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||||||
|  |             cnts = imutils.grab_contours(cnts) | ||||||
|  |  | ||||||
|  |             # loop over the contours | ||||||
|  |             for c in cnts: | ||||||
|  |                 # if the contour is big enough, count it as motion | ||||||
|  |                 contour_area = cv2.contourArea(c) | ||||||
|  |                 if contour_area > 100: | ||||||
|  |                     x, y, w, h = cv2.boundingRect(c) | ||||||
|  |                     motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor)) | ||||||
|  |          | ||||||
|  |         if len(motion_boxes) > 0: | ||||||
|  |             self.motion_frame_count += 1 | ||||||
|  |             # TODO: this really depends on FPS | ||||||
|  |             if self.motion_frame_count >= 10: | ||||||
|  |                 # only average in the current frame if the difference persists for at least 3 frames | ||||||
|  |                 cv2.accumulateWeighted(gray, self.avg_frame, 0.2) | ||||||
|  |         else: | ||||||
|  |             # when no motion, just keep averaging the frames together | ||||||
|  |             cv2.accumulateWeighted(gray, self.avg_frame, 0.2) | ||||||
|  |             self.motion_frame_count = 0 | ||||||
|  |  | ||||||
|  |         return motion_boxes | ||||||
| @@ -1,33 +0,0 @@ | |||||||
| import json |  | ||||||
| import threading |  | ||||||
|  |  | ||||||
| class MqttObjectPublisher(threading.Thread): |  | ||||||
|     def __init__(self, client, topic_prefix, objects_parsed, detected_objects): |  | ||||||
|         threading.Thread.__init__(self) |  | ||||||
|         self.client = client |  | ||||||
|         self.topic_prefix = topic_prefix |  | ||||||
|         self.objects_parsed = objects_parsed |  | ||||||
|         self._detected_objects = detected_objects |  | ||||||
|  |  | ||||||
|     def run(self): |  | ||||||
|         last_sent_payload = "" |  | ||||||
|         while True: |  | ||||||
|  |  | ||||||
|             # initialize the payload |  | ||||||
|             payload = {} |  | ||||||
|  |  | ||||||
|             # wait until objects have been parsed |  | ||||||
|             with self.objects_parsed: |  | ||||||
|                 self.objects_parsed.wait() |  | ||||||
|  |  | ||||||
|             # add all the person scores in detected objects |  | ||||||
|             detected_objects = self._detected_objects.copy() |  | ||||||
|             person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person']) |  | ||||||
|             # if the person score is more than 100, set person to ON |  | ||||||
|             payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF' |  | ||||||
|  |  | ||||||
|             # send message for objects if different |  | ||||||
|             new_payload = json.dumps(payload, sort_keys=True) |  | ||||||
|             if new_payload != last_sent_payload: |  | ||||||
|                 last_sent_payload = new_payload |  | ||||||
|                 self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False) |  | ||||||
| @@ -1,110 +0,0 @@ | |||||||
| import datetime |  | ||||||
| import time |  | ||||||
| import cv2 |  | ||||||
| import threading |  | ||||||
| import numpy as np |  | ||||||
| from edgetpu.detection.engine import DetectionEngine |  | ||||||
| from . util import tonumpyarray |  | ||||||
|  |  | ||||||
| # Path to frozen detection graph. This is the actual model that is used for the object detection. |  | ||||||
| PATH_TO_CKPT = '/frozen_inference_graph.pb' |  | ||||||
| # List of the strings that is used to add correct label for each box. |  | ||||||
| PATH_TO_LABELS = '/label_map.pbtext' |  | ||||||
|  |  | ||||||
| # Function to read labels from text files. |  | ||||||
| def ReadLabelFile(file_path): |  | ||||||
|     with open(file_path, 'r') as f: |  | ||||||
|         lines = f.readlines() |  | ||||||
|     ret = {} |  | ||||||
|     for line in lines: |  | ||||||
|         pair = line.strip().split(maxsplit=1) |  | ||||||
|         ret[int(pair[0])] = pair[1].strip() |  | ||||||
|     return ret |  | ||||||
|  |  | ||||||
| class PreppedQueueProcessor(threading.Thread): |  | ||||||
|     def __init__(self, cameras, prepped_frame_queue): |  | ||||||
|  |  | ||||||
|         threading.Thread.__init__(self) |  | ||||||
|         self.cameras = cameras |  | ||||||
|         self.prepped_frame_queue = prepped_frame_queue |  | ||||||
|          |  | ||||||
|         # Load the edgetpu engine and labels |  | ||||||
|         self.engine = DetectionEngine(PATH_TO_CKPT) |  | ||||||
|         self.labels = ReadLabelFile(PATH_TO_LABELS) |  | ||||||
|  |  | ||||||
|     def run(self): |  | ||||||
|         # process queue... |  | ||||||
|         while True: |  | ||||||
|             frame = self.prepped_frame_queue.get() |  | ||||||
|  |  | ||||||
|             # Actual detection. |  | ||||||
|             objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3) |  | ||||||
|             # parse and pass detected objects back to the camera |  | ||||||
|             parsed_objects = [] |  | ||||||
|             for obj in objects: |  | ||||||
|                 box = obj.bounding_box.flatten().tolist() |  | ||||||
|                 parsed_objects.append({ |  | ||||||
|                             'frame_time': frame['frame_time'], |  | ||||||
|                             'name': str(self.labels[obj.label_id]), |  | ||||||
|                             'score': float(obj.score), |  | ||||||
|                             'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']), |  | ||||||
|                             'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']), |  | ||||||
|                             'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']), |  | ||||||
|                             'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset']) |  | ||||||
|                         }) |  | ||||||
|             self.cameras[frame['camera_name']].add_objects(parsed_objects) |  | ||||||
|  |  | ||||||
|  |  | ||||||
| # should this be a region class? |  | ||||||
| class FramePrepper(threading.Thread): |  | ||||||
|     def __init__(self, camera_name, shared_frame, frame_time, frame_ready,  |  | ||||||
|         frame_lock, |  | ||||||
|         region_size, region_x_offset, region_y_offset, |  | ||||||
|         prepped_frame_queue): |  | ||||||
|  |  | ||||||
|         threading.Thread.__init__(self) |  | ||||||
|         self.camera_name = camera_name |  | ||||||
|         self.shared_frame = shared_frame |  | ||||||
|         self.frame_time = frame_time |  | ||||||
|         self.frame_ready = frame_ready |  | ||||||
|         self.frame_lock = frame_lock |  | ||||||
|         self.region_size = region_size |  | ||||||
|         self.region_x_offset = region_x_offset |  | ||||||
|         self.region_y_offset = region_y_offset |  | ||||||
|         self.prepped_frame_queue = prepped_frame_queue |  | ||||||
|  |  | ||||||
|     def run(self): |  | ||||||
|         frame_time = 0.0 |  | ||||||
|         while True: |  | ||||||
|             now = datetime.datetime.now().timestamp() |  | ||||||
|  |  | ||||||
|             with self.frame_ready: |  | ||||||
|                 # if there isnt a frame ready for processing or it is old, wait for a new frame |  | ||||||
|                 if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: |  | ||||||
|                     self.frame_ready.wait() |  | ||||||
|              |  | ||||||
|             # make a copy of the cropped frame |  | ||||||
|             with self.frame_lock: |  | ||||||
|                 cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy() |  | ||||||
|                 frame_time = self.frame_time.value |  | ||||||
|              |  | ||||||
|             # convert to RGB |  | ||||||
|             cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB) |  | ||||||
|             # Resize to 300x300 if needed |  | ||||||
|             if cropped_frame_rgb.shape != (300, 300, 3): |  | ||||||
|                 cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) |  | ||||||
|             # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] |  | ||||||
|             frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0) |  | ||||||
|  |  | ||||||
|             # add the frame to the queue |  | ||||||
|             if not self.prepped_frame_queue.full(): |  | ||||||
|                 self.prepped_frame_queue.put({ |  | ||||||
|                     'camera_name': self.camera_name, |  | ||||||
|                     'frame_time': frame_time, |  | ||||||
|                     'frame': frame_expanded.flatten().copy(), |  | ||||||
|                     'region_size': self.region_size, |  | ||||||
|                     'region_x_offset': self.region_x_offset, |  | ||||||
|                     'region_y_offset': self.region_y_offset |  | ||||||
|                 }) |  | ||||||
|             else: |  | ||||||
|                 print("queue full. moving on") |  | ||||||
							
