mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-11-01 11:32:55 +08:00
Compare commits
132 Commits
v0.1.1
...
v0.5.0-rc5
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
30ad0e30f8 | ||
|
|
7bad89c9bf | ||
|
|
f077c397f4 | ||
|
|
cc729d83a8 | ||
|
|
c520b81e49 | ||
|
|
9c304391c0 | ||
|
|
9a12b02d22 | ||
|
|
7686c510b3 | ||
|
|
2f5e322d3c | ||
|
|
1cd4c12104 | ||
|
|
1a8b034685 | ||
|
|
da6dc03a57 | ||
|
|
7fa3b70d2d | ||
|
|
1fc5a2bfd4 | ||
|
|
7e84da7dad | ||
|
|
128be72e28 | ||
|
|
aaddedc95c | ||
|
|
ba919fb439 | ||
|
|
b1d563f3c4 | ||
|
|
204d8af5df | ||
|
|
b507a73d79 | ||
|
|
66eeb8b5cb | ||
|
|
efa67067c6 | ||
|
|
aeb036f1a4 | ||
|
|
74c528f9dc | ||
|
|
f2d54bec43 | ||
|
|
f07d57741e | ||
|
|
2c1ec19f98 | ||
|
|
6a9027c002 | ||
|
|
60c15e4419 | ||
|
|
03dbf600aa | ||
|
|
fbbb79b31b | ||
|
|
496c6bc6c4 | ||
|
|
869a81c944 | ||
|
|
5b1884cfb3 | ||
|
|
cd057370e1 | ||
|
|
6263912655 | ||
|
|
af247275cf | ||
|
|
1198c29dac | ||
|
|
169603d3ff | ||
|
|
dc7eecebc6 | ||
|
|
0dd4087d5d | ||
|
|
6ecf87fc60 | ||
|
|
ebcf1482f8 | ||
|
|
50bcf60893 | ||
|
|
38efbd63ea | ||
|
|
50bcad8b77 | ||
|
|
cfffb219ae | ||
|
|
382d7be50a | ||
|
|
f43dc36a37 | ||
|
|
38e7fa07d2 | ||
|
|
e261c20819 | ||
|
|
3a66e672d3 | ||
|
|
2aada930e3 | ||
|
|
d87f4407a0 | ||
|
|
be5a114f6a | ||
|
|
32b212c7b6 | ||
|
|
76c8e3a12f | ||
|
|
16f7a361c3 | ||
|
|
634b87307f | ||
|
|
1d4fbbdba3 | ||
|
|
65579e9cbf | ||
|
|
49dc029c43 | ||
|
|
08174d8db2 | ||
|
|
5199242a68 | ||
|
|
725dd3220c | ||
|
|
10dc56f6ea | ||
|
|
cc2abe93a6 | ||
|
|
0c6717090c | ||
|
|
f5a2252b29 | ||
|
|
02efb6f415 | ||
|
|
5b4c6e50bc | ||
|
|
9cc46a71cb | ||
|
|
be1673b00a | ||
|
|
b6130e77ff | ||
|
|
4180c710cd | ||
|
|
ab3e70b4db | ||
|
|
d90e408d50 | ||
|
|
6c87ce0879 | ||
|
|
b7b4e38f62 | ||
|
|
480175d70f | ||
|
|
bee99ca6ff | ||
|
|
5c01720567 | ||
|
|
262f45c8bc | ||
|
|
22bb17b2fd | ||
|
|
3a3afe14bf | ||
|
|
01f058a482 | ||
|
|
d899ef158e | ||
|
|
39d64f7ba7 | ||
|
|
f148eb5a7b | ||
|
|
297e2f1c0c | ||
|
|
e818744d81 | ||
|
|
ceedfae993 | ||
|
|
e13563770d | ||
|
|
a659019d1a | ||
|
|
ba71927d53 | ||
|
|
04fed31eac | ||
|
|
ebaa8fac01 | ||
|
|
2ec45cd1b6 | ||
|
|
700bd1e3ef | ||
|
|
c9e9f7a735 | ||
|
|
aea4dc8724 | ||
|
|
12d5007b90 | ||
|
|
8970e73f75 | ||
|
|
1ba006b24f | ||
|
|
4a58f16637 | ||
|
|
436b876b24 | ||
|
|
a770ab7f69 | ||
|
|
806acaf445 | ||
|
|
c653567cc1 | ||
|
|
8fee8f86a2 | ||
|
|
59a4b0e650 | ||
|
|
834a3df0bc | ||
|
|
c41b104997 | ||
|
|
7028b05856 | ||
|
|
2d22a04391 | ||
|
|
baa587028b | ||
|
|
2b51dc3e5b | ||
|
|
9f8278ea8f | ||
|
|
56b9c754f5 | ||
|
|
5c4f5ef3f0 | ||
|
|
8c924896c5 | ||
|
|
2c2f0044b9 | ||
|
|
874e9085a7 | ||
|
|
e791d6646b | ||
|
|
3019b0218c | ||
|
|
6900e140d5 | ||
|
|
911c1b2bfa | ||
|
|
f4587462cf | ||
|
|
cac1faa8ac | ||
|
|
9525bae5a3 | ||
|
|
dbcfd109f6 |
@@ -1 +1,6 @@
|
|||||||
README.md
|
README.md
|
||||||
|
diagram.png
|
||||||
|
.gitignore
|
||||||
|
debug
|
||||||
|
config/
|
||||||
|
*.pyc
|
||||||
1
.github/FUNDING.yml
vendored
Normal file
1
.github/FUNDING.yml
vendored
Normal file
@@ -0,0 +1 @@
|
|||||||
|
github: blakeblackshear
|
||||||
2
.gitignore
vendored
2
.gitignore
vendored
@@ -1,2 +1,4 @@
|
|||||||
*.pyc
|
*.pyc
|
||||||
debug
|
debug
|
||||||
|
.vscode
|
||||||
|
config/config.yml
|
||||||
153
Dockerfile
Normal file → Executable file
153
Dockerfile
Normal file → Executable file
@@ -1,107 +1,60 @@
|
|||||||
FROM ubuntu:16.04
|
FROM ubuntu:18.04
|
||||||
|
LABEL maintainer "blakeb@blakeshome.com"
|
||||||
|
|
||||||
# Install system packages
|
ENV DEBIAN_FRONTEND=noninteractive
|
||||||
RUN apt-get -qq update && apt-get -qq install --no-install-recommends -y python3 \
|
# Install packages for apt repo
|
||||||
python3-dev \
|
RUN apt -qq update && apt -qq install --no-install-recommends -y \
|
||||||
python-pil \
|
software-properties-common \
|
||||||
python-lxml \
|
# apt-transport-https ca-certificates \
|
||||||
python-tk \
|
build-essential \
|
||||||
build-essential \
|
gnupg wget unzip \
|
||||||
cmake \
|
# libcap-dev \
|
||||||
git \
|
&& add-apt-repository ppa:deadsnakes/ppa -y \
|
||||||
libgtk2.0-dev \
|
&& apt -qq install --no-install-recommends -y \
|
||||||
pkg-config \
|
python3.7 \
|
||||||
libavcodec-dev \
|
python3.7-dev \
|
||||||
libavformat-dev \
|
python3-pip \
|
||||||
libswscale-dev \
|
ffmpeg \
|
||||||
libtbb2 \
|
# VAAPI drivers for Intel hardware accel
|
||||||
libtbb-dev \
|
libva-drm2 libva2 i965-va-driver vainfo \
|
||||||
libjpeg-dev \
|
&& python3.7 -m pip install -U wheel setuptools \
|
||||||
libpng-dev \
|
&& python3.7 -m pip install -U \
|
||||||
libtiff-dev \
|
opencv-python-headless \
|
||||||
libjasper-dev \
|
# python-prctl \
|
||||||
libdc1394-22-dev \
|
numpy \
|
||||||
x11-apps \
|
imutils \
|
||||||
wget \
|
scipy \
|
||||||
vim \
|
&& python3.7 -m pip install -U \
|
||||||
ffmpeg \
|
SharedArray \
|
||||||
unzip \
|
Flask \
|
||||||
libusb-1.0-0-dev \
|
paho-mqtt \
|
||||||
python3-setuptools \
|
PyYAML \
|
||||||
python3-numpy \
|
matplotlib \
|
||||||
zlib1g-dev \
|
pyarrow \
|
||||||
libgoogle-glog-dev \
|
&& echo "deb https://packages.cloud.google.com/apt coral-edgetpu-stable main" > /etc/apt/sources.list.d/coral-edgetpu.list \
|
||||||
swig \
|
&& wget -q -O - https://packages.cloud.google.com/apt/doc/apt-key.gpg | apt-key add - \
|
||||||
libunwind-dev \
|
&& apt -qq update \
|
||||||
libc++-dev \
|
&& echo "libedgetpu1-max libedgetpu/accepted-eula boolean true" | debconf-set-selections \
|
||||||
libc++abi-dev \
|
&& apt -qq install --no-install-recommends -y \
|
||||||
build-essential \
|
libedgetpu1-max \
|
||||||
&& rm -rf /var/lib/apt/lists/*
|
## Tensorflow lite (python 3.7 only)
|
||||||
|
&& wget -q https://dl.google.com/coral/python/tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||||
|
&& python3.7 -m pip install tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||||
|
&& rm tflite_runtime-2.1.0-cp37-cp37m-linux_x86_64.whl \
|
||||||
|
&& rm -rf /var/lib/apt/lists/* \
|
||||||
|
&& (apt-get autoremove -y; apt-get autoclean -y)
|
||||||
|
|
||||||
# Install core packages
|
# get model and labels
|
||||||
RUN wget -q -O /tmp/get-pip.py --no-check-certificate https://bootstrap.pypa.io/get-pip.py && python3 /tmp/get-pip.py
|
RUN wget -q https://github.com/google-coral/edgetpu/raw/master/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite -O /edgetpu_model.tflite --trust-server-names
|
||||||
RUN pip install -U pip \
|
RUN wget -q https://dl.google.com/coral/canned_models/coco_labels.txt -O /labelmap.txt --trust-server-names
|
||||||
numpy \
|
RUN wget -q https://storage.googleapis.com/download.tensorflow.org/models/tflite/coco_ssd_mobilenet_v1_1.0_quant_2018_06_29.zip -O /cpu_model.zip && \
|
||||||
pillow \
|
unzip /cpu_model.zip detect.tflite -d / && \
|
||||||
matplotlib \
|
mv /detect.tflite /cpu_model.tflite && \
|
||||||
notebook \
|
rm /cpu_model.zip
|
||||||
Flask \
|
|
||||||
imutils \
|
|
||||||
paho-mqtt \
|
|
||||||
PyYAML
|
|
||||||
|
|
||||||
# Install tensorflow models object detection
|
|
||||||
RUN GIT_SSL_NO_VERIFY=true git clone -q https://github.com/tensorflow/models /usr/local/lib/python3.5/dist-packages/tensorflow/models
|
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/google/protobuf/releases/download/v3.5.1/protobuf-python-3.5.1.tar.gz
|
|
||||||
|
|
||||||
# Download & build protobuf-python
|
|
||||||
RUN cd /usr/local/src/ \
|
|
||||||
&& tar xf protobuf-python-3.5.1.tar.gz \
|
|
||||||
&& rm protobuf-python-3.5.1.tar.gz \
|
|
||||||
&& cd /usr/local/src/protobuf-3.5.1/ \
|
|
||||||
&& ./configure \
|
|
||||||
&& make \
|
|
||||||
&& make install \
|
|
||||||
&& ldconfig \
|
|
||||||
&& rm -rf /usr/local/src/protobuf-3.5.1/
|
|
||||||
|
|
||||||
# Download & build OpenCV
|
|
||||||
RUN wget -q -P /usr/local/src/ --no-check-certificate https://github.com/opencv/opencv/archive/4.0.1.zip
|
|
||||||
RUN cd /usr/local/src/ \
|
|
||||||
&& unzip 4.0.1.zip \
|
|
||||||
&& rm 4.0.1.zip \
|
|
||||||
&& cd /usr/local/src/opencv-4.0.1/ \
|
|
||||||
&& mkdir build \
|
|
||||||
&& cd /usr/local/src/opencv-4.0.1/build \
|
|
||||||
&& cmake -D CMAKE_INSTALL_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local/ .. \
|
|
||||||
&& make -j4 \
|
|
||||||
&& make install \
|
|
||||||
&& rm -rf /usr/local/src/opencv-4.0.1
|
|
||||||
|
|
||||||
# Download and install EdgeTPU libraries
|
|
||||||
RUN wget -q -O edgetpu_api.tar.gz --no-check-certificate http://storage.googleapis.com/cloud-iot-edge-pretrained-models/edgetpu_api.tar.gz
|
|
||||||
|
|
||||||
RUN tar xzf edgetpu_api.tar.gz \
|
|
||||||
&& cd python-tflite-source \
|
|
||||||
&& cp -p libedgetpu/libedgetpu_x86_64.so /lib/x86_64-linux-gnu/libedgetpu.so \
|
|
||||||
&& cp edgetpu/swig/compiled_so/_edgetpu_cpp_wrapper_x86_64.so edgetpu/swig/_edgetpu_cpp_wrapper.so \
|
|
||||||
&& cp edgetpu/swig/compiled_so/edgetpu_cpp_wrapper.py edgetpu/swig/ \
|
|
||||||
&& python3 setup.py develop --user
|
|
||||||
|
|
||||||
# Minimize image size
|
|
||||||
RUN (apt-get autoremove -y; \
|
|
||||||
apt-get autoclean -y)
|
|
||||||
|
|
||||||
# symlink the model and labels
|
|
||||||
RUN ln -s /python-tflite-source/edgetpu/test_data/mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite /frozen_inference_graph.pb
|
|
||||||
RUN ln -s /python-tflite-source/edgetpu/test_data/coco_labels.txt /label_map.pbtext
|
|
||||||
|
|
||||||
# Set TF object detection available
|
|
||||||
ENV PYTHONPATH "$PYTHONPATH:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research:/usr/local/lib/python3.5/dist-packages/tensorflow/models/research/slim"
|
|
||||||
RUN cd /usr/local/lib/python3.5/dist-packages/tensorflow/models/research && protoc object_detection/protos/*.proto --python_out=.
|
|
||||||
|
|
||||||
WORKDIR /opt/frigate/
|
WORKDIR /opt/frigate/
|
||||||
ADD frigate frigate/
|
ADD frigate frigate/
|
||||||
COPY detect_objects.py .
|
COPY detect_objects.py .
|
||||||
|
COPY benchmark.py .
|
||||||
|
|
||||||
CMD ["python3", "-u", "detect_objects.py"]
|
CMD ["python3.7", "-u", "detect_objects.py"]
|
||||||
|
|||||||
124
README.md
124
README.md
@@ -1,14 +1,13 @@
|
|||||||
# Frigate - Realtime Object Detection for RTSP Cameras
|
# Frigate - Realtime Object Detection for IP Cameras
|
||||||
**Note:** This version requires the use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/)
|
Uses OpenCV and Tensorflow to perform realtime object detection locally for IP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
||||||
|
|
||||||
Uses OpenCV and Tensorflow to perform realtime object detection locally for RTSP cameras. Designed for integration with HomeAssistant or others via MQTT.