								
								
									
										149
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							
							
						
						
									
										149
									
								
								frigate/object_processing.py
									
									
									
									
									
										Normal file
									
								
							| @@ -0,0 +1,149 @@ | |||||||
|  | import json | ||||||
|  | import hashlib | ||||||
|  | import datetime | ||||||
|  | import copy | ||||||
|  | import cv2 | ||||||
|  | import threading | ||||||
|  | import numpy as np | ||||||
|  | from collections import Counter, defaultdict | ||||||
|  | import itertools | ||||||
|  | import pyarrow.plasma as plasma | ||||||
|  | import SharedArray as sa | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  | from frigate.util import draw_box_with_label | ||||||
|  | from frigate.edgetpu import load_labels | ||||||
|  |  | ||||||
|  | PATH_TO_LABELS = '/labelmap.txt' | ||||||
|  |  | ||||||
|  | LABELS = load_labels(PATH_TO_LABELS) | ||||||
|  | cmap = plt.cm.get_cmap('tab10', len(LABELS.keys())) | ||||||
|  |  | ||||||
|  | COLOR_MAP = {} | ||||||
|  | for key, val in LABELS.items(): | ||||||
|  |     COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3]) | ||||||
|  |  | ||||||
|  | class TrackedObjectProcessor(threading.Thread): | ||||||
|  |     def __init__(self, config, client, topic_prefix, tracked_objects_queue): | ||||||
|  |         threading.Thread.__init__(self) | ||||||
|  |         self.config = config | ||||||
|  |         self.client = client | ||||||
|  |         self.topic_prefix = topic_prefix | ||||||
|  |         self.tracked_objects_queue = tracked_objects_queue | ||||||
|  |         self.plasma_client = plasma.connect("/tmp/plasma") | ||||||
|  |         self.camera_data = defaultdict(lambda: { | ||||||
|  |             'best_objects': {}, | ||||||
|  |             'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')), | ||||||
|  |             'tracked_objects': {}, | ||||||
|  |             'current_frame': np.zeros((720,1280,3), np.uint8), | ||||||
|  |             'object_id': None | ||||||
|  |         }) | ||||||
|  |          | ||||||
|  |     def get_best(self, camera, label): | ||||||
|  |         if label in self.camera_data[camera]['best_objects']: | ||||||
|  |             return self.camera_data[camera]['best_objects'][label]['frame'] | ||||||
|  |         else: | ||||||
|  |             return None | ||||||
|  |      | ||||||
|  |     def get_current_frame(self, camera): | ||||||
|  |         return self.camera_data[camera]['current_frame'] | ||||||
|  |  | ||||||
|  |     def run(self): | ||||||
|  |         while True: | ||||||
|  |             camera, frame_time, tracked_objects = self.tracked_objects_queue.get() | ||||||
|  |  | ||||||
|  |             config = self.config[camera] | ||||||
|  |             best_objects = self.camera_data[camera]['best_objects'] | ||||||
|  |             current_object_status = self.camera_data[camera]['object_status'] | ||||||
|  |             self.camera_data[camera]['tracked_objects'] = tracked_objects | ||||||
|  |  | ||||||
|  |             ### | ||||||
|  |             # Draw tracked objects on the frame | ||||||
|  |             ### | ||||||
|  |             object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}")) | ||||||
|  |             object_id_bytes = object_id_hash.digest() | ||||||
|  |             object_id = plasma.ObjectID(object_id_bytes) | ||||||
|  |             current_frame = self.plasma_client.get(object_id, timeout_ms=0) | ||||||
|  |  | ||||||
|  |             if not current_frame is plasma.ObjectNotAvailable: | ||||||
|  |                 # draw the bounding boxes on the frame | ||||||
|  |                 for obj in tracked_objects.values(): | ||||||
|  |                     thickness = 2 | ||||||
|  |                     color = COLOR_MAP[obj['label']] | ||||||
|  |                      | ||||||
|  |                     if obj['frame_time'] != frame_time: | ||||||
|  |                         thickness = 1 | ||||||
|  |                         color = (255,0,0) | ||||||
|  |  | ||||||
|  |                     # draw the bounding boxes on the frame | ||||||
|  |                     box = obj['box'] | ||||||
|  |                     draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color) | ||||||
|  |                     # draw the regions on the frame | ||||||
|  |                     region = obj['region'] | ||||||
|  |                     cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1) | ||||||
|  |                  | ||||||
|  |                 if config['snapshots']['show_timestamp']: | ||||||
|  |                     time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S") | ||||||
|  |                     cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2) | ||||||
|  |  | ||||||
|  |                 ### | ||||||
|  |                 # Set the current frame as ready | ||||||
|  |                 ### | ||||||
|  |                 self.camera_data[camera]['current_frame'] = current_frame | ||||||
|  |  | ||||||
|  |                 # store the object id, so you can delete it at the next loop | ||||||
|  |                 previous_object_id = self.camera_data[camera]['object_id'] | ||||||
|  |                 if not previous_object_id is None: | ||||||
|  |                     self.plasma_client.delete([previous_object_id]) | ||||||
|  |                 self.camera_data[camera]['object_id'] = object_id | ||||||
|  |              | ||||||
|  |             ### | ||||||
|  |             # Maintain the highest scoring recent object and frame for each label | ||||||
|  |             ### | ||||||
|  |             for obj in tracked_objects.values(): | ||||||
|  |                 # if the object wasn't seen on the current frame, skip it | ||||||
|  |                 if obj['frame_time'] != frame_time: | ||||||
|  |                     continue | ||||||
|  |                 if obj['label'] in best_objects: | ||||||
|  |                     now = datetime.datetime.now().timestamp() | ||||||
|  |                     # if the object is a higher score than the current best score  | ||||||
|  |                     # or the current object is more than 1 minute old, use the new object | ||||||
|  |                     if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60: | ||||||
|  |                         obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) | ||||||
|  |                         best_objects[obj['label']] = obj | ||||||
|  |                 else: | ||||||
|  |                     obj['frame'] = np.copy(self.camera_data[camera]['current_frame']) | ||||||
|  |                     best_objects[obj['label']] = obj | ||||||
|  |  | ||||||
|  |             ### | ||||||
|  |             # Report over MQTT | ||||||
|  |             ### | ||||||
|  |             # count objects with more than 2 entries in history by type | ||||||
|  |             obj_counter = Counter() | ||||||
|  |             for obj in tracked_objects.values(): | ||||||
|  |                 if len(obj['history']) > 1: | ||||||
|  |                     obj_counter[obj['label']] += 1 | ||||||
|  |                      | ||||||
|  |             # report on detected objects | ||||||
|  |             for obj_name, count in obj_counter.items(): | ||||||
|  |                 new_status = 'ON' if count > 0 else 'OFF' | ||||||
|  |                 if new_status != current_object_status[obj_name]: | ||||||
|  |                     current_object_status[obj_name] = new_status | ||||||
|  |                     self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False) | ||||||
|  |                     # send the best snapshot over mqtt | ||||||
|  |                     best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) | ||||||
|  |                     ret, jpg = cv2.imencode('.jpg', best_frame) | ||||||
|  |                     if ret: | ||||||
|  |                         jpg_bytes = jpg.tobytes() | ||||||
|  |                         self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True) | ||||||
|  |  | ||||||
|  |             # expire any objects that are ON and no longer detected | ||||||
|  |             expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter] | ||||||
|  |             for obj_name in expired_objects: | ||||||
|  |                 current_object_status[obj_name] = 'OFF' | ||||||
|  |                 self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False) | ||||||
|  |                 # send updated snapshot over mqtt | ||||||
|  |                 best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR) | ||||||
|  |                 ret, jpg = cv2.imencode('.jpg', best_frame) | ||||||
|  |                 if ret: | ||||||
|  |                     jpg_bytes = jpg.tobytes() | ||||||
|  |                     self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True) | ||||||
| @@ -2,95 +2,158 @@ import time | |||||||
| import datetime | import datetime | ||||||
| import threading | import threading | ||||||
| import cv2 | import cv2 | ||||||
| from object_detection.utils import visualization_utils as vis_util | import itertools | ||||||
|  | import copy | ||||||
|  | import numpy as np | ||||||
|  | import multiprocessing as mp | ||||||
|  | from collections import defaultdict | ||||||
|  | from scipy.spatial import distance as dist | ||||||
|  | from frigate.util import draw_box_with_label, calculate_region | ||||||
|  |  | ||||||
| class ObjectCleaner(threading.Thread): | class ObjectTracker(): | ||||||
|     def __init__(self, objects_parsed, detected_objects): |     def __init__(self, max_disappeared): | ||||||
|         threading.Thread.__init__(self) |         self.tracked_objects = {} | ||||||
|         self._objects_parsed = objects_parsed |         self.disappeared = {} | ||||||
|         self._detected_objects = detected_objects |         self.max_disappeared = max_disappeared | ||||||
|  |  | ||||||
|     def run(self): |     def register(self, index, obj): | ||||||
|         while True: |         id = f"{obj['frame_time']}-{index}" | ||||||
|  |         obj['id'] = id | ||||||
|  |         obj['top_score'] = obj['score'] | ||||||
|  |         self.add_history(obj) | ||||||
|  |         self.tracked_objects[id] = obj | ||||||
|  |         self.disappeared[id] = 0 | ||||||
|  |  | ||||||
|             # wait a bit before checking for expired frames |     def deregister(self, id): | ||||||
|             time.sleep(0.2) |         del self.tracked_objects[id] | ||||||
|  |         del self.disappeared[id] | ||||||
|  |      | ||||||
|  |     def update(self, id, new_obj): | ||||||
|  |         self.disappeared[id] = 0 | ||||||
|  |         self.tracked_objects[id].update(new_obj) | ||||||