|
Use of a [Google Coral USB Accelerator](https://coral.withgoogle.com/products/accelerator/) is optional, but highly recommended. On my Intel i7 processor, I can process 2-3 FPS with the CPU. The Coral can process 100+ FPS with very low CPU load.
|
||||||
|
|
||||||
- Leverages multiprocessing and threads heavily with an emphasis on realtime over processing every frame
|
- Leverages multiprocessing heavily with an emphasis on realtime over processing every frame
|
||||||
- Allows you to define specific regions (squares) in the image to look for objects
|
- Uses a very low overhead motion detection to determine where to run object detection
|
||||||
- No motion detection (for now)
|
- Object detection with Tensorflow runs in a separate process
|
||||||
- Object detection with Tensorflow runs in a separate thread
|
|
||||||
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
|
- Object info is published over MQTT for integration into HomeAssistant as a binary sensor
|
||||||
- An endpoint is available to view an MJPEG stream for debugging
|
- An endpoint is available to view an MJPEG stream for debugging, but should not be used continuously
|
||||||
|
|
||||||

|

|
||||||
|
|
||||||
@@ -22,77 +21,112 @@ Build the container with
|
|||||||
docker build -t frigate .
|
docker build -t frigate .
|
||||||
```
|
```
|
||||||
|
|
||||||
The `mobilenet_ssd_v2_coco_quant_postprocess_edgetpu.tflite` model is included and used by default. You can use your own model and labels by mounting files in the container at `/frozen_inference_graph.pb` and `/label_map.pbtext`. Models must be compatible with the Coral according to [this](https://coral.withgoogle.com/models/).
|
Models for both CPU and EdgeTPU (Coral) are bundled in the image. You can use your own models with volume mounts:
|
||||||
|
- CPU Model: `/cpu_model.tflite`
|
||||||
|
- EdgeTPU Model: `/edgetpu_model.tflite`
|
||||||
|
- Labels: `/labelmap.txt`
|
||||||
|
|
||||||
Run the container with
|
Run the container with
|
||||||
```
|
```bash
|
||||||
docker run --rm \
|
docker run --rm \
|
||||||
--privileged \
|
--privileged \
|
||||||
|
--shm-size=512m \ # should work for a 2-3 cameras
|
||||||
-v /dev/bus/usb:/dev/bus/usb \
|
-v /dev/bus/usb:/dev/bus/usb \
|
||||||
-v <path_to_config_dir>:/config:ro \
|
-v <path_to_config_dir>:/config:ro \
|
||||||
|
-v /etc/localtime:/etc/localtime:ro \
|
||||||
-p 5000:5000 \
|
-p 5000:5000 \
|
||||||
-e RTSP_PASSWORD='password' \
|
-e FRIGATE_RTSP_PASSWORD='password' \
|
||||||
frigate:latest
|
frigate:latest
|
||||||
```
|
```
|
||||||
|
|
||||||
Example docker-compose:
|
Example docker-compose:
|
||||||
```
|
```yaml
|
||||||
frigate:
|
frigate:
|
||||||
container_name: frigate
|
container_name: frigate
|
||||||
restart: unless-stopped
|
restart: unless-stopped
|
||||||
privileged: true
|
privileged: true
|
||||||
|
shm_size: '1g' # should work for 5-7 cameras
|
||||||
image: frigate:latest
|
image: frigate:latest
|
||||||
volumes:
|
volumes:
|
||||||
- /dev/bus/usb:/dev/bus/usb
|
- /dev/bus/usb:/dev/bus/usb
|
||||||
|
- /etc/localtime:/etc/localtime:ro
|
||||||
- <path_to_config>:/config
|
- <path_to_config>:/config
|
||||||
ports:
|
ports:
|
||||||
- "5000:5000"
|
- "5000:5000"
|
||||||
environment:
|
environment:
|
||||||
RTSP_PASSWORD: "password"
|
FRIGATE_RTSP_PASSWORD: "password"
|
||||||
```
|
```
|
||||||
|
|
||||||
A `config.yml` file must exist in the `config` directory. See example [here](config/config.yml).
|
A `config.yml` file must exist in the `config` directory. See example [here](config/config.example.yml) and device specific info can be found [here](docs/DEVICES.md).
|
||||||
|
|
||||||
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best person snapshot at `http://localhost:5000/<camera_name>/best_person.jpg`
|
Access the mjpeg stream at `http://localhost:5000/<camera_name>` and the best snapshot for any object type with at `http://localhost:5000/<camera_name>/<object_name>/best.jpg`
|
||||||
|
|
||||||
|
Debug info is available at `http://localhost:5000/debug/stats`
|
||||||
|
|
||||||
## Integration with HomeAssistant
|
## Integration with HomeAssistant
|
||||||
```
|
```
|
||||||
camera:
|
camera:
|
||||||
- name: Camera Last Person
|
- name: Camera Last Person
|
||||||
platform: generic
|
platform: mqtt
|
||||||
still_image_url: http://<ip>:5000/<camera_name>/best_person.jpg
|
topic: frigate/<camera_name>/person/snapshot
|
||||||
|
- name: Camera Last Car
|
||||||
|
platform: mqtt
|
||||||
|
topic: frigate/<camera_name>/car/snapshot
|
||||||
|
|
||||||
sensor:
|
binary_sensor:
|
||||||
- name: Camera Person
|
- name: Camera Person
|
||||||
platform: mqtt
|
platform: mqtt
|
||||||
state_topic: "frigate/<camera_name>/objects"
|
state_topic: "frigate/<camera_name>/person"
|
||||||
value_template: '{{ value_json.person }}'
|
device_class: motion
|
||||||
device_class: moving
|
|
||||||
availability_topic: "frigate/available"
|
availability_topic: "frigate/available"
|
||||||
|
|
||||||
|
automation:
|
||||||
|
- alias: Alert me if a person is detected while armed away
|
||||||
|
trigger:
|
||||||
|
platform: state
|
||||||
|
entity_id: binary_sensor.camera_person
|
||||||
|
from: 'off'
|
||||||
|
to: 'on'
|
||||||
|
condition:
|
||||||
|
- condition: state
|
||||||
|
entity_id: alarm_control_panel.home_alarm
|
||||||
|
state: armed_away
|
||||||
|
action:
|
||||||
|
- service: notify.user_telegram
|
||||||
|
data:
|
||||||
|
message: "A person was detected."
|
||||||
|
data:
|
||||||
|
photo:
|
||||||
|
- url: http://<ip>:5000/<camera_name>/person/best.jpg
|
||||||
|
caption: A person was detected.
|
||||||
|
|
||||||
|
sensor:
|
||||||
|
- platform: rest
|
||||||
|
name: Frigate Debug
|
||||||
|
resource: http://localhost:5000/debug/stats
|
||||||
|
scan_interval: 5
|
||||||
|
json_attributes:
|
||||||
|
- back
|
||||||
|
- coral
|
||||||
|
value_template: 'OK'
|
||||||
|
- platform: template
|
||||||
|
sensors:
|
||||||
|
back_fps:
|
||||||
|
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["fps"] }}'
|
||||||
|
unit_of_measurement: 'FPS'
|
||||||
|
back_skipped_fps:
|
||||||
|
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["skipped_fps"] }}'
|
||||||
|
unit_of_measurement: 'FPS'
|
||||||
|
back_detection_fps:
|
||||||
|
value_template: '{{ states.sensor.frigate_debug.attributes["back"]["detection_fps"] }}'
|
||||||
|
unit_of_measurement: 'FPS'
|
||||||
|
frigate_coral_fps:
|
||||||
|
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["fps"] }}'
|
||||||
|
unit_of_measurement: 'FPS'
|
||||||
|
frigate_coral_inference:
|
||||||
|
value_template: '{{ states.sensor.frigate_debug.attributes["coral"]["inference_speed"] }}'
|
||||||
|
unit_of_measurement: 'ms'
|
||||||
```
|
```
|
||||||
|
|
||||||
## Tips
|
## Tips
|
||||||
- Lower the framerate of the RTSP feed on the camera to reduce the CPU usage for capturing the feed
|
- Lower the framerate of the video feed on the camera to reduce the CPU usage for capturing the feed
|
||||||
|
|
||||||
## Future improvements
|
|
||||||
- [x] Remove motion detection for now
|
|
||||||
- [x] Try running object detection in a thread rather than a process
|
|
||||||
- [x] Implement min person size again
|
|
||||||
- [x] Switch to a config file
|
|
||||||
- [x] Handle multiple cameras in the same container
|
|
||||||
- [ ] Attempt to figure out coral symlinking
|
|
||||||
- [ ] Add object list to config with min scores for mqtt
|
|
||||||
- [ ] Move mjpeg encoding to a separate process
|
|
||||||
- [ ] Simplify motion detection (check entire image against mask, resize instead of gaussian blur)
|
|
||||||
- [ ] See if motion detection is even worth running
|
|
||||||
- [ ] Scan for people across entire image rather than specfic regions
|
|
||||||
- [ ] Dynamically resize detection area and follow people
|
|
||||||
- [ ] Add ability to turn detection on and off via MQTT
|
|
||||||
- [ ] Output movie clips of people for notifications, etc.
|
|
||||||
- [ ] Integrate with homeassistant push camera
|
|
||||||
- [ ] Merge bounding boxes that span multiple regions
|
|
||||||
- [ ] Implement mode to save labeled objects for training
|
|
||||||
- [ ] Try and reduce CPU usage by simplifying the tensorflow model to just include the objects we care about
|
|
||||||
- [ ] Look into GPU accelerated decoding of RTSP stream
|
|
||||||
- [ ] Send video over a socket and use JSMPEG
|
|
||||||
- [x] Look into neural compute stick
|
|
||||||
|
|||||||
79
benchmark.py
Executable file
79
benchmark.py
Executable file
@@ -0,0 +1,79 @@
|
|||||||
|
import os
|
||||||
|
from statistics import mean
|
||||||
|
import multiprocessing as mp
|
||||||
|
import numpy as np
|
||||||
|
import datetime
|
||||||
|
from frigate.edgetpu import ObjectDetector, EdgeTPUProcess, RemoteObjectDetector, load_labels
|
||||||
|
|
||||||
|
my_frame = np.expand_dims(np.full((300,300,3), 1, np.uint8), axis=0)
|
||||||
|
labels = load_labels('/labelmap.txt')
|
||||||
|
|
||||||
|
######
|
||||||
|
# Minimal same process runner
|
||||||
|
######
|
||||||
|
# object_detector = ObjectDetector()
|
||||||
|
# tensor_input = np.expand_dims(np.full((300,300,3), 0, np.uint8), axis=0)
|
||||||
|
|
||||||
|
# start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
# frame_times = []
|
||||||
|
# for x in range(0, 1000):
|
||||||
|
# start_frame = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
# tensor_input[:] = my_frame
|
||||||
|
# detections = object_detector.detect_raw(tensor_input)
|
||||||
|
# parsed_detections = []
|
||||||
|
# for d in detections:
|
||||||
|
# if d[1] < 0.4:
|
||||||
|
# break
|
||||||
|
# parsed_detections.append((
|
||||||
|
# labels[int(d[0])],
|
||||||
|
# float(d[1]),
|
||||||
|
# (d[2], d[3], d[4], d[5])
|
||||||
|
# ))
|
||||||
|
# frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
# duration = datetime.datetime.now().timestamp()-start
|
||||||
|
# print(f"Processed for {duration:.2f} seconds.")
|
||||||
|
# print(f"Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
######
|
||||||
|
# Separate process runner
|
||||||
|
######
|
||||||
|
def start(id, num_detections, detection_queue):
|
||||||
|
object_detector = RemoteObjectDetector(str(id), '/labelmap.txt', detection_queue)
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
frame_times = []
|
||||||
|
for x in range(0, num_detections):
|
||||||
|
start_frame = datetime.datetime.now().timestamp()
|
||||||
|
detections = object_detector.detect(my_frame)
|
||||||
|
frame_times.append(datetime.datetime.now().timestamp()-start_frame)
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"{id} - Processed for {duration:.2f} seconds.")
|
||||||
|
print(f"{id} - Average frame processing time: {mean(frame_times)*1000:.2f}ms")
|
||||||
|
|
||||||
|
edgetpu_process = EdgeTPUProcess()
|
||||||
|
|
||||||
|
# start(1, 1000, edgetpu_process.detect_lock, edgetpu_process.detect_ready, edgetpu_process.frame_ready)
|
||||||
|
|
||||||
|
####
|
||||||
|
# Multiple camera processes
|
||||||
|
####
|
||||||
|
camera_processes = []
|
||||||
|
for x in range(0, 10):
|
||||||
|
camera_process = mp.Process(target=start, args=(x, 100, edgetpu_process.detection_queue))
|
||||||
|
camera_process.daemon = True
|
||||||
|
camera_processes.append(camera_process)
|
||||||
|
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.start()
|
||||||
|
|
||||||
|
for p in camera_processes:
|
||||||
|
p.join()
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
print(f"Total - Processed for {duration:.2f} seconds.")
|
||||||
132
config/config.example.yml
Normal file
132
config/config.example.yml
Normal file
@@ -0,0 +1,132 @@
|
|||||||
|
web_port: 5000
|
||||||
|
|
||||||
|
mqtt:
|
||||||
|
host: mqtt.server.com
|
||||||
|
topic_prefix: frigate
|
||||||
|
# client_id: frigate # Optional -- set to override default client id of 'frigate' if running multiple instances
|
||||||
|
# user: username # Optional -- Uncomment for use
|
||||||
|
# password: password # Optional -- Uncomment for use
|
||||||
|
|
||||||
|
#################
|
||||||
|
# Default ffmpeg args. Optional and can be overwritten per camera.
|
||||||
|
# Should work with most RTSP cameras that send h264 video
|
||||||
|
# Built from the properties below with:
|
||||||
|
# "ffmpeg" + global_args + input_args + "-i" + input + output_args
|
||||||
|
#################
|
||||||
|
# ffmpeg:
|
||||||
|
# global_args:
|
||||||
|
# - -hide_banner
|
||||||
|
# - -loglevel
|
||||||
|
# - panic
|
||||||
|
# hwaccel_args: []
|
||||||
|
# input_args:
|
||||||
|
# - -avoid_negative_ts
|
||||||
|
# - make_zero
|
||||||
|
# - -fflags
|
||||||
|
# - nobuffer
|
||||||
|
# - -flags
|
||||||
|
# - low_delay
|
||||||
|
# - -strict
|
||||||
|
# - experimental
|
||||||
|
# - -fflags
|
||||||
|
# - +genpts+discardcorrupt
|
||||||
|
# - -vsync
|
||||||
|
# - drop
|
||||||
|
# - -rtsp_transport
|
||||||
|
# - tcp
|
||||||
|
# - -stimeout
|
||||||
|
# - '5000000'
|
||||||
|
# - -use_wallclock_as_timestamps
|
||||||
|
# - '1'
|
||||||
|
# output_args:
|
||||||
|
# - -f
|
||||||
|
# - rawvideo
|
||||||
|
# - -pix_fmt
|
||||||
|
# - rgb24
|
||||||
|
|
||||||
|
####################
|
||||||
|
# Global object configuration. Applies to all cameras
|
||||||
|
# unless overridden at the camera levels.
|
||||||
|
# Keys must be valid labels. By default, the model uses coco (https://dl.google.com/coral/canned_models/coco_labels.txt).
|
||||||
|
# All labels from the model are reported over MQTT. These values are used to filter out false positives.
|
||||||
|
# min_area (optional): minimum width*height of the bounding box for the detected person
|
||||||
|
# max_area (optional): maximum width*height of the bounding box for the detected person
|
||||||
|
# threshold (optional): The minimum decimal percentage (50% hit = 0.5) for the confidence from tensorflow
|
||||||
|
####################
|
||||||
|
objects:
|
||||||
|
track:
|
||||||
|
- person
|
||||||
|
- car
|
||||||
|
- truck
|
||||||
|
filters:
|
||||||
|
person:
|
||||||
|
min_area: 5000
|
||||||
|
max_area: 100000
|
||||||
|
threshold: 0.5
|
||||||
|
|
||||||
|
cameras:
|
||||||
|
back:
|
||||||
|
ffmpeg:
|
||||||
|
################
|
||||||
|
# Source passed to ffmpeg after the -i parameter. Supports anything compatible with OpenCV and FFmpeg.
|
||||||
|
# Environment variables that begin with 'FRIGATE_' may be referenced in {}
|
||||||
|
################
|
||||||
|
input: rtsp://viewer:{FRIGATE_RTSP_PASSWORD}@10.0.10.10:554/cam/realmonitor?channel=1&subtype=2
|
||||||
|
#################
|
||||||
|
# These values will override default values for just this camera
|
||||||
|
#################
|
||||||
|
# global_args: []
|
||||||
|
# hwaccel_args: []
|
||||||
|
# input_args: []
|
||||||
|
# output_args: []
|
||||||
|
|
||||||
|
################
|
||||||
|
## Optionally specify the resolution of the video feed. Frigate will try to auto detect if not specified
|
||||||
|
################
|
||||||
|
# height: 1280
|
||||||
|
# width: 720
|
||||||
|
|
||||||
|
################
|
||||||
|
## Optional mask. Must be the same aspect ratio as your video feed.
|
||||||
|
##
|
||||||
|
## The mask works by looking at the bottom center of the bounding box for the detected
|
||||||
|
## person in the image. If that pixel in the mask is a black pixel, it ignores it as a
|
||||||
|
## false positive. In my mask, the grass and driveway visible from my backdoor camera
|
||||||
|
## are white. The garage doors, sky, and trees (anywhere it would be impossible for a
|
||||||
|
## person to stand) are black.
|
||||||
|
##
|
||||||
|
## Masked areas are also ignored for motion detection.
|
||||||
|
################
|
||||||
|
# mask: back-mask.bmp
|
||||||
|
|
||||||
|
################
|
||||||
|
# Allows you to limit the framerate within frigate for cameras that do not support
|
||||||
|
# custom framerates. A value of 1 tells frigate to look at every frame, 2 every 2nd frame,
|
||||||
|
# 3 every 3rd frame, etc.
|
||||||
|
################
|
||||||
|
take_frame: 1
|
||||||
|
|
||||||
|
################
|
||||||
|
# The expected framerate for the camera. Frigate will try and ensure it maintains this framerate
|
||||||
|
# by dropping frames as necessary. Setting this lower than the actual framerate will allow frigate
|
||||||
|
# to process every frame at the expense of realtime processing.
|
||||||
|
################
|
||||||
|
fps: 5
|
||||||
|
|
||||||
|
################
|
||||||
|
# Configuration for the snapshots in the debug view and mqtt
|
||||||
|
################
|
||||||
|
snapshots:
|
||||||
|
show_timestamp: True
|
||||||
|
|
||||||
|
################
|
||||||
|
# Camera level object config. This config is merged with the global config above.
|
||||||
|
################
|
||||||
|
objects:
|
||||||
|
track:
|
||||||
|
- person
|
||||||
|
filters:
|
||||||
|
person:
|
||||||
|
min_area: 5000
|
||||||
|
max_area: 100000
|
||||||
|
threshold: 0.5
|
||||||
@@ -1,29 +0,0 @@
|
|||||||
web_port: 5000
|
|
||||||
|
|
||||||
mqtt:
|
|
||||||
host: mqtt.server.com
|
|
||||||
topic_prefix: frigate
|
|
||||||
|
|
||||||
cameras:
|
|
||||||
back:
|
|
||||||
rtsp:
|
|
||||||
user: viewer
|
|
||||||
host: 10.0.10.10
|
|
||||||
port: 554
|
|
||||||
# values that begin with a "$" will be replaced with environment variable
|
|
||||||
password: $RTSP_PASSWORD
|
|
||||||
path: /cam/realmonitor?channel=1&subtype=2
|
|
||||||
mask: back-mask.bmp
|
|
||||||
regions:
|
|
||||||
- size: 350
|
|
||||||
x_offset: 0
|
|
||||||
y_offset: 300
|
|
||||||
min_person_area: 5000
|
|
||||||
- size: 400
|
|
||||||
x_offset: 350
|
|
||||||
y_offset: 250
|
|
||||||
min_person_area: 2000
|
|
||||||
- size: 400
|
|
||||||
x_offset: 750
|
|
||||||
y_offset: 250
|
|
||||||
min_person_area: 2000
|
|
||||||
@@ -1,13 +1,23 @@
|
|||||||
|
import os
|
||||||
import cv2
|
import cv2
|
||||||
import time
|
import time
|
||||||
|
import datetime
|
||||||
import queue
|
import queue
|
||||||
import yaml
|
import yaml
|
||||||
|
import threading
|
||||||
|
import multiprocessing as mp
|
||||||
|
import subprocess as sp
|
||||||
import numpy as np
|
import numpy as np
|
||||||
from flask import Flask, Response, make_response
|
import logging
|
||||||
|
from flask import Flask, Response, make_response, jsonify
|
||||||
import paho.mqtt.client as mqtt
|
import paho.mqtt.client as mqtt
|
||||||
|
|
||||||
from frigate.video import Camera
|
from frigate.video import track_camera
|
||||||
from frigate.object_detection import PreppedQueueProcessor
|
from frigate.object_processing import TrackedObjectProcessor
|
||||||
|
from frigate.util import EventsPerSecond
|
||||||
|
from frigate.edgetpu import EdgeTPUProcess
|
||||||
|
|
||||||
|
FRIGATE_VARS = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||||
|
|
||||||
with open('/config/config.yml') as f:
|
with open('/config/config.yml') as f:
|
||||||
CONFIG = yaml.safe_load(f)
|
CONFIG = yaml.safe_load(f)
|
||||||
@@ -17,17 +27,88 @@ MQTT_PORT = CONFIG.get('mqtt', {}).get('port', 1883)
|
|||||||
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
MQTT_TOPIC_PREFIX = CONFIG.get('mqtt', {}).get('topic_prefix', 'frigate')
|
||||||
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
MQTT_USER = CONFIG.get('mqtt', {}).get('user')
|
||||||
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
MQTT_PASS = CONFIG.get('mqtt', {}).get('password')
|
||||||
|
if not MQTT_PASS is None:
|
||||||
|
MQTT_PASS = MQTT_PASS.format(**FRIGATE_VARS)
|
||||||
|
MQTT_CLIENT_ID = CONFIG.get('mqtt', {}).get('client_id', 'frigate')
|
||||||
|
|
||||||
|
# Set the default FFmpeg config
|
||||||
|
FFMPEG_CONFIG = CONFIG.get('ffmpeg', {})
|
||||||
|
FFMPEG_DEFAULT_CONFIG = {
|
||||||
|
'global_args': FFMPEG_CONFIG.get('global_args',
|
||||||
|
['-hide_banner','-loglevel','panic']),
|
||||||
|
'hwaccel_args': FFMPEG_CONFIG.get('hwaccel_args',
|
||||||
|
[]),
|
||||||
|
'input_args': FFMPEG_CONFIG.get('input_args',
|
||||||
|
['-avoid_negative_ts', 'make_zero',
|
||||||
|
'-fflags', 'nobuffer',
|
||||||
|
'-flags', 'low_delay',
|
||||||
|
'-strict', 'experimental',
|
||||||
|
'-fflags', '+genpts+discardcorrupt',
|
||||||
|
'-vsync', 'drop',
|
||||||
|
'-rtsp_transport', 'tcp',
|
||||||
|
'-stimeout', '5000000',
|
||||||
|
'-use_wallclock_as_timestamps', '1']),
|
||||||
|
'output_args': FFMPEG_CONFIG.get('output_args',
|
||||||
|
['-f', 'rawvideo',
|
||||||
|
'-pix_fmt', 'rgb24'])
|
||||||
|
}
|
||||||
|
|
||||||
|
GLOBAL_OBJECT_CONFIG = CONFIG.get('objects', {})
|
||||||
|
|
||||||
WEB_PORT = CONFIG.get('web_port', 5000)
|
WEB_PORT = CONFIG.get('web_port', 5000)
|
||||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||||
|
|
||||||
|
class CameraWatchdog(threading.Thread):
|
||||||
|
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, object_processor):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.camera_processes = camera_processes
|
||||||
|
self.config = config
|
||||||
|
self.tflite_process = tflite_process
|
||||||
|
self.tracked_objects_queue = tracked_objects_queue
|
||||||
|
self.object_processor = object_processor
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
time.sleep(10)
|
||||||
|
while True:
|
||||||
|
# wait a bit before checking
|
||||||
|
time.sleep(30)
|
||||||
|
|
||||||
|
if (self.tflite_process.detection_start.value > 0.0 and
|
||||||
|
datetime.datetime.now().timestamp() - self.tflite_process.detection_start.value > 10):
|
||||||
|
print("Detection appears to be stuck. Restarting detection process")
|
||||||
|
time.sleep(30)
|
||||||
|
|
||||||
|
for name, camera_process in self.camera_processes.items():
|
||||||
|
process = camera_process['process']
|
||||||
|
if not process.is_alive():
|
||||||
|
print(f"Process for {name} is not alive. Starting again...")
|
||||||
|
camera_process['fps'].value = float(self.config[name]['fps'])
|
||||||
|
camera_process['skipped_fps'].value = 0.0
|
||||||
|
camera_process['detection_fps'].value = 0.0
|
||||||
|
process = mp.Process(target=track_camera, args=(name, self.config[name], FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||||
|
self.tflite_process.detection_queue, self.tracked_objects_queue,
|
||||||
|
camera_process['fps'], camera_process['skipped_fps'], camera_process['detection_fps']))
|
||||||
|
process.daemon = True
|
||||||
|
camera_process['process'] = process
|
||||||
|
process.start()
|
||||||
|
print(f"Camera_process started for {name}: {process.pid}")
|
||||||
|
|
||||||
def main():
|
def main():
|
||||||
# connect to mqtt and setup last will
|
# connect to mqtt and setup last will
|
||||||
def on_connect(client, userdata, flags, rc):
|
def on_connect(client, userdata, flags, rc):
|
||||||
print("On connect called")
|
print("On connect called")
|
||||||
|
if rc != 0:
|
||||||
|
if rc == 3:
|
||||||
|
print ("MQTT Server unavailable")
|
||||||
|
elif rc == 4:
|
||||||
|
print ("MQTT Bad username or password")
|
||||||
|
elif rc == 5:
|
||||||
|
print ("MQTT Not authorized")
|
||||||
|
else:
|
||||||
|
print ("Unable to connect to MQTT: Connection refused. Error code: " + str(rc))
|
||||||
# publish a message to signal that the service is running
|
# publish a message to signal that the service is running
|
||||||
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
client.publish(MQTT_TOPIC_PREFIX+'/available', 'online', retain=True)
|
||||||
client = mqtt.Client()
|
client = mqtt.Client(client_id=MQTT_CLIENT_ID)
|
||||||
client.on_connect = on_connect
|
client.on_connect = on_connect
|
||||||
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
client.will_set(MQTT_TOPIC_PREFIX+'/available', payload='offline', qos=1, retain=True)
|
||||||
if not MQTT_USER is None:
|
if not MQTT_USER is None:
|
||||||
@@ -35,56 +116,131 @@ def main():
|
|||||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||||
client.loop_start()
|
client.loop_start()
|
||||||
|
|
||||||
# Queue for prepped frames, max size set to (number of cameras * 5)
|
# start plasma store
|
||||||
max_queue_size = len(CONFIG['cameras'].items())*5
|
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||||
prepped_frame_queue = queue.Queue(max_queue_size)
|
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL)
|
||||||
|
time.sleep(1)
|
||||||
|
rc = plasma_process.poll()
|
||||||
|
if rc is not None:
|
||||||
|
raise RuntimeError("plasma_store exited unexpectedly with "
|
||||||
|
"code %d" % (rc,))
|
||||||
|
|
||||||
cameras = {}
|
##
|
||||||
|
# Setup config defaults for cameras
|
||||||
|
##
|
||||||
for name, config in CONFIG['cameras'].items():
|
for name, config in CONFIG['cameras'].items():
|
||||||
cameras[name] = Camera(name, config, prepped_frame_queue, client, MQTT_TOPIC_PREFIX)
|
config['snapshots'] = {
|
||||||
|
'show_timestamp': config.get('snapshots', {}).get('show_timestamp', True)
|
||||||
|
}
|
||||||
|
|
||||||
prepped_queue_processor = PreppedQueueProcessor(
|
# Queue for cameras to push tracked objects to
|
||||||
cameras,
|
tracked_objects_queue = mp.Queue()
|
||||||
prepped_frame_queue
|
|
||||||
)
|
|
||||||
prepped_queue_processor.start()
|
|
||||||
|
|
||||||
for name, camera in cameras.items():
|
# Start the shared tflite process
|
||||||
camera.start()
|
tflite_process = EdgeTPUProcess()
|
||||||
print("Capture process for {}: {}".format(name, camera.get_capture_pid()))
|
|
||||||
|
# start the camera processes
|
||||||
|
camera_processes = {}
|
||||||
|
for name, config in CONFIG['cameras'].items():
|
||||||
|
camera_processes[name] = {
|
||||||
|
'fps': mp.Value('d', float(config['fps'])),
|
||||||
|
'skipped_fps': mp.Value('d', 0.0),
|
||||||
|
'detection_fps': mp.Value('d', 0.0)
|
||||||
|
}
|
||||||
|
camera_process = mp.Process(target=track_camera, args=(name, config, FFMPEG_DEFAULT_CONFIG, GLOBAL_OBJECT_CONFIG,
|
||||||
|
tflite_process.detection_queue, tracked_objects_queue,
|
||||||
|
camera_processes[name]['fps'], camera_processes[name]['skipped_fps'], camera_processes[name]['detection_fps']))
|
||||||
|
camera_process.daemon = True
|
||||||
|
camera_processes[name]['process'] = camera_process
|
||||||
|
|
||||||
|
for name, camera_process in camera_processes.items():
|
||||||
|
camera_process['process'].start()
|
||||||
|
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
|
||||||
|
|
||||||
|
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue)
|
||||||
|
object_processor.start()
|
||||||
|
|
||||||
|
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, object_processor)
|
||||||
|
camera_watchdog.start()
|
||||||
|
|
||||||
# create a flask app that encodes frames a mjpeg on demand
|
# create a flask app that encodes frames a mjpeg on demand
|
||||||
app = Flask(__name__)
|
app = Flask(__name__)
|
||||||
|
log = logging.getLogger('werkzeug')
|
||||||
|
log.setLevel(logging.ERROR)
|
||||||
|
|
||||||
@app.route('/<camera_name>/best_person.jpg')
|
@app.route('/')
|
||||||
def best_person(camera_name):
|
def ishealthy():
|
||||||
best_person_frame = cameras[camera_name].get_best_person()
|
# return a healh
|
||||||
if best_person_frame is None:
|
return "Frigate is running. Alive and healthy!"