|  |         self.add_history(self.tracked_objects[id]) | ||||||
|  |         if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']: | ||||||
|  |             self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score'] | ||||||
|  |      | ||||||
|  |     def add_history(self, obj): | ||||||
|  |         entry = { | ||||||
|  |             'score': obj['score'], | ||||||
|  |             'box': obj['box'], | ||||||
|  |             'region': obj['region'], | ||||||
|  |             'centroid': obj['centroid'], | ||||||
|  |             'frame_time': obj['frame_time'] | ||||||
|  |         } | ||||||
|  |         if 'history' in obj: | ||||||
|  |             obj['history'].append(entry) | ||||||
|  |         else: | ||||||
|  |             obj['history'] = [entry] | ||||||
|  |  | ||||||
|             # expire the objects that are more than 1 second old |     def match_and_update(self, frame_time, new_objects): | ||||||
|             now = datetime.datetime.now().timestamp() |         # group by name | ||||||
|             # look for the first object found within the last second |         new_object_groups = defaultdict(lambda: []) | ||||||
|             # (newest objects are appended to the end) |         for obj in new_objects: | ||||||
|             detected_objects = self._detected_objects.copy() |             new_object_groups[obj[0]].append({ | ||||||
|  |                 'label': obj[0], | ||||||
|  |                 'score': obj[1], | ||||||
|  |                 'box': obj[2], | ||||||
|  |                 'area': obj[3], | ||||||
|  |                 'region': obj[4], | ||||||
|  |                 'frame_time': frame_time | ||||||
|  |             }) | ||||||
|  |          | ||||||
|  |         # update any tracked objects with labels that are not | ||||||
|  |         # seen in the current objects and deregister if needed | ||||||
|  |         for obj in list(self.tracked_objects.values()): | ||||||
|  |             if not obj['label'] in new_object_groups: | ||||||
|  |                 if self.disappeared[obj['id']] >= self.max_disappeared: | ||||||
|  |                     self.deregister(obj['id']) | ||||||
|  |                 else: | ||||||
|  |                     self.disappeared[obj['id']] += 1 | ||||||
|  |          | ||||||
|  |         if len(new_objects) == 0: | ||||||
|  |             return | ||||||
|  |          | ||||||
|  |         # track objects for each label type | ||||||
|  |         for label, group in new_object_groups.items(): | ||||||
|  |             current_objects = [o for o in self.tracked_objects.values() if o['label'] == label] | ||||||
|  |             current_ids = [o['id'] for o in current_objects] | ||||||
|  |             current_centroids = np.array([o['centroid'] for o in current_objects]) | ||||||
|  |  | ||||||
|             num_to_delete = 0 |             # compute centroids of new objects | ||||||
|             for obj in detected_objects: |             for obj in group: | ||||||
|                 if now-obj['frame_time']<2: |                 centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0) | ||||||
|                     break |                 centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0) | ||||||
|                 num_to_delete += 1 |                 obj['centroid'] = (centroid_x, centroid_y) | ||||||
|             if num_to_delete > 0: |  | ||||||
|                 del self._detected_objects[:num_to_delete] |  | ||||||
|  |  | ||||||
|                 # notify that parsed objects were changed |             if len(current_objects) == 0: | ||||||
|                 with self._objects_parsed: |                 for index, obj in enumerate(group): | ||||||
|                     self._objects_parsed.notify_all() |                     self.register(index, obj) | ||||||
|  |                 return | ||||||
|  |              | ||||||
|  |             new_centroids = np.array([o['centroid'] for o in group]) | ||||||
|  |  | ||||||
|  |             # compute the distance between each pair of tracked | ||||||
|  |             # centroids and new centroids, respectively -- our | ||||||
|  |             # goal will be to match each new centroid to an existing | ||||||
|  |             # object centroid | ||||||
|  |             D = dist.cdist(current_centroids, new_centroids) | ||||||
|  |  | ||||||
| # Maintains the frame and person with the highest score from the most recent |             # in order to perform this matching we must (1) find the | ||||||
| # motion event |             # smallest value in each row and then (2) sort the row | ||||||
| class BestPersonFrame(threading.Thread): |             # indexes based on their minimum values so that the row | ||||||
|     def __init__(self, objects_parsed, recent_frames, detected_objects): |             # with the smallest value is at the *front* of the index | ||||||
|         threading.Thread.__init__(self) |             # list | ||||||
|         self.objects_parsed = objects_parsed |             rows = D.min(axis=1).argsort() | ||||||
|         self.recent_frames = recent_frames |  | ||||||
|         self.detected_objects = detected_objects |  | ||||||
|         self.best_person = None |  | ||||||
|         self.best_frame = None |  | ||||||
|  |  | ||||||
|     def run(self): |             # next, we perform a similar process on the columns by | ||||||
|         while True: |             # finding the smallest value in each column and then | ||||||
|  |             # sorting using the previously computed row index list | ||||||
|  |             cols = D.argmin(axis=1)[rows] | ||||||
|  |  | ||||||
|             # wait until objects have been parsed |             # in order to determine if we need to update, register, | ||||||
|             with self.objects_parsed: |             # or deregister an object we need to keep track of which | ||||||
|                 self.objects_parsed.wait() |             # of the rows and column indexes we have already examined | ||||||
|  |             usedRows = set() | ||||||
|  |             usedCols = set() | ||||||
|  |  | ||||||
|             # make a copy of detected objects |             # loop over the combination of the (row, column) index | ||||||
|             detected_objects = self.detected_objects.copy() |             # tuples | ||||||
|             detected_people = [obj for obj in detected_objects if obj['name'] == 'person'] |             for (row, col) in zip(rows, cols): | ||||||
|  |                 # if we have already examined either the row or | ||||||
|  |                 # column value before, ignore it | ||||||
|  |                 if row in usedRows or col in usedCols: | ||||||
|  |                     continue | ||||||
|  |  | ||||||
|             # get the highest scoring person |                 # otherwise, grab the object ID for the current row, | ||||||
|             new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person) |                 # set its new centroid, and reset the disappeared | ||||||
|  |                 # counter | ||||||
|  |                 objectID = current_ids[row] | ||||||
|  |                 self.update(objectID, group[col]) | ||||||
|  |  | ||||||
|             # if there isnt a person, continue |                 # indicate that we have examined each of the row and | ||||||
|             if new_best_person is None: |                 # column indexes, respectively | ||||||
|                 continue |                 usedRows.add(row) | ||||||
|  |                 usedCols.add(col) | ||||||
|  |  | ||||||
|             # if there is no current best_person |             # compute the column index we have NOT yet examined | ||||||
|             if self.best_person is None: |             unusedRows = set(range(0, D.shape[0])).difference(usedRows) | ||||||
|                 self.best_person = new_best_person |             unusedCols = set(range(0, D.shape[1])).difference(usedCols) | ||||||
|             # if there is already a best_person |  | ||||||
|  |             # in the event that the number of object centroids is | ||||||
|  | 			# equal or greater than the number of input centroids | ||||||
|  | 			# we need to check and see if some of these objects have | ||||||
|  | 			# potentially disappeared | ||||||
|  |             if D.shape[0] >= D.shape[1]: | ||||||
|  |                 for row in unusedRows: | ||||||
|  |                     id = current_ids[row] | ||||||
|  |  | ||||||
|  |                     if self.disappeared[id] >= self.max_disappeared: | ||||||
|  |                         self.deregister(id) | ||||||
|  |                     else: | ||||||
|  |                         self.disappeared[id] += 1 | ||||||
|  |             # if the number of input centroids is greater | ||||||
|  |             # than the number of existing object centroids we need to | ||||||
|  |             # register each new input centroid as a trackable object | ||||||
|             else: |             else: | ||||||
|                 now = datetime.datetime.now().timestamp() |                 for col in unusedCols: | ||||||
|                 # if the new best person is a higher score than the current best person  |                     self.register(col, group[col]) | ||||||
|                 # or the current person is more than 1 minute old, use the new best person |  | ||||||
|                 if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60: |  | ||||||
|                     self.best_person = new_best_person |  | ||||||
|              |  | ||||||
|             # make a copy of the recent frames |  | ||||||
|             recent_frames = self.recent_frames.copy() |  | ||||||
|              |  | ||||||
|             if not self.best_person is None and self.best_person['frame_time'] in recent_frames: |  | ||||||
|                 best_frame = recent_frames[self.best_person['frame_time']] |  | ||||||
|                 best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB) |  | ||||||
|                 # draw the bounding box on the frame |  | ||||||
|                 vis_util.draw_bounding_box_on_image_array(best_frame, |  | ||||||
|                     self.best_person['ymin'], |  | ||||||
|                     self.best_person['xmin'], |  | ||||||
|                     self.best_person['ymax'], |  | ||||||
|                     self.best_person['xmax'], |  | ||||||
|                     color='red', |  | ||||||
|                     thickness=2, |  | ||||||
|                     display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))], |  | ||||||
|                     use_normalized_coordinates=False) |  | ||||||
|  |  | ||||||
|                 # convert back to BGR |  | ||||||
|                 self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR) |  | ||||||
|   | |||||||
							
								
								
									
										130
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										130
									
								
								frigate/util.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -1,5 +1,129 @@ | |||||||
|  | import datetime | ||||||
|  | import collections | ||||||
| import numpy as np | import numpy as np | ||||||
|  | import cv2 | ||||||
|  | import threading | ||||||
|  | import matplotlib.pyplot as plt | ||||||
|  |  | ||||||
| # convert shared memory array into numpy array | def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'): | ||||||
| def tonumpyarray(mp_arr): |     if color is None: | ||||||
|     return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8) |         color = (0,0,255) | ||||||
|  |     display_text = "{}: {}".format(label, info) | ||||||
|  |     cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness) | ||||||
|  |     font_scale = 0.5 | ||||||
|  |     font = cv2.FONT_HERSHEY_SIMPLEX | ||||||
|  |     # get the width and height of the text box | ||||||
|  |     size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2) | ||||||
|  |     text_width = size[0][0] | ||||||
|  |     text_height = size[0][1] | ||||||
|  |     line_height = text_height + size[1] | ||||||
|  |     # set the text start position | ||||||
|  |     if position == 'ul': | ||||||
|  |         text_offset_x = x_min | ||||||
|  |         text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) | ||||||
|  |     elif position == 'ur': | ||||||
|  |         text_offset_x = x_max - (text_width+8) | ||||||
|  |         text_offset_y = 0 if y_min < line_height else y_min - (line_height+8) | ||||||
|  |     elif position == 'bl': | ||||||
|  |         text_offset_x = x_min | ||||||
|  |         text_offset_y = y_max | ||||||
|  |     elif position == 'br': | ||||||
|  |         text_offset_x = x_max - (text_width+8) | ||||||
|  |         text_offset_y = y_max | ||||||
|  |     # make the coords of the box with a small padding of two pixels | ||||||
|  |     textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height)) | ||||||
|  |     cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED) | ||||||
|  |     cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2) | ||||||
|  |  | ||||||
|  | def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):     | ||||||
|  |     # size is larger than longest edge | ||||||
|  |     size = int(max(xmax-xmin, ymax-ymin)*multiplier) | ||||||
|  |     # if the size is too big to fit in the frame | ||||||
|  |     if size > min(frame_shape[0], frame_shape[1]): | ||||||
|  |         size = min(frame_shape[0], frame_shape[1]) | ||||||
|  |  | ||||||
|  |     # x_offset is midpoint of bounding box minus half the size | ||||||
|  |     x_offset = int((xmax-xmin)/2.0+xmin-size/2.0) | ||||||
|  |     # if outside the image | ||||||
|  |     if x_offset < 0: | ||||||
|  |         x_offset = 0 | ||||||
|  |     elif x_offset > (frame_shape[1]-size): | ||||||
|  |         x_offset = (frame_shape[1]-size) | ||||||
|  |  | ||||||
|  |     # y_offset is midpoint of bounding box minus half the size | ||||||
|  |     y_offset = int((ymax-ymin)/2.0+ymin-size/2.0) | ||||||
|  |     # if outside the image | ||||||
|  |     if y_offset < 0: | ||||||
|  |         y_offset = 0 | ||||||
|  |     elif y_offset > (frame_shape[0]-size): | ||||||
|  |         y_offset = (frame_shape[0]-size) | ||||||
|  |  | ||||||
|  |     return (x_offset, y_offset, x_offset+size, y_offset+size) | ||||||
|  |  | ||||||
|  | def intersection(box_a, box_b): | ||||||
|  |     return ( | ||||||
|  |         max(box_a[0], box_b[0]), | ||||||
|  |         max(box_a[1], box_b[1]), | ||||||
|  |         min(box_a[2], box_b[2]), | ||||||
|  |         min(box_a[3], box_b[3]) | ||||||
|  |     ) | ||||||
|  |  | ||||||
|  | def area(box): | ||||||
|  |     return (box[2]-box[0] + 1)*(box[3]-box[1] + 1) | ||||||
|  |      | ||||||
|  | def intersection_over_union(box_a, box_b): | ||||||
|  |     # determine the (x, y)-coordinates of the intersection rectangle | ||||||
|  |     intersect = intersection(box_a, box_b) | ||||||
|  |  | ||||||
|  |     # compute the area of intersection rectangle | ||||||
|  |     inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1) | ||||||
|  |  | ||||||
|  |     if inter_area == 0: | ||||||
|  |         return 0.0 | ||||||
|  |      | ||||||
|  |     # compute the area of both the prediction and ground-truth | ||||||
|  |     # rectangles | ||||||
|  |     box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1) | ||||||
|  |     box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1) | ||||||
|  |  | ||||||
|  |     # compute the intersection over union by taking the intersection | ||||||
|  |     # area and dividing it by the sum of prediction + ground-truth | ||||||
|  |     # areas - the interesection area | ||||||
|  |     iou = inter_area / float(box_a_area + box_b_area - inter_area) | ||||||
|  |  | ||||||
|  |     # return the intersection over union value | ||||||
|  |     return iou | ||||||
|  |  | ||||||
|  | def clipped(obj, frame_shape): | ||||||
|  |     # if the object is within 5 pixels of the region border, and the region is not on the edge | ||||||
|  |     # consider the object to be clipped | ||||||
|  |     box = obj[2] | ||||||
|  |     region = obj[4] | ||||||
|  |     if ((region[0] > 5 and box[0]-region[0] <= 5) or  | ||||||
|  |         (region[1] > 5 and box[1]-region[1] <= 5) or | ||||||
|  |         (frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or | ||||||
|  |         (frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)): | ||||||
|  |         return True | ||||||
|  |     else: | ||||||
|  |         return False | ||||||
|  |  | ||||||
|  | class EventsPerSecond: | ||||||
|  |     def __init__(self, max_events=1000): | ||||||
|  |         self._start = None | ||||||
|  |         self._max_events = max_events | ||||||
|  |         self._timestamps = [] | ||||||
|  |      | ||||||
|  |     def start(self): | ||||||
|  |         self._start = datetime.datetime.now().timestamp() | ||||||
|  |  | ||||||
|  |     def update(self): | ||||||
|  |         self._timestamps.append(datetime.datetime.now().timestamp()) | ||||||
|  |         # truncate the list when it goes 100 over the max_size | ||||||
|  |         if len(self._timestamps) > self._max_events+100: | ||||||
|  |             self._timestamps = self._timestamps[(1-self._max_events):] | ||||||
|  |  | ||||||
|  |     def eps(self, last_n_seconds=10): | ||||||
|  | 		# compute the (approximate) events in the last n seconds | ||||||
|  |         now = datetime.datetime.now().timestamp() | ||||||
|  |         seconds = min(now-self._start, last_n_seconds) | ||||||
|  |         return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds | ||||||
|   | |||||||
							