|
||||||
best_person_frame = np.zeros((720,1280,3), np.uint8)
|
|
||||||
ret, jpg = cv2.imencode('.jpg', best_person_frame)
|
@app.route('/debug/stats')
|
||||||
response = make_response(jpg.tobytes())
|
def stats():
|
||||||
response.headers['Content-Type'] = 'image/jpg'
|
stats = {}
|
||||||
return response
|
|
||||||
|
total_detection_fps = 0
|
||||||
|
|
||||||
|
for name, camera_stats in camera_processes.items():
|
||||||
|
total_detection_fps += camera_stats['detection_fps'].value
|
||||||
|
stats[name] = {
|
||||||
|
'fps': round(camera_stats['fps'].value, 2),
|
||||||
|
'skipped_fps': round(camera_stats['skipped_fps'].value, 2),
|
||||||
|
'detection_fps': round(camera_stats['detection_fps'].value, 2)
|
||||||
|
}
|
||||||
|
|
||||||
|
stats['coral'] = {
|
||||||
|
'fps': round(total_detection_fps, 2),
|
||||||
|
'inference_speed': round(tflite_process.avg_inference_speed.value*1000, 2),
|
||||||
|
'detection_queue': tflite_process.detection_queue.qsize(),
|
||||||
|
'detection_start': tflite_process.detection_start.value
|
||||||
|
}
|
||||||
|
|
||||||
|
rc = plasma_process.poll()
|
||||||
|
stats['plasma_store_rc'] = rc
|
||||||
|
|
||||||
|
stats['tracked_objects_queue'] = tracked_objects_queue.qsize()
|
||||||
|
|
||||||
|
return jsonify(stats)
|
||||||
|
|
||||||
|
@app.route('/<camera_name>/<label>/best.jpg')
|
||||||
|
def best(camera_name, label):
|
||||||
|
if camera_name in CONFIG['cameras']:
|
||||||
|
best_frame = object_processor.get_best(camera_name, label)
|
||||||
|
if best_frame is None:
|
||||||
|
best_frame = np.zeros((720,1280,3), np.uint8)
|
||||||
|
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
||||||
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||||
|
response = make_response(jpg.tobytes())
|
||||||
|
response.headers['Content-Type'] = 'image/jpg'
|
||||||
|
return response
|
||||||
|
else:
|
||||||
|
return "Camera named {} not found".format(camera_name), 404
|
||||||
|
|
||||||
@app.route('/<camera_name>')
|
@app.route('/<camera_name>')
|
||||||
def mjpeg_feed(camera_name):
|
def mjpeg_feed(camera_name):
|
||||||
# return a multipart response
|
if camera_name in CONFIG['cameras']:
|
||||||
return Response(imagestream(camera_name),
|
# return a multipart response
|
||||||
mimetype='multipart/x-mixed-replace; boundary=frame')
|
return Response(imagestream(camera_name),
|
||||||
|
mimetype='multipart/x-mixed-replace; boundary=frame')
|
||||||
|
else:
|
||||||
|
return "Camera named {} not found".format(camera_name), 404
|
||||||
|
|
||||||
def imagestream(camera_name):
|
def imagestream(camera_name):
|
||||||
while True:
|
while True:
|
||||||
# max out at 5 FPS
|
# max out at 1 FPS
|
||||||
time.sleep(0.2)
|
time.sleep(1)
|
||||||
frame = cameras[camera_name].get_current_frame_with_objects()
|
frame = object_processor.get_current_frame(camera_name)
|
||||||
# encode the image into a jpg
|
if frame is None:
|
||||||
|
frame = np.zeros((720,1280,3), np.uint8)
|
||||||
|
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
||||||
ret, jpg = cv2.imencode('.jpg', frame)
|
ret, jpg = cv2.imencode('.jpg', frame)
|
||||||
yield (b'--frame\r\n'
|
yield (b'--frame\r\n'
|
||||||
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
b'Content-Type: image/jpeg\r\n\r\n' + jpg.tobytes() + b'\r\n\r\n')
|
||||||
|
|
||||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||||
|
|
||||||
camera.join()
|
camera_watchdog.join()
|
||||||
|
|
||||||
|
plasma_process.terminate()
|
||||||
|
|
||||||
if __name__ == '__main__':
|
if __name__ == '__main__':
|
||||||
main()
|
main()
|
||||||
BIN
diagram.png
BIN
diagram.png
Binary file not shown.
|
Before Width: | Height: | Size: 283 KiB After Width: | Height: | Size: 132 KiB |
74
docs/DEVICES.md
Normal file
74
docs/DEVICES.md
Normal file
@@ -0,0 +1,74 @@
|
|||||||
|
# Configuration Examples
|
||||||
|
|
||||||
|
### Default (most RTSP cameras)
|
||||||
|
This is the default ffmpeg command and should work with most RTSP cameras that send h264 video
|
||||||
|
```yaml
|
||||||
|
ffmpeg:
|
||||||
|
global_args:
|
||||||
|
- -hide_banner
|
||||||
|
- -loglevel
|
||||||
|
- panic
|
||||||
|
hwaccel_args: []
|
||||||
|
input_args:
|
||||||
|
- -avoid_negative_ts
|
||||||
|
- make_zero
|
||||||
|
- -fflags
|
||||||
|
- nobuffer
|
||||||
|
- -flags
|
||||||
|
- low_delay
|
||||||
|
- -strict
|
||||||
|
- experimental
|
||||||
|
- -fflags
|
||||||
|
- +genpts+discardcorrupt
|
||||||
|
- -vsync
|
||||||
|
- drop
|
||||||
|
- -rtsp_transport
|
||||||
|
- tcp
|
||||||
|
- -stimeout
|
||||||
|
- '5000000'
|
||||||
|
- -use_wallclock_as_timestamps
|
||||||
|
- '1'
|
||||||
|
output_args:
|
||||||
|
- -vf
|
||||||
|
- mpdecimate
|
||||||
|
- -f
|
||||||
|
- rawvideo
|
||||||
|
- -pix_fmt
|
||||||
|
- rgb24
|
||||||
|
```
|
||||||
|
|
||||||
|
### RTMP Cameras
|
||||||
|
The input parameters need to be adjusted for RTMP cameras
|
||||||
|
```yaml
|
||||||
|
ffmpeg:
|
||||||
|
input_args:
|
||||||
|
- -avoid_negative_ts
|
||||||
|
- make_zero
|
||||||
|
- -fflags
|
||||||
|
- nobuffer
|
||||||
|
- -flags
|
||||||
|
- low_delay
|
||||||
|
- -strict
|
||||||
|
- experimental
|
||||||
|
- -fflags
|
||||||
|
- +genpts+discardcorrupt
|
||||||
|
- -vsync
|
||||||
|
- drop
|
||||||
|
- -use_wallclock_as_timestamps
|
||||||
|
- '1'
|
||||||
|
```
|
||||||
|
|
||||||
|
|
||||||
|
### Hardware Acceleration
|
||||||
|
|
||||||
|
Intel Quicksync
|
||||||
|
```yaml
|
||||||
|
ffmpeg:
|
||||||
|
hwaccel_args:
|
||||||
|
- -hwaccel
|
||||||
|
- vaapi
|
||||||
|
- -hwaccel_device
|
||||||
|
- /dev/dri/renderD128
|
||||||
|
- -hwaccel_output_format
|
||||||
|
- yuv420p
|
||||||
|
```
|
||||||
136
frigate/edgetpu.py
Normal file
136
frigate/edgetpu.py
Normal file
@@ -0,0 +1,136 @@
|
|||||||
|
import os
|
||||||
|
import datetime
|
||||||
|
import hashlib
|
||||||
|
import multiprocessing as mp
|
||||||
|
import numpy as np
|
||||||
|
import SharedArray as sa
|
||||||
|
import pyarrow.plasma as plasma
|
||||||
|
import tflite_runtime.interpreter as tflite
|
||||||
|
from tflite_runtime.interpreter import load_delegate
|
||||||
|
from frigate.util import EventsPerSecond
|
||||||
|
|
||||||
|
def load_labels(path, encoding='utf-8'):
|
||||||
|
"""Loads labels from file (with or without index numbers).
|
||||||
|
Args:
|
||||||
|
path: path to label file.
|
||||||
|
encoding: label file encoding.
|
||||||
|
Returns:
|
||||||
|
Dictionary mapping indices to labels.
|
||||||
|
"""
|
||||||
|
with open(path, 'r', encoding=encoding) as f:
|
||||||
|
lines = f.readlines()
|
||||||
|
if not lines:
|
||||||
|
return {}
|
||||||
|
|
||||||
|
if lines[0].split(' ', maxsplit=1)[0].isdigit():
|
||||||
|
pairs = [line.split(' ', maxsplit=1) for line in lines]
|
||||||
|
return {int(index): label.strip() for index, label in pairs}
|
||||||
|
else:
|
||||||
|
return {index: line.strip() for index, line in enumerate(lines)}
|
||||||
|
|
||||||
|
class ObjectDetector():
|
||||||
|
def __init__(self):
|
||||||
|
edge_tpu_delegate = None
|
||||||
|
try:
|
||||||
|
edge_tpu_delegate = load_delegate('libedgetpu.so.1.0')
|
||||||
|
except ValueError:
|
||||||
|
print("No EdgeTPU detected. Falling back to CPU.")
|
||||||
|
|
||||||
|
if edge_tpu_delegate is None:
|
||||||
|
self.interpreter = tflite.Interpreter(
|
||||||
|
model_path='/cpu_model.tflite')
|
||||||
|
else:
|
||||||
|
self.interpreter = tflite.Interpreter(
|
||||||
|
model_path='/edgetpu_model.tflite',
|
||||||
|
experimental_delegates=[edge_tpu_delegate])
|
||||||
|
|
||||||
|
self.interpreter.allocate_tensors()
|
||||||
|
|
||||||
|
self.tensor_input_details = self.interpreter.get_input_details()
|
||||||
|
self.tensor_output_details = self.interpreter.get_output_details()
|
||||||
|
|
||||||
|
def detect_raw(self, tensor_input):
|
||||||
|
self.interpreter.set_tensor(self.tensor_input_details[0]['index'], tensor_input)
|
||||||
|
self.interpreter.invoke()
|
||||||
|
boxes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[0]['index']))
|
||||||
|
label_codes = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[1]['index']))
|
||||||
|
scores = np.squeeze(self.interpreter.get_tensor(self.tensor_output_details[2]['index']))
|
||||||
|
|
||||||
|
detections = np.zeros((20,6), np.float32)
|
||||||
|
for i, score in enumerate(scores):
|
||||||
|
detections[i] = [label_codes[i], score, boxes[i][0], boxes[i][1], boxes[i][2], boxes[i][3]]
|
||||||
|
|
||||||
|
return detections
|
||||||
|
|
||||||
|
def run_detector(detection_queue, avg_speed, start):
|
||||||
|
print(f"Starting detection process: {os.getpid()}")
|
||||||
|
plasma_client = plasma.connect("/tmp/plasma")
|
||||||
|
object_detector = ObjectDetector()
|
||||||
|
|
||||||
|
while True:
|
||||||
|
object_id_str = detection_queue.get()
|
||||||
|
object_id_hash = hashlib.sha1(str.encode(object_id_str))
|
||||||
|
object_id = plasma.ObjectID(object_id_hash.digest())
|
||||||
|
input_frame = plasma_client.get(object_id, timeout_ms=0)
|
||||||
|
|
||||||
|
start.value = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
# detect and put the output in the plasma store
|
||||||
|
object_id_out = hashlib.sha1(str.encode(f"out-{object_id_str}")).digest()
|
||||||
|
plasma_client.put(object_detector.detect_raw(input_frame), plasma.ObjectID(object_id_out))
|
||||||
|
|
||||||
|
duration = datetime.datetime.now().timestamp()-start.value
|
||||||
|
start.value = 0.0
|
||||||
|
avg_speed.value = (avg_speed.value*9 + duration)/10
|
||||||
|
|
||||||
|
class EdgeTPUProcess():
|
||||||
|
def __init__(self):
|
||||||
|
self.detection_queue = mp.Queue()
|
||||||
|
self.avg_inference_speed = mp.Value('d', 0.01)
|
||||||
|
self.detection_start = mp.Value('d', 0.0)
|
||||||
|
self.detect_process = None
|
||||||
|
self.start_or_restart()
|
||||||
|
|
||||||
|
def start_or_restart(self):
|
||||||
|
self.detection_start.value = 0.0
|
||||||
|
if (not self.detect_process is None) and self.detect_process.is_alive():
|
||||||
|
self.detect_process.terminate()
|
||||||
|
print("Waiting for detection process to exit gracefully...")
|
||||||
|
self.detect_process.join(timeout=30)
|
||||||
|
if self.detect_process.exitcode is None:
|
||||||
|
print("Detection process didnt exit. Force killing...")