								
								
									
										591
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							
							
						
						
									
										591
									
								
								frigate/video.py
									
									
									
									
									
										
										
										Normal file → Executable file
									
								
							| @@ -2,267 +2,376 @@ import os | |||||||
| import time | import time | ||||||
| import datetime | import datetime | ||||||
| import cv2 | import cv2 | ||||||
|  | import queue | ||||||
| import threading | import threading | ||||||
| import ctypes | import ctypes | ||||||
| import multiprocessing as mp | import multiprocessing as mp | ||||||
| from object_detection.utils import visualization_utils as vis_util | import subprocess as sp | ||||||
| from . util import tonumpyarray | import numpy as np | ||||||
| from . object_detection import FramePrepper | import hashlib | ||||||
| from . objects import ObjectCleaner, BestPersonFrame | import pyarrow.plasma as plasma | ||||||
| from . mqtt import MqttObjectPublisher | import SharedArray as sa | ||||||
|  | import copy | ||||||
|  | import itertools | ||||||
|  | import json | ||||||
|  | from collections import defaultdict | ||||||
|  | from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond | ||||||
|  | from frigate.objects import ObjectTracker | ||||||
|  | from frigate.edgetpu import RemoteObjectDetector | ||||||
|  | from frigate.motion import MotionDetector | ||||||
|  |  | ||||||
| # fetch the frames as fast a possible and store current frame in a shared memory array | def get_frame_shape(source): | ||||||
| def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url): |     ffprobe_cmd = " ".join([ | ||||||
|     # convert shared memory array into numpy and shape into image array |         'ffprobe', | ||||||
|     arr = tonumpyarray(shared_arr).reshape(frame_shape) |         '-v', | ||||||
|  |         'panic', | ||||||
|  |         '-show_error', | ||||||
|  |         '-show_streams', | ||||||
|  |         '-of', | ||||||
|  |         'json', | ||||||
|  |         '"'+source+'"' | ||||||
|  |     ]) | ||||||
|  |     print(ffprobe_cmd) | ||||||
|  |     p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True) | ||||||
|  |     (output, err) = p.communicate() | ||||||
|  |     p_status = p.wait() | ||||||
|  |     info = json.loads(output) | ||||||
|  |     print(info) | ||||||
|  |  | ||||||
|     # start the video capture |     video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0] | ||||||
|     video = cv2.VideoCapture() |  | ||||||
|     video.open(rtsp_url) |  | ||||||
|     # keep the buffer small so we minimize old data |  | ||||||
|     video.set(cv2.CAP_PROP_BUFFERSIZE,1) |  | ||||||
|  |  | ||||||
|     bad_frame_counter = 0 |     if video_info['height'] != 0 and video_info['width'] != 0: | ||||||
|     while True: |         return (video_info['height'], video_info['width'], 3) | ||||||
|         # check if the video stream is still open, and reopen if needed |  | ||||||
|         if not video.isOpened(): |  | ||||||
|             success = video.open(rtsp_url) |  | ||||||
|             if not success: |  | ||||||
|                 time.sleep(1) |  | ||||||
|                 continue |  | ||||||
|         # grab the frame, but dont decode it yet |  | ||||||
|         ret = video.grab() |  | ||||||
|         # snapshot the time the frame was grabbed |  | ||||||
|         frame_time = datetime.datetime.now() |  | ||||||
|         if ret: |  | ||||||
|             # go ahead and decode the current frame |  | ||||||
|             ret, frame = video.retrieve() |  | ||||||
|             if ret: |  | ||||||
|                 # Lock access and update frame |  | ||||||
|                 with frame_lock: |  | ||||||
|                     arr[:] = frame |  | ||||||
|                     shared_frame_time.value = frame_time.timestamp() |  | ||||||
|                 # Notify with the condition that a new frame is ready |  | ||||||
|                 with frame_ready: |  | ||||||
|                     frame_ready.notify_all() |  | ||||||
|                 bad_frame_counter = 0 |  | ||||||
|             else: |  | ||||||
|                 print("Unable to decode frame") |  | ||||||
|                 bad_frame_counter += 1 |  | ||||||
|         else: |  | ||||||
|             print("Unable to grab a frame") |  | ||||||
|             bad_frame_counter += 1 |  | ||||||
|          |  | ||||||
|         if bad_frame_counter > 100: |  | ||||||
|             video.release() |  | ||||||
|      |      | ||||||
|     video.release() |     # fallback to using opencv if ffprobe didnt succeed | ||||||
|  |     video = cv2.VideoCapture(source) | ||||||
| # Stores 2 seconds worth of frames when motion is detected so they can be used for other threads |  | ||||||
| class FrameTracker(threading.Thread): |  | ||||||
|     def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames): |  | ||||||
|         threading.Thread.__init__(self) |  | ||||||
|         self.shared_frame = shared_frame |  | ||||||
|         self.frame_time = frame_time |  | ||||||
|         self.frame_ready = frame_ready |  | ||||||
|         self.frame_lock = frame_lock |  | ||||||
|         self.recent_frames = recent_frames |  | ||||||
|  |  | ||||||
|     def run(self): |  | ||||||
|         frame_time = 0.0 |  | ||||||
|         while True: |  | ||||||
|             now = datetime.datetime.now().timestamp() |  | ||||||
|             # wait for a frame |  | ||||||
|             with self.frame_ready: |  | ||||||
|                 # if there isnt a frame ready for processing or it is old, wait for a signal |  | ||||||
|                 if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5: |  | ||||||
|                     self.frame_ready.wait() |  | ||||||
|              |  | ||||||
|             # lock and make a copy of the frame |  | ||||||
|             with self.frame_lock:  |  | ||||||
|                 frame = self.shared_frame.copy() |  | ||||||
|                 frame_time = self.frame_time.value |  | ||||||
|              |  | ||||||
|             # add the frame to recent frames |  | ||||||
|             self.recent_frames[frame_time] = frame |  | ||||||
|  |  | ||||||
|             # delete any old frames |  | ||||||
|             stored_frame_times = list(self.recent_frames.keys()) |  | ||||||
|             for k in stored_frame_times: |  | ||||||
|                 if (now - k) > 2: |  | ||||||
|                     del self.recent_frames[k] |  | ||||||
|  |  | ||||||
| def get_frame_shape(rtsp_url): |  | ||||||
|     # capture a single frame and check the frame shape so the correct array |  | ||||||
|     # size can be allocated in memory |  | ||||||
|     video = cv2.VideoCapture(rtsp_url) |  | ||||||
|     ret, frame = video.read() |     ret, frame = video.read() | ||||||
|     frame_shape = frame.shape |     frame_shape = frame.shape | ||||||
|     video.release() |     video.release() | ||||||
|     return frame_shape |     return frame_shape | ||||||
|  |  | ||||||
| def get_rtsp_url(rtsp_config): | def get_ffmpeg_input(ffmpeg_input): | ||||||
|     if (rtsp_config['password'].startswith('$')): |     frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')} | ||||||
|         rtsp_config['password'] = os.getenv(rtsp_config['password'][1:]) |     return ffmpeg_input.format(**frigate_vars) | ||||||
|     return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],  |  | ||||||
|         rtsp_config['password'], rtsp_config['host'], rtsp_config['port'], |  | ||||||
|         rtsp_config['path']) |  | ||||||
|  |  | ||||||
| class Camera: | def filtered(obj, objects_to_track, object_filters, mask): | ||||||
|     def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix): |     object_name = obj[0] | ||||||
|         self.name = name |  | ||||||
|         self.config = config |  | ||||||
|         self.detected_objects = [] |  | ||||||
|         self.recent_frames = {} |  | ||||||
|         self.rtsp_url = get_rtsp_url(self.config['rtsp']) |  | ||||||
|         self.regions = self.config['regions'] |  | ||||||
|         self.frame_shape = get_frame_shape(self.rtsp_url) |  | ||||||
|         self.mqtt_client = mqtt_client |  | ||||||
|         self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name) |  | ||||||
|  |  | ||||||
|         # compute the flattened array length from the shape of the frame |     if not object_name in objects_to_track: | ||||||
|         flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2] |         return True | ||||||
|         # create shared array for storing the full frame image data |      | ||||||
|         self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length) |     if object_name in object_filters: | ||||||
|         # create shared value for storing the frame_time |         obj_settings = object_filters[object_name] | ||||||
|         self.shared_frame_time = mp.Value('d', 0.0) |  | ||||||
|         # Lock to control access to the frame |  | ||||||
|         self.frame_lock = mp.Lock() |  | ||||||
|         # Condition for notifying that a new frame is ready |  | ||||||
|         self.frame_ready = mp.Condition() |  | ||||||
|         # Condition for notifying that objects were parsed |  | ||||||
|         self.objects_parsed = mp.Condition() |  | ||||||
|  |  | ||||||
|         # shape current frame so it can be treated as a numpy image |         # if the min area is larger than the | ||||||
|         self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape) |         # detected object, don't add it to detected objects | ||||||
|  |         if obj_settings.get('min_area',-1) > obj[3]: | ||||||
|         # create the process to capture frames from the RTSP stream and store in a shared array |             return True | ||||||
|         self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,  |  | ||||||
|             self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url)) |  | ||||||
|         self.capture_process.daemon = True |  | ||||||
|  |  | ||||||
|         # for each region, create a separate thread to resize the region and prep for detection |  | ||||||
|         self.detection_prep_threads = [] |  | ||||||
|         for region in self.config['regions']: |  | ||||||
|             self.detection_prep_threads.append(FramePrepper( |  | ||||||
|                 self.name, |  | ||||||
|                 self.shared_frame_np, |  | ||||||
|                 self.shared_frame_time, |  | ||||||
|                 self.frame_ready, |  | ||||||
|                 self.frame_lock, |  | ||||||
|                 region['size'], region['x_offset'], region['y_offset'], |  | ||||||
|                 prepped_frame_queue |  | ||||||
|             )) |  | ||||||
|          |          | ||||||
|         # start a thread to store recent motion frames for processing |         # if the detected object is larger than the | ||||||
|         self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,  |         # max area, don't add it to detected objects | ||||||
|             self.frame_ready, self.frame_lock, self.recent_frames) |         if obj_settings.get('max_area', 24000000) < obj[3]: | ||||||
|         self.frame_tracker.start() |             return True | ||||||
|  |  | ||||||
|         # start a thread to store the highest scoring recent person frame |         # if the score is lower than the threshold, skip | ||||||
|         self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects) |         if obj_settings.get('threshold', 0) > obj[1]: | ||||||
|         self.best_person_frame.start() |             return True | ||||||
|  |  | ||||||
|         # start a thread to expire objects from the detected objects list |  | ||||||
|         self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects) |  | ||||||
|         self.object_cleaner.start() |  | ||||||
|  |  | ||||||
|         # start a thread to publish object scores (currently only person) |  | ||||||
|         mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects) |  | ||||||
|         mqtt_publisher.start() |  | ||||||
|  |  | ||||||
|         # load in the mask for person detection |  | ||||||
|         if 'mask' in self.config: |  | ||||||
|             self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE) |  | ||||||
|         else: |  | ||||||
|             self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8) |  | ||||||
|             self.mask[:] = 255 |  | ||||||
|      |      | ||||||
|     def start(self): |         # compute the coordinates of the object and make sure | ||||||
|         self.capture_process.start() |         # the location isnt outside the bounds of the image (can happen from rounding) | ||||||
|         # start the object detection prep threads |         y_location = min(int(obj[2][3]), len(mask)-1) | ||||||
|         for detection_prep_thread in self.detection_prep_threads: |         x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1) | ||||||
|             detection_prep_thread.start() |  | ||||||
|      |  | ||||||
|     def join(self): |  | ||||||
|         self.capture_process.join() |  | ||||||
|      |  | ||||||
|     def get_capture_pid(self): |  | ||||||
|         return self.capture_process.pid |  | ||||||
|      |  | ||||||
|     def add_objects(self, objects): |  | ||||||
|         if len(objects) == 0: |  | ||||||
|             return |  | ||||||
|  |  | ||||||
|         for obj in objects: |         # if the object is in a masked location, don't add it to detected objects | ||||||
|             if obj['name'] == 'person': |         if mask[y_location][x_location] == [0]: | ||||||
|                 person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin']) |             return True | ||||||
|                 # find the matching region |          | ||||||
|                 region = None |         return False | ||||||
|                 for r in self.regions: |  | ||||||
|                     if ( | def create_tensor_input(frame, region): | ||||||
|                             obj['xmin'] >= r['x_offset'] and |     cropped_frame = frame[region[1]:region[3], region[0]:region[2]] | ||||||
|                             obj['ymin'] >= r['y_offset'] and |  | ||||||
|                             obj['xmax'] <= r['x_offset']+r['size'] and |     # Resize to 300x300 if needed | ||||||
|                             obj['ymax'] <= r['y_offset']+r['size'] |     if cropped_frame.shape != (300, 300, 3): | ||||||
|                         ):  |         cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR) | ||||||
|                         region = r |      | ||||||
|                         break |     # Expand dimensions since the model expects images to have shape: [1, 300, 300, 3] | ||||||
|  |     return np.expand_dims(cropped_frame, axis=0) | ||||||
|  |  | ||||||
|  | def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None): | ||||||
|  |     if not ffmpeg_process is None: | ||||||
|  |         print("Terminating the existing ffmpeg process...") | ||||||
|  |         ffmpeg_process.terminate() | ||||||
|  |         try: | ||||||
|  |             print("Waiting for ffmpeg to exit gracefully...") | ||||||
|  |             ffmpeg_process.wait(timeout=30) | ||||||
|  |         except sp.TimeoutExpired: | ||||||
|  |             print("FFmpeg didnt exit. Force killing...") | ||||||
|  |             ffmpeg_process.kill() | ||||||
|  |             ffmpeg_process.wait() | ||||||
|  |  | ||||||
|  |     print("Creating ffmpeg process...") | ||||||
|  |     print(" ".join(ffmpeg_cmd)) | ||||||
|  |     return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10) | ||||||
|  |  | ||||||
|  | def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps): | ||||||
|  |     print(f"Starting process for {name}: {os.getpid()}") | ||||||
|  |  | ||||||
|  |     # Merge the ffmpeg config with the global config | ||||||
|  |     ffmpeg = config.get('ffmpeg', {}) | ||||||
|  |     ffmpeg_input = get_ffmpeg_input(ffmpeg['input']) | ||||||
|  |     ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args']) | ||||||
|  |     ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args']) | ||||||
|  |     ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args']) | ||||||
|  |     ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args']) | ||||||