|
||||||
|
self.detect_process.kill()
|
||||||
|
self.detect_process.join()
|
||||||
|
self.detect_process = mp.Process(target=run_detector, args=(self.detection_queue, self.avg_inference_speed, self.detection_start))
|
||||||
|
self.detect_process.daemon = True
|
||||||
|
self.detect_process.start()
|
||||||
|
|
||||||
|
class RemoteObjectDetector():
|
||||||
|
def __init__(self, name, labels, detection_queue):
|
||||||
|
self.labels = load_labels(labels)
|
||||||
|
self.name = name
|
||||||
|
self.fps = EventsPerSecond()
|
||||||
|
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||||
|
self.detection_queue = detection_queue
|
||||||
|
|
||||||
|
def detect(self, tensor_input, threshold=.4):
|
||||||
|
detections = []
|
||||||
|
|
||||||
|
now = f"{self.name}-{str(datetime.datetime.now().timestamp())}"
|
||||||
|
object_id_frame = plasma.ObjectID(hashlib.sha1(str.encode(now)).digest())
|
||||||
|
object_id_detections = plasma.ObjectID(hashlib.sha1(str.encode(f"out-{now}")).digest())
|
||||||
|
self.plasma_client.put(tensor_input, object_id_frame)
|
||||||
|
self.detection_queue.put(now)
|
||||||
|
raw_detections = self.plasma_client.get(object_id_detections)
|
||||||
|
|
||||||
|
for d in raw_detections:
|
||||||
|
if d[1] < threshold:
|
||||||
|
break
|
||||||
|
detections.append((
|
||||||
|
self.labels[int(d[0])],
|
||||||
|
float(d[1]),
|
||||||
|
(d[2], d[3], d[4], d[5])
|
||||||
|
))
|
||||||
|
self.plasma_client.delete([object_id_frame, object_id_detections])
|
||||||
|
self.fps.update()
|
||||||
|
return detections
|
||||||
79
frigate/motion.py
Normal file
79
frigate/motion.py
Normal file
@@ -0,0 +1,79 @@
|
|||||||
|
import cv2
|
||||||
|
import imutils
|
||||||
|
import numpy as np
|
||||||
|
|
||||||
|
class MotionDetector():
|
||||||
|
def __init__(self, frame_shape, mask, resize_factor=4):
|
||||||
|
self.resize_factor = resize_factor
|
||||||
|
self.motion_frame_size = (int(frame_shape[0]/resize_factor), int(frame_shape[1]/resize_factor))
|
||||||
|
self.avg_frame = np.zeros(self.motion_frame_size, np.float)
|
||||||
|
self.avg_delta = np.zeros(self.motion_frame_size, np.float)
|
||||||
|
self.motion_frame_count = 0
|
||||||
|
self.frame_counter = 0
|
||||||
|
resized_mask = cv2.resize(mask, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||||
|
self.mask = np.where(resized_mask==[0])
|
||||||
|
|
||||||
|
def detect(self, frame):
|
||||||
|
motion_boxes = []
|
||||||
|
|
||||||
|
# resize frame
|
||||||
|
resized_frame = cv2.resize(frame, dsize=(self.motion_frame_size[1], self.motion_frame_size[0]), interpolation=cv2.INTER_LINEAR)
|
||||||
|
|
||||||
|
# convert to grayscale
|
||||||
|
gray = cv2.cvtColor(resized_frame, cv2.COLOR_BGR2GRAY)
|
||||||
|
|
||||||
|
# mask frame
|
||||||
|
gray[self.mask] = [255]
|
||||||
|
|
||||||
|
# it takes ~30 frames to establish a baseline
|
||||||
|
# dont bother looking for motion
|
||||||
|
if self.frame_counter < 30:
|
||||||
|
self.frame_counter += 1
|
||||||
|
else:
|
||||||
|
# compare to average
|
||||||
|
frameDelta = cv2.absdiff(gray, cv2.convertScaleAbs(self.avg_frame))
|
||||||
|
|
||||||
|
# compute the average delta over the past few frames
|
||||||
|
# the alpha value can be modified to configure how sensitive the motion detection is.
|
||||||
|
# higher values mean the current frame impacts the delta a lot, and a single raindrop may
|
||||||
|
# register as motion, too low and a fast moving person wont be detected as motion
|
||||||
|
# this also assumes that a person is in the same location across more than a single frame
|
||||||
|
cv2.accumulateWeighted(frameDelta, self.avg_delta, 0.2)
|
||||||
|
|
||||||
|
# compute the threshold image for the current frame
|
||||||
|
current_thresh = cv2.threshold(frameDelta, 25, 255, cv2.THRESH_BINARY)[1]
|
||||||
|
|
||||||
|
# black out everything in the avg_delta where there isnt motion in the current frame
|
||||||
|
avg_delta_image = cv2.convertScaleAbs(self.avg_delta)
|
||||||
|
avg_delta_image[np.where(current_thresh==[0])] = [0]
|
||||||
|
|
||||||
|
# then look for deltas above the threshold, but only in areas where there is a delta
|
||||||
|
# in the current frame. this prevents deltas from previous frames from being included
|
||||||
|
thresh = cv2.threshold(avg_delta_image, 25, 255, cv2.THRESH_BINARY)[1]
|
||||||
|
|
||||||
|
# dilate the thresholded image to fill in holes, then find contours
|
||||||
|
# on thresholded image
|
||||||
|
thresh = cv2.dilate(thresh, None, iterations=2)
|
||||||
|
cnts = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
||||||
|
cnts = imutils.grab_contours(cnts)
|
||||||
|
|
||||||
|
# loop over the contours
|
||||||
|
for c in cnts:
|
||||||
|
# if the contour is big enough, count it as motion
|
||||||
|
contour_area = cv2.contourArea(c)
|
||||||
|
if contour_area > 100:
|
||||||
|
x, y, w, h = cv2.boundingRect(c)
|
||||||
|
motion_boxes.append((x*self.resize_factor, y*self.resize_factor, (x+w)*self.resize_factor, (y+h)*self.resize_factor))
|
||||||
|
|
||||||
|
if len(motion_boxes) > 0:
|
||||||
|
self.motion_frame_count += 1
|
||||||
|
# TODO: this really depends on FPS
|
||||||
|
if self.motion_frame_count >= 10:
|
||||||
|
# only average in the current frame if the difference persists for at least 3 frames
|
||||||
|
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
||||||
|
else:
|
||||||
|
# when no motion, just keep averaging the frames together
|
||||||
|
cv2.accumulateWeighted(gray, self.avg_frame, 0.2)
|
||||||
|
self.motion_frame_count = 0
|
||||||
|
|
||||||
|
return motion_boxes
|
||||||
@@ -1,33 +0,0 @@
|
|||||||
import json
|
|
||||||
import threading
|
|
||||||
|
|
||||||
class MqttObjectPublisher(threading.Thread):
|
|
||||||
def __init__(self, client, topic_prefix, objects_parsed, detected_objects):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.client = client
|
|
||||||
self.topic_prefix = topic_prefix
|
|
||||||
self.objects_parsed = objects_parsed
|
|
||||||
self._detected_objects = detected_objects
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
last_sent_payload = ""
|
|
||||||
while True:
|
|
||||||
|
|
||||||
# initialize the payload
|
|
||||||
payload = {}
|
|
||||||
|
|
||||||
# wait until objects have been parsed
|
|
||||||
with self.objects_parsed:
|
|
||||||
self.objects_parsed.wait()
|
|
||||||
|
|
||||||
# add all the person scores in detected objects
|
|
||||||
detected_objects = self._detected_objects.copy()
|
|
||||||
person_score = sum([obj['score'] for obj in detected_objects if obj['name'] == 'person'])
|
|
||||||
# if the person score is more than 100, set person to ON
|
|
||||||
payload['person'] = 'ON' if int(person_score*100) > 100 else 'OFF'
|
|
||||||
|
|
||||||
# send message for objects if different
|
|
||||||
new_payload = json.dumps(payload, sort_keys=True)
|
|
||||||
if new_payload != last_sent_payload:
|
|
||||||
last_sent_payload = new_payload
|
|
||||||
self.client.publish(self.topic_prefix+'/objects', new_payload, retain=False)
|
|
||||||
@@ -1,110 +0,0 @@
|
|||||||
import datetime
|
|
||||||
import time
|
|
||||||
import cv2
|
|
||||||
import threading
|
|
||||||
import numpy as np
|
|
||||||
from edgetpu.detection.engine import DetectionEngine
|
|
||||||
from . util import tonumpyarray
|
|
||||||
|
|
||||||
# Path to frozen detection graph. This is the actual model that is used for the object detection.
|
|
||||||
PATH_TO_CKPT = '/frozen_inference_graph.pb'
|
|
||||||
# List of the strings that is used to add correct label for each box.
|
|
||||||
PATH_TO_LABELS = '/label_map.pbtext'
|
|
||||||
|
|
||||||
# Function to read labels from text files.
|
|
||||||
def ReadLabelFile(file_path):
|
|
||||||
with open(file_path, 'r') as f:
|
|
||||||
lines = f.readlines()
|
|
||||||
ret = {}
|
|
||||||
for line in lines:
|
|
||||||
pair = line.strip().split(maxsplit=1)
|
|
||||||
ret[int(pair[0])] = pair[1].strip()
|
|
||||||
return ret
|
|
||||||
|
|
||||||
class PreppedQueueProcessor(threading.Thread):
|
|
||||||
def __init__(self, cameras, prepped_frame_queue):
|
|
||||||
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.cameras = cameras
|
|
||||||
self.prepped_frame_queue = prepped_frame_queue
|
|
||||||
|
|
||||||
# Load the edgetpu engine and labels
|
|
||||||
self.engine = DetectionEngine(PATH_TO_CKPT)
|
|
||||||
self.labels = ReadLabelFile(PATH_TO_LABELS)
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
# process queue...
|
|
||||||
while True:
|
|
||||||
frame = self.prepped_frame_queue.get()
|
|
||||||
|
|
||||||
# Actual detection.
|
|
||||||
objects = self.engine.DetectWithInputTensor(frame['frame'], threshold=0.5, top_k=3)
|
|
||||||
# parse and pass detected objects back to the camera
|
|
||||||
parsed_objects = []
|
|
||||||
for obj in objects:
|
|
||||||
box = obj.bounding_box.flatten().tolist()
|
|
||||||
parsed_objects.append({
|
|
||||||
'frame_time': frame['frame_time'],
|
|
||||||
'name': str(self.labels[obj.label_id]),
|
|
||||||
'score': float(obj.score),
|
|
||||||
'xmin': int((box[0] * frame['region_size']) + frame['region_x_offset']),
|
|
||||||
'ymin': int((box[1] * frame['region_size']) + frame['region_y_offset']),
|
|
||||||
'xmax': int((box[2] * frame['region_size']) + frame['region_x_offset']),
|
|
||||||
'ymax': int((box[3] * frame['region_size']) + frame['region_y_offset'])
|
|
||||||
})
|
|
||||||
self.cameras[frame['camera_name']].add_objects(parsed_objects)
|
|
||||||
|
|
||||||
|
|
||||||
# should this be a region class?
|
|
||||||
class FramePrepper(threading.Thread):
|
|
||||||
def __init__(self, camera_name, shared_frame, frame_time, frame_ready,
|
|
||||||
frame_lock,
|
|
||||||
region_size, region_x_offset, region_y_offset,
|
|
||||||
prepped_frame_queue):
|
|
||||||
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.camera_name = camera_name
|
|
||||||
self.shared_frame = shared_frame
|
|
||||||
self.frame_time = frame_time
|
|
||||||
self.frame_ready = frame_ready
|
|
||||||
self.frame_lock = frame_lock
|
|
||||||
self.region_size = region_size
|
|
||||||
self.region_x_offset = region_x_offset
|
|
||||||
self.region_y_offset = region_y_offset
|
|
||||||
self.prepped_frame_queue = prepped_frame_queue
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
frame_time = 0.0
|
|
||||||
while True:
|
|
||||||
now = datetime.datetime.now().timestamp()
|
|
||||||
|
|
||||||
with self.frame_ready:
|
|
||||||
# if there isnt a frame ready for processing or it is old, wait for a new frame
|
|
||||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
|
||||||
self.frame_ready.wait()
|
|
||||||
|
|
||||||
# make a copy of the cropped frame
|
|
||||||
with self.frame_lock:
|
|
||||||
cropped_frame = self.shared_frame[self.region_y_offset:self.region_y_offset+self.region_size, self.region_x_offset:self.region_x_offset+self.region_size].copy()
|
|
||||||
frame_time = self.frame_time.value
|
|
||||||
|
|
||||||
# convert to RGB
|
|
||||||
cropped_frame_rgb = cv2.cvtColor(cropped_frame, cv2.COLOR_BGR2RGB)
|
|
||||||
# Resize to 300x300 if needed
|
|
||||||
if cropped_frame_rgb.shape != (300, 300, 3):
|
|
||||||
cropped_frame_rgb = cv2.resize(cropped_frame_rgb, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
|
||||||
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
|
||||||
frame_expanded = np.expand_dims(cropped_frame_rgb, axis=0)
|
|
||||||
|
|
||||||
# add the frame to the queue
|
|
||||||
if not self.prepped_frame_queue.full():
|
|
||||||
self.prepped_frame_queue.put({
|
|
||||||
'camera_name': self.camera_name,
|
|
||||||
'frame_time': frame_time,
|
|
||||||
'frame': frame_expanded.flatten().copy(),
|
|
||||||
'region_size': self.region_size,
|
|
||||||
'region_x_offset': self.region_x_offset,
|
|
||||||
'region_y_offset': self.region_y_offset
|
|
||||||
})
|
|
||||||
else:
|
|
||||||
print("queue full. moving on")
|
|
||||||
149
frigate/object_processing.py
Normal file
149
frigate/object_processing.py
Normal file
@@ -0,0 +1,149 @@
|
|||||||
|
import json
|
||||||
|
import hashlib
|
||||||
|
import datetime
|
||||||
|
import copy
|
||||||
|
import cv2
|
||||||
|
import threading
|
||||||
|
import numpy as np
|
||||||
|
from collections import Counter, defaultdict
|
||||||
|
import itertools
|
||||||
|
import pyarrow.plasma as plasma
|
||||||
|
import SharedArray as sa
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
from frigate.util import draw_box_with_label
|
||||||
|
from frigate.edgetpu import load_labels
|
||||||
|
|
||||||
|
PATH_TO_LABELS = '/labelmap.txt'
|
||||||
|
|
||||||
|
LABELS = load_labels(PATH_TO_LABELS)
|
||||||
|
cmap = plt.cm.get_cmap('tab10', len(LABELS.keys()))
|
||||||
|
|
||||||
|
COLOR_MAP = {}
|
||||||
|
for key, val in LABELS.items():
|
||||||
|
COLOR_MAP[val] = tuple(int(round(255 * c)) for c in cmap(key)[:3])
|
||||||
|
|
||||||
|
class TrackedObjectProcessor(threading.Thread):
|
||||||
|
def __init__(self, config, client, topic_prefix, tracked_objects_queue):