|  |     ffmpeg_cmd = (['ffmpeg'] + | ||||||
|  |             ffmpeg_global_args + | ||||||
|  |             ffmpeg_hwaccel_args + | ||||||
|  |             ffmpeg_input_args + | ||||||
|  |             ['-i', ffmpeg_input] + | ||||||
|  |             ffmpeg_output_args + | ||||||
|  |             ['pipe:']) | ||||||
|  |  | ||||||
|  |     # Merge the tracked object config with the global config | ||||||
|  |     camera_objects_config = config.get('objects', {})     | ||||||
|  |     # combine tracked objects lists | ||||||
|  |     objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', [])) | ||||||
|  |     # merge object filters | ||||||
|  |     global_object_filters = global_objects_config.get('filters', {}) | ||||||
|  |     camera_object_filters = camera_objects_config.get('filters', {}) | ||||||
|  |     objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys()) | ||||||
|  |     object_filters = {} | ||||||
|  |     for obj in objects_with_config: | ||||||
|  |         object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})} | ||||||
|  |  | ||||||
|  |     expected_fps = config['fps'] | ||||||
|  |     take_frame = config.get('take_frame', 1) | ||||||
|  |  | ||||||
|  |     if 'width' in config and 'height' in config: | ||||||
|  |         frame_shape = (config['height'], config['width'], 3) | ||||||
|  |     else: | ||||||
|  |         frame_shape = get_frame_shape(ffmpeg_input) | ||||||
|  |  | ||||||
|  |     frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2] | ||||||
|  |  | ||||||
|  |     try: | ||||||
|  |         sa.delete(name) | ||||||
|  |     except: | ||||||
|  |         pass | ||||||
|  |  | ||||||
|  |     frame = sa.create(name, shape=frame_shape, dtype=np.uint8) | ||||||
|  |  | ||||||
|  |     # load in the mask for object detection | ||||||
|  |     if 'mask' in config: | ||||||
|  |         mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE) | ||||||
|  |     else: | ||||||
|  |         mask = None | ||||||
|  |  | ||||||
|  |     if mask is None: | ||||||
|  |         mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8) | ||||||
|  |         mask[:] = 255 | ||||||
|  |  | ||||||
|  |     motion_detector = MotionDetector(frame_shape, mask, resize_factor=6) | ||||||
|  |     object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue) | ||||||
|  |  | ||||||
|  |     object_tracker = ObjectTracker(10) | ||||||
|  |      | ||||||
|  |     ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size) | ||||||
|  |      | ||||||
|  |     plasma_client = plasma.connect("/tmp/plasma") | ||||||
|  |     frame_num = 0 | ||||||
|  |     avg_wait = 0.0 | ||||||
|  |     fps_tracker = EventsPerSecond() | ||||||
|  |     skipped_fps_tracker = EventsPerSecond() | ||||||
|  |     fps_tracker.start() | ||||||
|  |     skipped_fps_tracker.start() | ||||||
|  |     object_detector.fps.start() | ||||||
|  |     while True: | ||||||
|  |         start = datetime.datetime.now().timestamp() | ||||||
|  |         frame_bytes = ffmpeg_process.stdout.read(frame_size) | ||||||
|  |         duration = datetime.datetime.now().timestamp()-start | ||||||
|  |         avg_wait = (avg_wait*99+duration)/100 | ||||||
|  |  | ||||||
|  |         if not frame_bytes: | ||||||
|  |             rc = ffmpeg_process.poll() | ||||||
|  |             if rc is not None: | ||||||
|  |                 print(f"{name}: ffmpeg_process exited unexpectedly with {rc}") | ||||||
|  |                 ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process) | ||||||
|  |                 time.sleep(10) | ||||||
|  |             else: | ||||||
|  |                 print(f"{name}: ffmpeg_process is still running but didnt return any bytes") | ||||||
|  |             continue | ||||||
|  |  | ||||||
|  |         # limit frame rate | ||||||
|  |         frame_num += 1 | ||||||
|  |         if (frame_num % take_frame) != 0: | ||||||
|  |             continue | ||||||
|  |  | ||||||
|  |         fps_tracker.update() | ||||||
|  |         fps.value = fps_tracker.eps() | ||||||
|  |         detection_fps.value = object_detector.fps.eps() | ||||||
|  |  | ||||||
|  |         frame_time = datetime.datetime.now().timestamp() | ||||||
|  |          | ||||||
|  |         # Store frame in numpy array | ||||||
|  |         frame[:] = (np | ||||||
|  |                     .frombuffer(frame_bytes, np.uint8) | ||||||
|  |                     .reshape(frame_shape)) | ||||||
|  |          | ||||||
|  |         # look for motion | ||||||
|  |         motion_boxes = motion_detector.detect(frame) | ||||||
|  |  | ||||||
|  |         # skip object detection if we are below the min_fps and wait time is less than half the average | ||||||
|  |         if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait: | ||||||
|  |             skipped_fps_tracker.update() | ||||||
|  |             skipped_fps.value = skipped_fps_tracker.eps() | ||||||
|  |             continue | ||||||
|  |          | ||||||
|  |         skipped_fps.value = skipped_fps_tracker.eps() | ||||||
|  |  | ||||||
|  |         tracked_objects = object_tracker.tracked_objects.values() | ||||||
|  |  | ||||||
|  |         # merge areas of motion that intersect with a known tracked object into a single area to look at | ||||||
|  |         areas_of_interest = [] | ||||||
|  |         used_motion_boxes = [] | ||||||
|  |         for obj in tracked_objects: | ||||||
|  |             x_min, y_min, x_max, y_max = obj['box'] | ||||||
|  |             for m_index, motion_box in enumerate(motion_boxes): | ||||||
|  |                 if area(intersection(obj['box'], motion_box))/area(motion_box) > .5: | ||||||
|  |                     used_motion_boxes.append(m_index) | ||||||
|  |                     x_min = min(obj['box'][0], motion_box[0]) | ||||||
|  |                     y_min = min(obj['box'][1], motion_box[1]) | ||||||
|  |                     x_max = max(obj['box'][2], motion_box[2]) | ||||||
|  |                     y_max = max(obj['box'][3], motion_box[3]) | ||||||
|  |             areas_of_interest.append((x_min, y_min, x_max, y_max)) | ||||||
|  |         unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes) | ||||||
|  |          | ||||||
|  |         # compute motion regions | ||||||
|  |         motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2) | ||||||
|  |             for i in unused_motion_boxes] | ||||||
|  |          | ||||||
|  |         # compute tracked object regions | ||||||
|  |         object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2) | ||||||
|  |             for a in areas_of_interest] | ||||||
|  |          | ||||||
|  |         # merge regions with high IOU | ||||||
|  |         merged_regions = motion_regions+object_regions | ||||||
|  |         while True: | ||||||
|  |             max_iou = 0.0 | ||||||
|  |             max_indices = None | ||||||
|  |             region_indices = range(len(merged_regions)) | ||||||
|  |             for a, b in itertools.combinations(region_indices, 2): | ||||||
|  |                 iou = intersection_over_union(merged_regions[a], merged_regions[b]) | ||||||
|  |                 if iou > max_iou: | ||||||
|  |                     max_iou = iou | ||||||
|  |                     max_indices = (a, b) | ||||||
|  |             if max_iou > 0.1: | ||||||
|  |                 a = merged_regions[max_indices[0]] | ||||||
|  |                 b = merged_regions[max_indices[1]] | ||||||
|  |                 merged_regions.append(calculate_region(frame_shape, | ||||||
|  |                     min(a[0], b[0]), | ||||||
|  |                     min(a[1], b[1]), | ||||||
|  |                     max(a[2], b[2]), | ||||||
|  |                     max(a[3], b[3]), | ||||||
|  |                     1 | ||||||
|  |                 )) | ||||||
|  |                 del merged_regions[max(max_indices[0], max_indices[1])] | ||||||
|  |                 del merged_regions[min(max_indices[0], max_indices[1])] | ||||||
|  |             else: | ||||||
|  |                 break | ||||||
|  |  | ||||||
|  |         # resize regions and detect | ||||||
|  |         detections = [] | ||||||