|
||||||
|
threading.Thread.__init__(self)
|
||||||
|
self.config = config
|
||||||
|
self.client = client
|
||||||
|
self.topic_prefix = topic_prefix
|
||||||
|
self.tracked_objects_queue = tracked_objects_queue
|
||||||
|
self.plasma_client = plasma.connect("/tmp/plasma")
|
||||||
|
self.camera_data = defaultdict(lambda: {
|
||||||
|
'best_objects': {},
|
||||||
|
'object_status': defaultdict(lambda: defaultdict(lambda: 'OFF')),
|
||||||
|
'tracked_objects': {},
|
||||||
|
'current_frame': np.zeros((720,1280,3), np.uint8),
|
||||||
|
'object_id': None
|
||||||
|
})
|
||||||
|
|
||||||
|
def get_best(self, camera, label):
|
||||||
|
if label in self.camera_data[camera]['best_objects']:
|
||||||
|
return self.camera_data[camera]['best_objects'][label]['frame']
|
||||||
|
else:
|
||||||
|
return None
|
||||||
|
|
||||||
|
def get_current_frame(self, camera):
|
||||||
|
return self.camera_data[camera]['current_frame']
|
||||||
|
|
||||||
|
def run(self):
|
||||||
|
while True:
|
||||||
|
camera, frame_time, tracked_objects = self.tracked_objects_queue.get()
|
||||||
|
|
||||||
|
config = self.config[camera]
|
||||||
|
best_objects = self.camera_data[camera]['best_objects']
|
||||||
|
current_object_status = self.camera_data[camera]['object_status']
|
||||||
|
self.camera_data[camera]['tracked_objects'] = tracked_objects
|
||||||
|
|
||||||
|
###
|
||||||
|
# Draw tracked objects on the frame
|
||||||
|
###
|
||||||
|
object_id_hash = hashlib.sha1(str.encode(f"{camera}{frame_time}"))
|
||||||
|
object_id_bytes = object_id_hash.digest()
|
||||||
|
object_id = plasma.ObjectID(object_id_bytes)
|
||||||
|
current_frame = self.plasma_client.get(object_id, timeout_ms=0)
|
||||||
|
|
||||||
|
if not current_frame is plasma.ObjectNotAvailable:
|
||||||
|
# draw the bounding boxes on the frame
|
||||||
|
for obj in tracked_objects.values():
|
||||||
|
thickness = 2
|
||||||
|
color = COLOR_MAP[obj['label']]
|
||||||
|
|
||||||
|
if obj['frame_time'] != frame_time:
|
||||||
|
thickness = 1
|
||||||
|
color = (255,0,0)
|
||||||
|
|
||||||
|
# draw the bounding boxes on the frame
|
||||||
|
box = obj['box']
|
||||||
|
draw_box_with_label(current_frame, box[0], box[1], box[2], box[3], obj['label'], f"{int(obj['score']*100)}% {int(obj['area'])}", thickness=thickness, color=color)
|
||||||
|
# draw the regions on the frame
|
||||||
|
region = obj['region']
|
||||||
|
cv2.rectangle(current_frame, (region[0], region[1]), (region[2], region[3]), (0,255,0), 1)
|
||||||
|
|
||||||
|
if config['snapshots']['show_timestamp']:
|
||||||
|
time_to_show = datetime.datetime.fromtimestamp(frame_time).strftime("%m/%d/%Y %H:%M:%S")
|
||||||
|
cv2.putText(current_frame, time_to_show, (10, 30), cv2.FONT_HERSHEY_SIMPLEX, fontScale=.8, color=(255, 255, 255), thickness=2)
|
||||||
|
|
||||||
|
###
|
||||||
|
# Set the current frame as ready
|
||||||
|
###
|
||||||
|
self.camera_data[camera]['current_frame'] = current_frame
|
||||||
|
|
||||||
|
# store the object id, so you can delete it at the next loop
|
||||||
|
previous_object_id = self.camera_data[camera]['object_id']
|
||||||
|
if not previous_object_id is None:
|
||||||
|
self.plasma_client.delete([previous_object_id])
|
||||||
|
self.camera_data[camera]['object_id'] = object_id
|
||||||
|
|
||||||
|
###
|
||||||
|
# Maintain the highest scoring recent object and frame for each label
|
||||||
|
###
|
||||||
|
for obj in tracked_objects.values():
|
||||||
|
# if the object wasn't seen on the current frame, skip it
|
||||||
|
if obj['frame_time'] != frame_time:
|
||||||
|
continue
|
||||||
|
if obj['label'] in best_objects:
|
||||||
|
now = datetime.datetime.now().timestamp()
|
||||||
|
# if the object is a higher score than the current best score
|
||||||
|
# or the current object is more than 1 minute old, use the new object
|
||||||
|
if obj['score'] > best_objects[obj['label']]['score'] or (now - best_objects[obj['label']]['frame_time']) > 60:
|
||||||
|
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||||
|
best_objects[obj['label']] = obj
|
||||||
|
else:
|
||||||
|
obj['frame'] = np.copy(self.camera_data[camera]['current_frame'])
|
||||||
|
best_objects[obj['label']] = obj
|
||||||
|
|
||||||
|
###
|
||||||
|
# Report over MQTT
|
||||||
|
###
|
||||||
|
# count objects with more than 2 entries in history by type
|
||||||
|
obj_counter = Counter()
|
||||||
|
for obj in tracked_objects.values():
|
||||||
|
if len(obj['history']) > 1:
|
||||||
|
obj_counter[obj['label']] += 1
|
||||||
|
|
||||||
|
# report on detected objects
|
||||||
|
for obj_name, count in obj_counter.items():
|
||||||
|
new_status = 'ON' if count > 0 else 'OFF'
|
||||||
|
if new_status != current_object_status[obj_name]:
|
||||||
|
current_object_status[obj_name] = new_status
|
||||||
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", new_status, retain=False)
|
||||||
|
# send the best snapshot over mqtt
|
||||||
|
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||||
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||||
|
if ret:
|
||||||
|
jpg_bytes = jpg.tobytes()
|
||||||
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||||
|
|
||||||
|
# expire any objects that are ON and no longer detected
|
||||||
|
expired_objects = [obj_name for obj_name, status in current_object_status.items() if status == 'ON' and not obj_name in obj_counter]
|
||||||
|
for obj_name in expired_objects:
|
||||||
|
current_object_status[obj_name] = 'OFF'
|
||||||
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}", 'OFF', retain=False)
|
||||||
|
# send updated snapshot over mqtt
|
||||||
|
best_frame = cv2.cvtColor(best_objects[obj_name]['frame'], cv2.COLOR_RGB2BGR)
|
||||||
|
ret, jpg = cv2.imencode('.jpg', best_frame)
|
||||||
|
if ret:
|
||||||
|
jpg_bytes = jpg.tobytes()
|
||||||
|
self.client.publish(f"{self.topic_prefix}/{camera}/{obj_name}/snapshot", jpg_bytes, retain=True)
|
||||||
@@ -2,95 +2,158 @@ import time
|
|||||||
import datetime
|
import datetime
|
||||||
import threading
|
import threading
|
||||||
import cv2
|
import cv2
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
import itertools
|
||||||
|
import copy
|
||||||
|
import numpy as np
|
||||||
|
import multiprocessing as mp
|
||||||
|
from collections import defaultdict
|
||||||
|
from scipy.spatial import distance as dist
|
||||||
|
from frigate.util import draw_box_with_label, calculate_region
|
||||||
|
|
||||||
class ObjectCleaner(threading.Thread):
|
class ObjectTracker():
|
||||||
def __init__(self, objects_parsed, detected_objects):
|
def __init__(self, max_disappeared):
|
||||||
threading.Thread.__init__(self)
|
self.tracked_objects = {}
|
||||||
self._objects_parsed = objects_parsed
|
self.disappeared = {}
|
||||||
self._detected_objects = detected_objects
|
self.max_disappeared = max_disappeared
|
||||||
|
|
||||||
def run(self):
|
def register(self, index, obj):
|
||||||
while True:
|
id = f"{obj['frame_time']}-{index}"
|
||||||
|
obj['id'] = id
|
||||||
|
obj['top_score'] = obj['score']
|
||||||
|
self.add_history(obj)
|
||||||
|
self.tracked_objects[id] = obj
|
||||||
|
self.disappeared[id] = 0
|
||||||
|
|
||||||
# wait a bit before checking for expired frames
|
def deregister(self, id):
|
||||||
time.sleep(0.2)
|
del self.tracked_objects[id]
|
||||||
|
del self.disappeared[id]
|
||||||
|
|
||||||
# expire the objects that are more than 1 second old
|
def update(self, id, new_obj):
|
||||||
now = datetime.datetime.now().timestamp()
|
self.disappeared[id] = 0
|
||||||
# look for the first object found within the last second
|
self.tracked_objects[id].update(new_obj)
|
||||||
# (newest objects are appended to the end)
|
self.add_history(self.tracked_objects[id])
|
||||||
detected_objects = self._detected_objects.copy()
|
if self.tracked_objects[id]['score'] > self.tracked_objects[id]['top_score']:
|
||||||
|
self.tracked_objects[id]['top_score'] = self.tracked_objects[id]['score']
|
||||||
|
|
||||||
num_to_delete = 0
|
def add_history(self, obj):
|
||||||
for obj in detected_objects:
|
entry = {
|
||||||
if now-obj['frame_time']<2:
|
'score': obj['score'],
|
||||||
break
|
'box': obj['box'],
|
||||||
num_to_delete += 1
|
'region': obj['region'],
|
||||||
if num_to_delete > 0:
|
'centroid': obj['centroid'],
|
||||||
del self._detected_objects[:num_to_delete]
|
'frame_time': obj['frame_time']
|
||||||
|
}
|
||||||
|
if 'history' in obj:
|
||||||
|
obj['history'].append(entry)
|
||||||
|
else:
|
||||||
|
obj['history'] = [entry]
|
||||||
|
|
||||||
# notify that parsed objects were changed
|
def match_and_update(self, frame_time, new_objects):
|
||||||
with self._objects_parsed:
|
# group by name
|
||||||
self._objects_parsed.notify_all()
|
new_object_groups = defaultdict(lambda: [])
|
||||||
|
for obj in new_objects:
|
||||||
|
new_object_groups[obj[0]].append({
|
||||||
|
'label': obj[0],
|
||||||
|
'score': obj[1],
|
||||||
|
'box': obj[2],
|
||||||
|
'area': obj[3],
|
||||||
|
'region': obj[4],
|
||||||
|
'frame_time': frame_time
|
||||||
|
})
|
||||||
|
|
||||||
|
# update any tracked objects with labels that are not
|
||||||
|
# seen in the current objects and deregister if needed
|
||||||
|
for obj in list(self.tracked_objects.values()):
|
||||||
|
if not obj['label'] in new_object_groups:
|
||||||
|
if self.disappeared[obj['id']] >= self.max_disappeared:
|
||||||
|
self.deregister(obj['id'])
|
||||||
|
else:
|
||||||
|
self.disappeared[obj['id']] += 1
|
||||||
|
|
||||||
# Maintains the frame and person with the highest score from the most recent
|
if len(new_objects) == 0:
|
||||||
# motion event
|
return
|
||||||
class BestPersonFrame(threading.Thread):
|
|
||||||
def __init__(self, objects_parsed, recent_frames, detected_objects):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.objects_parsed = objects_parsed
|
|
||||||
self.recent_frames = recent_frames
|
|
||||||
self.detected_objects = detected_objects
|
|
||||||
self.best_person = None
|
|
||||||
self.best_frame = None
|
|
||||||
|
|
||||||
def run(self):
|
# track objects for each label type
|
||||||
while True:
|
for label, group in new_object_groups.items():
|
||||||
|
current_objects = [o for o in self.tracked_objects.values() if o['label'] == label]
|
||||||
|
current_ids = [o['id'] for o in current_objects]
|
||||||
|
current_centroids = np.array([o['centroid'] for o in current_objects])
|
||||||
|
|
||||||
# wait until objects have been parsed
|
# compute centroids of new objects
|
||||||
with self.objects_parsed:
|
for obj in group:
|
||||||
self.objects_parsed.wait()
|
centroid_x = int((obj['box'][0]+obj['box'][2]) / 2.0)
|
||||||
|
centroid_y = int((obj['box'][1]+obj['box'][3]) / 2.0)
|
||||||
|
obj['centroid'] = (centroid_x, centroid_y)
|
||||||
|
|
||||||
# make a copy of detected objects
|
if len(current_objects) == 0:
|
||||||
detected_objects = self.detected_objects.copy()
|
for index, obj in enumerate(group):
|
||||||
detected_people = [obj for obj in detected_objects if obj['name'] == 'person']
|
self.register(index, obj)
|
||||||
|
return
|
||||||
|
|
||||||
# get the highest scoring person
|
new_centroids = np.array([o['centroid'] for o in group])
|
||||||
new_best_person = max(detected_people, key=lambda x:x['score'], default=self.best_person)
|
|
||||||
|
|
||||||
# if there isnt a person, continue
|
# compute the distance between each pair of tracked
|
||||||
if new_best_person is None:
|
# centroids and new centroids, respectively -- our
|
||||||
continue
|
# goal will be to match each new centroid to an existing
|
||||||
|
# object centroid
|
||||||
|
D = dist.cdist(current_centroids, new_centroids)
|
||||||
|
|
||||||
# if there is no current best_person
|
# in order to perform this matching we must (1) find the
|
||||||
if self.best_person is None:
|
# smallest value in each row and then (2) sort the row
|
||||||
self.best_person = new_best_person
|
# indexes based on their minimum values so that the row
|
||||||
# if there is already a best_person
|
# with the smallest value is at the *front* of the index
|
||||||
|
# list
|
||||||
|
rows = D.min(axis=1).argsort()
|
||||||
|
|
||||||
|
# next, we perform a similar process on the columns by
|
||||||
|
# finding the smallest value in each column and then
|
||||||
|
# sorting using the previously computed row index list
|
||||||
|
cols = D.argmin(axis=1)[rows]
|
||||||
|
|
||||||
|
# in order to determine if we need to update, register,
|
||||||
|
# or deregister an object we need to keep track of which
|
||||||
|
# of the rows and column indexes we have already examined
|
||||||
|
usedRows = set()
|
||||||
|
usedCols = set()
|
||||||
|
|
||||||
|
# loop over the combination of the (row, column) index
|
||||||
|
# tuples
|
||||||
|
for (row, col) in zip(rows, cols):
|
||||||
|
# if we have already examined either the row or
|
||||||
|
# column value before, ignore it
|
||||||
|