|  |         for region in merged_regions: | ||||||
|  |  | ||||||
|  |             tensor_input = create_tensor_input(frame, region) | ||||||
|  |  | ||||||
|  |             region_detections = object_detector.detect(tensor_input) | ||||||
|  |  | ||||||
|  |             for d in region_detections: | ||||||
|  |                 box = d[2] | ||||||
|  |                 size = region[2]-region[0] | ||||||
|  |                 x_min = int((box[1] * size) + region[0]) | ||||||
|  |                 y_min = int((box[0] * size) + region[1]) | ||||||
|  |                 x_max = int((box[3] * size) + region[0]) | ||||||
|  |                 y_max = int((box[2] * size) + region[1]) | ||||||
|  |                 det = (d[0], | ||||||
|  |                     d[1], | ||||||
|  |                     (x_min, y_min, x_max, y_max), | ||||||
|  |                     (x_max-x_min)*(y_max-y_min), | ||||||
|  |                     region) | ||||||
|  |                 if filtered(det, objects_to_track, object_filters, mask): | ||||||
|  |                     continue | ||||||
|  |                 detections.append(det) | ||||||
|  |  | ||||||
|  |         ######### | ||||||
|  |         # merge objects, check for clipped objects and look again up to N times | ||||||
|  |         ######### | ||||||
|  |         refining = True | ||||||
|  |         refine_count = 0 | ||||||
|  |         while refining and refine_count < 4: | ||||||
|  |             refining = False | ||||||
|  |  | ||||||
|  |             # group by name | ||||||
|  |             detected_object_groups = defaultdict(lambda: []) | ||||||
|  |             for detection in detections: | ||||||
|  |                 detected_object_groups[detection[0]].append(detection) | ||||||
|  |  | ||||||
|  |             selected_objects = [] | ||||||
|  |             for group in detected_object_groups.values(): | ||||||
|  |  | ||||||
|  |                 # apply non-maxima suppression to suppress weak, overlapping bounding boxes | ||||||
|  |                 boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1]) | ||||||
|  |                     for o in group] | ||||||
|  |                 confidences = [o[1] for o in group] | ||||||
|  |                 idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4) | ||||||
|  |  | ||||||
|  |                 for index in idxs: | ||||||
|  |                     obj = group[index[0]] | ||||||
|  |                     if clipped(obj, frame_shape): #obj['clipped']: | ||||||
|  |                         box = obj[2] | ||||||
|  |                         # calculate a new region that will hopefully get the entire object | ||||||
|  |                         region = calculate_region(frame_shape,  | ||||||
|  |                             box[0], box[1], | ||||||
|  |                             box[2], box[3]) | ||||||
|  |                          | ||||||
|  |                         tensor_input = create_tensor_input(frame, region) | ||||||
|  |                         # run detection on new region | ||||||
|  |                         refined_detections = object_detector.detect(tensor_input) | ||||||
|  |                         for d in refined_detections: | ||||||
|  |                             box = d[2] | ||||||
|  |                             size = region[2]-region[0] | ||||||
|  |                             x_min = int((box[1] * size) + region[0]) | ||||||
|  |                             y_min = int((box[0] * size) + region[1]) | ||||||
|  |                             x_max = int((box[3] * size) + region[0]) | ||||||
|  |                             y_max = int((box[2] * size) + region[1]) | ||||||
|  |                             det = (d[0], | ||||||
|  |                                 d[1], | ||||||
|  |                                 (x_min, y_min, x_max, y_max), | ||||||
|  |                                 (x_max-x_min)*(y_max-y_min), | ||||||
|  |                                 region) | ||||||
|  |                             if filtered(det, objects_to_track, object_filters, mask): | ||||||
|  |                                 continue | ||||||
|  |                             selected_objects.append(det) | ||||||
|  |  | ||||||
|  |                         refining = True | ||||||
|  |                     else: | ||||||
|  |                         selected_objects.append(obj) | ||||||
|                  |                  | ||||||
|                 # if the min person area is larger than the |             # set the detections list to only include top, complete objects | ||||||
|                 # detected person, don't add it to detected objects |             # and new detections | ||||||
|                 if region and region['min_person_area'] > person_area: |             detections = selected_objects | ||||||
|                     continue |  | ||||||
|              |  | ||||||
|                 # compute the coordinates of the person and make sure |  | ||||||
|                 # the location isnt outide the bounds of the image (can happen from rounding) |  | ||||||
|                 y_location = min(int(obj['ymax']), len(self.mask)-1) |  | ||||||
|                 x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1) |  | ||||||
|  |  | ||||||
|                 # if the person is in a masked location, continue |             if refining: | ||||||
|                 if self.mask[y_location][x_location] == [0]: |                 refine_count += 1 | ||||||
|                     continue |          | ||||||
|  |         # now that we have refined our detections, we need to track objects | ||||||
|  |         object_tracker.match_and_update(frame_time, detections) | ||||||
|  |  | ||||||
|             self.detected_objects.append(obj) |         # put the frame in the plasma store | ||||||
|  |         object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest() | ||||||
|  |         plasma_client.put(frame, plasma.ObjectID(object_id)) | ||||||
|  |         # add to the queue | ||||||
|  |         detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects)) | ||||||
|  |  | ||||||
|         with self.objects_parsed: |     print(f"{name}: exiting subprocess") | ||||||
|             self.objects_parsed.notify_all() |  | ||||||
|  |  | ||||||
|     def get_best_person(self): |  | ||||||
|         return self.best_person_frame.best_frame |  | ||||||
|      |  | ||||||
|     def get_current_frame_with_objects(self): |  | ||||||
|         # make a copy of the current detected objects |  | ||||||
|         detected_objects = self.detected_objects.copy() |  | ||||||
|         # lock and make a copy of the current frame |  | ||||||
|         with self.frame_lock: |  | ||||||
|             frame = self.shared_frame_np.copy() |  | ||||||
|  |  | ||||||
|         # convert to RGB for drawing |  | ||||||
|         frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB) |  | ||||||
|         # draw the bounding boxes on the screen |  | ||||||
|         for obj in detected_objects: |  | ||||||
|             vis_util.draw_bounding_box_on_image_array(frame, |  | ||||||
|                 obj['ymin'], |  | ||||||
|                 obj['xmin'], |  | ||||||
|                 obj['ymax'], |  | ||||||
|                 obj['xmax'], |  | ||||||
|                 color='red', |  | ||||||
|                 thickness=2, |  | ||||||
|                 display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))], |  | ||||||
|                 use_normalized_coordinates=False) |  | ||||||
|  |  | ||||||
|         for region in self.regions: |  | ||||||
|             color = (255,255,255) |  | ||||||
|             cv2.rectangle(frame, (region['x_offset'], region['y_offset']),  |  | ||||||
|                 (region['x_offset']+region['size'], region['y_offset']+region['size']),  |  | ||||||
|                 color, 2) |  | ||||||
|  |  | ||||||
|         # convert back to BGR |  | ||||||
|         frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR) |  | ||||||
|  |  | ||||||
|         return frame |  | ||||||
|  |  | ||||||
|  |  | ||||||
|      |  | ||||||
|          |  | ||||||
		Reference in New Issue
	
	Block a user