if row in usedRows or col in usedCols:
|
||||||
|
continue
|
||||||
|
|
||||||
|
# otherwise, grab the object ID for the current row,
|
||||||
|
# set its new centroid, and reset the disappeared
|
||||||
|
# counter
|
||||||
|
objectID = current_ids[row]
|
||||||
|
self.update(objectID, group[col])
|
||||||
|
|
||||||
|
# indicate that we have examined each of the row and
|
||||||
|
# column indexes, respectively
|
||||||
|
usedRows.add(row)
|
||||||
|
usedCols.add(col)
|
||||||
|
|
||||||
|
# compute the column index we have NOT yet examined
|
||||||
|
unusedRows = set(range(0, D.shape[0])).difference(usedRows)
|
||||||
|
unusedCols = set(range(0, D.shape[1])).difference(usedCols)
|
||||||
|
|
||||||
|
# in the event that the number of object centroids is
|
||||||
|
# equal or greater than the number of input centroids
|
||||||
|
# we need to check and see if some of these objects have
|
||||||
|
# potentially disappeared
|
||||||
|
if D.shape[0] >= D.shape[1]:
|
||||||
|
for row in unusedRows:
|
||||||
|
id = current_ids[row]
|
||||||
|
|
||||||
|
if self.disappeared[id] >= self.max_disappeared:
|
||||||
|
self.deregister(id)
|
||||||
|
else:
|
||||||
|
self.disappeared[id] += 1
|
||||||
|
# if the number of input centroids is greater
|
||||||
|
# than the number of existing object centroids we need to
|
||||||
|
# register each new input centroid as a trackable object
|
||||||
else:
|
else:
|
||||||
now = datetime.datetime.now().timestamp()
|
for col in unusedCols:
|
||||||
# if the new best person is a higher score than the current best person
|
self.register(col, group[col])
|
||||||
# or the current person is more than 1 minute old, use the new best person
|
|
||||||
if new_best_person['score'] > self.best_person['score'] or (now - self.best_person['frame_time']) > 60:
|
|
||||||
self.best_person = new_best_person
|
|
||||||
|
|
||||||
# make a copy of the recent frames
|
|
||||||
recent_frames = self.recent_frames.copy()
|
|
||||||
|
|
||||||
if not self.best_person is None and self.best_person['frame_time'] in recent_frames:
|
|
||||||
best_frame = recent_frames[self.best_person['frame_time']]
|
|
||||||
best_frame = cv2.cvtColor(best_frame, cv2.COLOR_BGR2RGB)
|
|
||||||
# draw the bounding box on the frame
|
|
||||||
vis_util.draw_bounding_box_on_image_array(best_frame,
|
|
||||||
self.best_person['ymin'],
|
|
||||||
self.best_person['xmin'],
|
|
||||||
self.best_person['ymax'],
|
|
||||||
self.best_person['xmax'],
|
|
||||||
color='red',
|
|
||||||
thickness=2,
|
|
||||||
display_str_list=["{}: {}%".format(self.best_person['name'],int(self.best_person['score']*100))],
|
|
||||||
use_normalized_coordinates=False)
|
|
||||||
|
|
||||||
# convert back to BGR
|
|
||||||
self.best_frame = cv2.cvtColor(best_frame, cv2.COLOR_RGB2BGR)
|
|
||||||
|
|||||||
130
frigate/util.py
Normal file → Executable file
130
frigate/util.py
Normal file → Executable file
@@ -1,5 +1,129 @@
|
|||||||
|
import datetime
|
||||||
|
import collections
|
||||||
import numpy as np
|
import numpy as np
|
||||||
|
import cv2
|
||||||
|
import threading
|
||||||
|
import matplotlib.pyplot as plt
|
||||||
|
|
||||||
# convert shared memory array into numpy array
|
def draw_box_with_label(frame, x_min, y_min, x_max, y_max, label, info, thickness=2, color=None, position='ul'):
|
||||||
def tonumpyarray(mp_arr):
|
if color is None:
|
||||||
return np.frombuffer(mp_arr.get_obj(), dtype=np.uint8)
|
color = (0,0,255)
|
||||||
|
display_text = "{}: {}".format(label, info)
|
||||||
|
cv2.rectangle(frame, (x_min, y_min), (x_max, y_max), color, thickness)
|
||||||
|
font_scale = 0.5
|
||||||
|
font = cv2.FONT_HERSHEY_SIMPLEX
|
||||||
|
# get the width and height of the text box
|
||||||
|
size = cv2.getTextSize(display_text, font, fontScale=font_scale, thickness=2)
|
||||||
|
text_width = size[0][0]
|
||||||
|
text_height = size[0][1]
|
||||||
|
line_height = text_height + size[1]
|
||||||
|
# set the text start position
|
||||||
|
if position == 'ul':
|
||||||
|
text_offset_x = x_min
|
||||||
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||||
|
elif position == 'ur':
|
||||||
|
text_offset_x = x_max - (text_width+8)
|
||||||
|
text_offset_y = 0 if y_min < line_height else y_min - (line_height+8)
|
||||||
|
elif position == 'bl':
|
||||||
|
text_offset_x = x_min
|
||||||
|
text_offset_y = y_max
|
||||||
|
elif position == 'br':
|
||||||
|
text_offset_x = x_max - (text_width+8)
|
||||||
|
text_offset_y = y_max
|
||||||
|
# make the coords of the box with a small padding of two pixels
|
||||||
|
textbox_coords = ((text_offset_x, text_offset_y), (text_offset_x + text_width + 2, text_offset_y + line_height))
|
||||||
|
cv2.rectangle(frame, textbox_coords[0], textbox_coords[1], color, cv2.FILLED)
|
||||||
|
cv2.putText(frame, display_text, (text_offset_x, text_offset_y + line_height - 3), font, fontScale=font_scale, color=(0, 0, 0), thickness=2)
|
||||||
|
|
||||||
|
def calculate_region(frame_shape, xmin, ymin, xmax, ymax, multiplier=2):
|
||||||
|
# size is larger than longest edge
|
||||||
|
size = int(max(xmax-xmin, ymax-ymin)*multiplier)
|
||||||
|
# if the size is too big to fit in the frame
|
||||||
|
if size > min(frame_shape[0], frame_shape[1]):
|
||||||
|
size = min(frame_shape[0], frame_shape[1])
|
||||||
|
|
||||||
|
# x_offset is midpoint of bounding box minus half the size
|
||||||
|
x_offset = int((xmax-xmin)/2.0+xmin-size/2.0)
|
||||||
|
# if outside the image
|
||||||
|
if x_offset < 0:
|
||||||
|
x_offset = 0
|
||||||
|
elif x_offset > (frame_shape[1]-size):
|
||||||
|
x_offset = (frame_shape[1]-size)
|
||||||
|
|
||||||
|
# y_offset is midpoint of bounding box minus half the size
|
||||||
|
y_offset = int((ymax-ymin)/2.0+ymin-size/2.0)
|
||||||
|
# if outside the image
|
||||||
|
if y_offset < 0:
|
||||||
|
y_offset = 0
|
||||||
|
elif y_offset > (frame_shape[0]-size):
|
||||||
|
y_offset = (frame_shape[0]-size)
|
||||||
|
|
||||||
|
return (x_offset, y_offset, x_offset+size, y_offset+size)
|
||||||
|
|
||||||
|
def intersection(box_a, box_b):
|
||||||
|
return (
|
||||||
|
max(box_a[0], box_b[0]),
|
||||||
|
max(box_a[1], box_b[1]),
|
||||||
|
min(box_a[2], box_b[2]),
|
||||||
|
min(box_a[3], box_b[3])
|
||||||
|
)
|
||||||
|
|
||||||
|
def area(box):
|
||||||
|
return (box[2]-box[0] + 1)*(box[3]-box[1] + 1)
|
||||||
|
|
||||||
|
def intersection_over_union(box_a, box_b):
|
||||||
|
# determine the (x, y)-coordinates of the intersection rectangle
|
||||||
|
intersect = intersection(box_a, box_b)
|
||||||
|
|
||||||
|
# compute the area of intersection rectangle
|
||||||
|
inter_area = max(0, intersect[2] - intersect[0] + 1) * max(0, intersect[3] - intersect[1] + 1)
|
||||||
|
|
||||||
|
if inter_area == 0:
|
||||||
|
return 0.0
|
||||||
|
|
||||||
|
# compute the area of both the prediction and ground-truth
|
||||||
|
# rectangles
|
||||||
|
box_a_area = (box_a[2] - box_a[0] + 1) * (box_a[3] - box_a[1] + 1)
|
||||||
|
box_b_area = (box_b[2] - box_b[0] + 1) * (box_b[3] - box_b[1] + 1)
|
||||||
|
|
||||||
|
# compute the intersection over union by taking the intersection
|
||||||
|
# area and dividing it by the sum of prediction + ground-truth
|
||||||
|
# areas - the interesection area
|
||||||
|
iou = inter_area / float(box_a_area + box_b_area - inter_area)
|
||||||
|
|
||||||
|
# return the intersection over union value
|
||||||
|
return iou
|
||||||
|
|
||||||
|
def clipped(obj, frame_shape):
|
||||||
|
# if the object is within 5 pixels of the region border, and the region is not on the edge
|
||||||
|
# consider the object to be clipped
|
||||||
|
box = obj[2]
|
||||||
|
region = obj[4]
|
||||||
|
if ((region[0] > 5 and box[0]-region[0] <= 5) or
|
||||||
|
(region[1] > 5 and box[1]-region[1] <= 5) or
|
||||||
|
(frame_shape[1]-region[2] > 5 and region[2]-box[2] <= 5) or
|
||||||
|
(frame_shape[0]-region[3] > 5 and region[3]-box[3] <= 5)):
|
||||||
|
return True
|
||||||
|
else:
|
||||||
|
return False
|
||||||
|
|
||||||
|
class EventsPerSecond:
|
||||||
|
def __init__(self, max_events=1000):
|
||||||
|
self._start = None
|
||||||
|
self._max_events = max_events
|
||||||
|
self._timestamps = []
|
||||||
|
|
||||||
|
def start(self):
|
||||||
|
self._start = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
def update(self):
|
||||||
|
self._timestamps.append(datetime.datetime.now().timestamp())
|
||||||
|
# truncate the list when it goes 100 over the max_size
|
||||||
|
if len(self._timestamps) > self._max_events+100:
|
||||||
|
self._timestamps = self._timestamps[(1-self._max_events):]
|
||||||
|
|
||||||
|
def eps(self, last_n_seconds=10):
|
||||||
|
# compute the (approximate) events in the last n seconds
|
||||||
|
now = datetime.datetime.now().timestamp()
|
||||||
|
seconds = min(now-self._start, last_n_seconds)
|
||||||
|
return len([t for t in self._timestamps if t > (now-last_n_seconds)]) / seconds
|
||||||
|
|||||||
555
frigate/video.py
Normal file → Executable file
555
frigate/video.py
Normal file → Executable file
@@ -2,267 +2,376 @@ import os
|
|||||||
import time
|
import time
|
||||||
import datetime
|
import datetime
|
||||||
import cv2
|
import cv2
|
||||||
|
import queue
|
||||||
import threading
|
import threading
|
||||||
import ctypes
|
import ctypes
|
||||||
import multiprocessing as mp
|
import multiprocessing as mp
|
||||||
from object_detection.utils import visualization_utils as vis_util
|
import subprocess as sp
|
||||||
from . util import tonumpyarray
|
import numpy as np
|
||||||
from . object_detection import FramePrepper
|
import hashlib
|
||||||
from . objects import ObjectCleaner, BestPersonFrame
|
import pyarrow.plasma as plasma
|
||||||
from . mqtt import MqttObjectPublisher
|
import SharedArray as sa
|
||||||
|
import copy
|
||||||
|
import itertools
|
||||||
|
import json
|
||||||
|
from collections import defaultdict
|
||||||
|
from frigate.util import draw_box_with_label, area, calculate_region, clipped, intersection_over_union, intersection, EventsPerSecond
|
||||||
|
from frigate.objects import ObjectTracker
|
||||||
|
from frigate.edgetpu import RemoteObjectDetector
|
||||||
|
from frigate.motion import MotionDetector
|
||||||
|
|
||||||
# fetch the frames as fast a possible and store current frame in a shared memory array
|
def get_frame_shape(source):
|
||||||
def fetch_frames(shared_arr, shared_frame_time, frame_lock, frame_ready, frame_shape, rtsp_url):
|
ffprobe_cmd = " ".join([
|
||||||
# convert shared memory array into numpy and shape into image array
|
'ffprobe',
|
||||||
arr = tonumpyarray(shared_arr).reshape(frame_shape)
|
'-v',
|
||||||
|
'panic',
|
||||||
|
'-show_error',
|
||||||
|
'-show_streams',
|
||||||
|
'-of',
|
||||||
|
'json',
|
||||||
|
'"'+source+'"'
|
||||||
|
])
|
||||||
|
print(ffprobe_cmd)
|
||||||
|
p = sp.Popen(ffprobe_cmd, stdout=sp.PIPE, shell=True)
|
||||||
|
(output, err) = p.communicate()
|
||||||
|
p_status = p.wait()
|
||||||
|
info = json.loads(output)
|
||||||
|
print(info)
|
||||||
|
|
||||||
# start the video capture
|
video_info = [s for s in info['streams'] if s['codec_type'] == 'video'][0]
|
||||||
video = cv2.VideoCapture()
|
|
||||||
video.open(rtsp_url)
|
|
||||||
# keep the buffer small so we minimize old data
|
|
||||||
video.set(cv2.CAP_PROP_BUFFERSIZE,1)
|
|
||||||
|
|
||||||
bad_frame_counter = 0
|
if video_info['height'] != 0 and video_info['width'] != 0:
|
||||||
while True:
|
return (video_info['height'], video_info['width'], 3)
|
||||||
# check if the video stream is still open, and reopen if needed
|
|
||||||
if not video.isOpened():
|
|
||||||
success = video.open(rtsp_url)
|
|
||||||
if not success:
|
|
||||||
time.sleep(1)
|
|
||||||
continue
|
|
||||||
# grab the frame, but dont decode it yet
|
|
||||||
ret = video.grab()
|
|
||||||
# snapshot the time the frame was grabbed
|
|
||||||
frame_time = datetime.datetime.now()
|
|
||||||
if ret:
|
|
||||||
# go ahead and decode the current frame
|
|
||||||
ret, frame = video.retrieve()
|
|
||||||
if ret:
|
|
||||||
# Lock access and update frame
|
|
||||||
with frame_lock:
|
|
||||||
arr[:] = frame
|
|
||||||
shared_frame_time.value = frame_time.timestamp()
|
|
||||||
# Notify with the condition that a new frame is ready
|
|
||||||
with frame_ready:
|
|
||||||
frame_ready.notify_all()
|
|
||||||
bad_frame_counter = 0
|
|
||||||
else:
|
|
||||||
print("Unable to decode frame")
|
|
||||||
bad_frame_counter += 1
|
|
||||||
else:
|
|
||||||
print("Unable to grab a frame")
|
|
||||||
bad_frame_counter += 1
|
|
||||||
|
|
||||||
if bad_frame_counter > 100:
|
# fallback to using opencv if ffprobe didnt succeed
|
||||||
video.release()
|
video = cv2.VideoCapture(source)
|
||||||
|
|
||||||
video.release()
|
|
||||||
|
|
||||||
# Stores 2 seconds worth of frames when motion is detected so they can be used for other threads
|
|
||||||
class FrameTracker(threading.Thread):
|
|
||||||
def __init__(self, shared_frame, frame_time, frame_ready, frame_lock, recent_frames):
|
|
||||||
threading.Thread.__init__(self)
|
|
||||||
self.shared_frame = shared_frame
|
|
||||||
self.frame_time = frame_time
|
|
||||||
self.frame_ready = frame_ready
|
|
||||||
self.frame_lock = frame_lock
|
|
||||||
self.recent_frames = recent_frames
|
|
||||||
|
|
||||||
def run(self):
|
|
||||||
frame_time = 0.0
|
|
||||||
while True:
|
|
||||||
now = datetime.datetime.now().timestamp()
|
|
||||||
# wait for a frame
|
|
||||||
with self.frame_ready:
|
|
||||||
# if there isnt a frame ready for processing or it is old, wait for a signal
|
|
||||||
if self.frame_time.value == frame_time or (now - self.frame_time.value) > 0.5:
|
|
||||||
self.frame_ready.wait()
|
|
||||||
|
|
||||||
# lock and make a copy of the frame
|
|
||||||
with self.frame_lock:
|
|
||||||
frame = self.shared_frame.copy()
|
|
||||||
frame_time = self.frame_time.value
|
|
||||||
|
|
||||||
# add the frame to recent frames
|
|
||||||
self.recent_frames[frame_time] = frame
|
|
||||||
|
|
||||||
# delete any old frames
|
|
||||||
stored_frame_times = list(self.recent_frames.keys())
|
|
||||||
for k in stored_frame_times:
|
|
||||||
if (now - k) > 2:
|
|
||||||
del self.recent_frames[k]
|
|
||||||
|
|
||||||
def get_frame_shape(rtsp_url):
|
|
||||||
# capture a single frame and check the frame shape so the correct array
|
|
||||||
# size can be allocated in memory
|
|
||||||
video = cv2.VideoCapture(rtsp_url)
|
|
||||||
ret, frame = video.read()
|
ret, frame = video.read()
|
||||||
frame_shape = frame.shape
|
frame_shape = frame.shape
|
||||||
video.release()
|
video.release()
|
||||||
return frame_shape
|
return frame_shape
|
||||||
|
|
||||||
def get_rtsp_url(rtsp_config):
|
def get_ffmpeg_input(ffmpeg_input):
|
||||||
if (rtsp_config['password'].startswith('$')):
|
frigate_vars = {k: v for k, v in os.environ.items() if k.startswith('FRIGATE_')}
|
||||||
rtsp_config['password'] = os.getenv(rtsp_config['password'][1:])
|
return ffmpeg_input.format(**frigate_vars)
|
||||||
return 'rtsp://{}:{}@{}:{}{}'.format(rtsp_config['user'],
|
|
||||||
rtsp_config['password'], rtsp_config['host'], rtsp_config['port'],
|
|
||||||
rtsp_config['path'])
|
|
||||||
|
|
||||||
class Camera:
|
def filtered(obj, objects_to_track, object_filters, mask):
|
||||||
def __init__(self, name, config, prepped_frame_queue, mqtt_client, mqtt_prefix):
|
object_name = obj[0]
|
||||||
self.name = name
|
|
||||||
self.config = config
|
|
||||||
self.detected_objects = []
|
|
||||||
self.recent_frames = {}
|
|
||||||
self.rtsp_url = get_rtsp_url(self.config['rtsp'])
|
|
||||||
self.regions = self.config['regions']
|
|
||||||
self.frame_shape = get_frame_shape(self.rtsp_url)
|
|
||||||
self.mqtt_client = mqtt_client
|
|
||||||
self.mqtt_topic_prefix = '{}/{}'.format(mqtt_prefix, self.name)
|
|
||||||
|
|
||||||
# compute the flattened array length from the shape of the frame
|
if not object_name in objects_to_track:
|
||||||
flat_array_length = self.frame_shape[0] * self.frame_shape[1] * self.frame_shape[2]
|
return True
|
||||||
# create shared array for storing the full frame image data
|
|
||||||
self.shared_frame_array = mp.Array(ctypes.c_uint8, flat_array_length)
|
|
||||||
# create shared value for storing the frame_time
|
|
||||||
self.shared_frame_time = mp.Value('d', 0.0)
|
|
||||||
# Lock to control access to the frame
|
|
||||||
self.frame_lock = mp.Lock()
|
|
||||||
# Condition for notifying that a new frame is ready
|
|
||||||
self.frame_ready = mp.Condition()
|
|
||||||
# Condition for notifying that objects were parsed
|
|
||||||
self.objects_parsed = mp.Condition()
|
|
||||||
|
|
||||||
# shape current frame so it can be treated as a numpy image
|
if object_name in object_filters:
|
||||||
self.shared_frame_np = tonumpyarray(self.shared_frame_array).reshape(self.frame_shape)
|
obj_settings = object_filters[object_name]
|
||||||
|
|
||||||
# create the process to capture frames from the RTSP stream and store in a shared array
|
# if the min area is larger than the
|
||||||
self.capture_process = mp.Process(target=fetch_frames, args=(self.shared_frame_array,
|
# detected object, don't add it to detected objects
|
||||||
self.shared_frame_time, self.frame_lock, self.frame_ready, self.frame_shape, self.rtsp_url))
|
if obj_settings.get('min_area',-1) > obj[3]:
|
||||||
self.capture_process.daemon = True
|
return True
|
||||||
|
|
||||||
# for each region, create a separate thread to resize the region and prep for detection
|
# if the detected object is larger than the
|
||||||
self.detection_prep_threads = []
|
# max area, don't add it to detected objects
|
||||||
for region in self.config['regions']:
|
if obj_settings.get('max_area', 24000000) < obj[3]:
|
||||||
self.detection_prep_threads.append(FramePrepper(
|
return True
|
||||||
self.name,
|
|
||||||
self.shared_frame_np,
|
|
||||||
self.shared_frame_time,
|
|
||||||
self.frame_ready,
|
|
||||||
self.frame_lock,
|
|
||||||
region['size'], region['x_offset'], region['y_offset'],
|
|
||||||
prepped_frame_queue
|
|
||||||
))
|
|
||||||
|
|
||||||
# start a thread to store recent motion frames for processing
|
# if the score is lower than the threshold, skip
|
||||||
self.frame_tracker = FrameTracker(self.shared_frame_np, self.shared_frame_time,
|
if obj_settings.get('threshold', 0) > obj[1]:
|
||||||
self.frame_ready, self.frame_lock, self.recent_frames)
|
return True
|
||||||
self.frame_tracker.start()
|
|
||||||
|
|
||||||
# start a thread to store the highest scoring recent person frame
|
# compute the coordinates of the object and make sure
|
||||||
self.best_person_frame = BestPersonFrame(self.objects_parsed, self.recent_frames, self.detected_objects)
|
# the location isnt outside the bounds of the image (can happen from rounding)
|
||||||
self.best_person_frame.start()
|
y_location = min(int(obj[2][3]), len(mask)-1)
|
||||||
|
x_location = min(int((obj[2][2]-obj[2][0])/2.0)+obj[2][0], len(mask[0])-1)
|
||||||
|
|
||||||
# start a thread to expire objects from the detected objects list
|
# if the object is in a masked location, don't add it to detected objects
|
||||||
self.object_cleaner = ObjectCleaner(self.objects_parsed, self.detected_objects)
|
if mask[y_location][x_location] == [0]:
|
||||||
self.object_cleaner.start()
|
return True
|
||||||
|
|
||||||
# start a thread to publish object scores (currently only person)
|
return False
|
||||||
mqtt_publisher = MqttObjectPublisher(self.mqtt_client, self.mqtt_topic_prefix, self.objects_parsed, self.detected_objects)
|
|
||||||
mqtt_publisher.start()
|
|
||||||
|
|
||||||
# load in the mask for person detection
|
def create_tensor_input(frame, region):
|
||||||
if 'mask' in self.config:
|
cropped_frame = frame[region[1]:region[3], region[0]:region[2]]
|
||||||
self.mask = cv2.imread("/config/{}".format(self.config['mask']), cv2.IMREAD_GRAYSCALE)
|
|
||||||
else:
|
|
||||||
self.mask = np.zeros((self.frame_shape[0], self.frame_shape[1], 1), np.uint8)
|
|
||||||
self.mask[:] = 255
|
|
||||||
|
|
||||||
def start(self):
|
# Resize to 300x300 if needed
|
||||||
self.capture_process.start()
|
if cropped_frame.shape != (300, 300, 3):
|
||||||
# start the object detection prep threads
|
cropped_frame = cv2.resize(cropped_frame, dsize=(300, 300), interpolation=cv2.INTER_LINEAR)
|
||||||
for detection_prep_thread in self.detection_prep_threads:
|
|
||||||
detection_prep_thread.start()
|
|
||||||
|
|
||||||
def join(self):
|
# Expand dimensions since the model expects images to have shape: [1, 300, 300, 3]
|
||||||
self.capture_process.join()
|
return np.expand_dims(cropped_frame, axis=0)
|
||||||
|
|
||||||
def get_capture_pid(self):
|
def start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process=None):
|
||||||
return self.capture_process.pid
|
if not ffmpeg_process is None:
|
||||||
|
print("Terminating the existing ffmpeg process...")
|
||||||
|
ffmpeg_process.terminate()
|
||||||
|
try:
|
||||||
|
print("Waiting for ffmpeg to exit gracefully...")
|
||||||
|
ffmpeg_process.wait(timeout=30)
|
||||||
|
except sp.TimeoutExpired:
|
||||||
|
print("FFmpeg didnt exit. Force killing...")
|
||||||
|
ffmpeg_process.kill()
|
||||||
|
ffmpeg_process.wait()
|
||||||
|
|
||||||
def add_objects(self, objects):
|
print("Creating ffmpeg process...")
|
||||||
if len(objects) == 0:
|
print(" ".join(ffmpeg_cmd))
|
||||||
return
|
return sp.Popen(ffmpeg_cmd, stdout = sp.PIPE, bufsize=frame_size*10)
|
||||||
|
|
||||||
for obj in objects:
|
def track_camera(name, config, ffmpeg_global_config, global_objects_config, detection_queue, detected_objects_queue, fps, skipped_fps, detection_fps):
|
||||||
if obj['name'] == 'person':
|
print(f"Starting process for {name}: {os.getpid()}")
|
||||||
person_area = (obj['xmax']-obj['xmin'])*(obj['ymax']-obj['ymin'])
|
|
||||||
# find the matching region
|
|
||||||
region = None
|
|
||||||
for r in self.regions:
|
|
||||||
if (
|
|
||||||
obj['xmin'] >= r['x_offset'] and
|
|
||||||
obj['ymin'] >= r['y_offset'] and
|
|
||||||
obj['xmax'] <= r['x_offset']+r['size'] and
|
|
||||||
obj['ymax'] <= r['y_offset']+r['size']
|
|
||||||
):
|
|
||||||
region = r
|
|
||||||
break
|
|
||||||
|
|
||||||
# if the min person area is larger than the
|
# Merge the ffmpeg config with the global config
|
||||||
# detected person, don't add it to detected objects
|
ffmpeg = config.get('ffmpeg', {})
|
||||||
if region and region['min_person_area'] > person_area:
|
ffmpeg_input = get_ffmpeg_input(ffmpeg['input'])
|
||||||
|
ffmpeg_global_args = ffmpeg.get('global_args', ffmpeg_global_config['global_args'])
|
||||||
|
ffmpeg_hwaccel_args = ffmpeg.get('hwaccel_args', ffmpeg_global_config['hwaccel_args'])
|
||||||
|
ffmpeg_input_args = ffmpeg.get('input_args', ffmpeg_global_config['input_args'])
|
||||||
|
ffmpeg_output_args = ffmpeg.get('output_args', ffmpeg_global_config['output_args'])
|
||||||
|
ffmpeg_cmd = (['ffmpeg'] +
|
||||||
|
ffmpeg_global_args +
|
||||||
|
ffmpeg_hwaccel_args +
|
||||||
|
ffmpeg_input_args +
|
||||||
|
['-i', ffmpeg_input] +
|
||||||
|
ffmpeg_output_args +
|
||||||
|
['pipe:'])
|
||||||
|
|
||||||
|
# Merge the tracked object config with the global config
|
||||||
|
camera_objects_config = config.get('objects', {})
|
||||||
|
# combine tracked objects lists
|
||||||
|
objects_to_track = set().union(global_objects_config.get('track', ['person', 'car', 'truck']), camera_objects_config.get('track', []))
|
||||||
|
# merge object filters
|
||||||
|
global_object_filters = global_objects_config.get('filters', {})
|
||||||
|
camera_object_filters = camera_objects_config.get('filters', {})
|
||||||
|
objects_with_config = set().union(global_object_filters.keys(), camera_object_filters.keys())
|
||||||
|
object_filters = {}
|
||||||
|
for obj in objects_with_config:
|
||||||
|
object_filters[obj] = {**global_object_filters.get(obj, {}), **camera_object_filters.get(obj, {})}
|
||||||
|
|
||||||
|
expected_fps = config['fps']
|
||||||
|
take_frame = config.get('take_frame', 1)
|
||||||
|
|
||||||
|
if 'width' in config and 'height' in config:
|
||||||
|
frame_shape = (config['height'], config['width'], 3)
|
||||||
|
else:
|
||||||
|
frame_shape = get_frame_shape(ffmpeg_input)
|
||||||
|
|
||||||
|
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||||
|
|
||||||
|
try:
|
||||||
|
sa.delete(name)
|
||||||
|
except:
|
||||||
|
pass
|
||||||
|
|
||||||
|
frame = sa.create(name, shape=frame_shape, dtype=np.uint8)
|
||||||
|
|
||||||
|
# load in the mask for object detection
|
||||||
|
if 'mask' in config:
|
||||||
|
mask = cv2.imread("/config/{}".format(config['mask']), cv2.IMREAD_GRAYSCALE)
|
||||||
|
else:
|
||||||
|
mask = None
|
||||||
|
|
||||||
|
if mask is None:
|
||||||
|
mask = np.zeros((frame_shape[0], frame_shape[1], 1), np.uint8)
|
||||||
|
mask[:] = 255
|
||||||
|
|
||||||
|
motion_detector = MotionDetector(frame_shape, mask, resize_factor=6)
|
||||||
|
object_detector = RemoteObjectDetector(name, '/labelmap.txt', detection_queue)
|
||||||
|
|
||||||
|
object_tracker = ObjectTracker(10)
|
||||||
|
|
||||||
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size)
|
||||||
|
|
||||||
|
plasma_client = plasma.connect("/tmp/plasma")
|
||||||
|
frame_num = 0
|
||||||
|
avg_wait = 0.0
|
||||||
|
fps_tracker = EventsPerSecond()
|
||||||
|
skipped_fps_tracker = EventsPerSecond()
|
||||||
|
fps_tracker.start()
|
||||||
|
skipped_fps_tracker.start()
|
||||||
|
object_detector.fps.start()
|
||||||
|
while True:
|
||||||
|
start = datetime.datetime.now().timestamp()
|
||||||
|
frame_bytes = ffmpeg_process.stdout.read(frame_size)
|
||||||
|
duration = datetime.datetime.now().timestamp()-start
|
||||||
|
avg_wait = (avg_wait*99+duration)/100
|
||||||
|
|
||||||
|
if not frame_bytes:
|
||||||
|
rc = ffmpeg_process.poll()
|
||||||
|
if rc is not None:
|
||||||
|
print(f"{name}: ffmpeg_process exited unexpectedly with {rc}")
|
||||||
|
ffmpeg_process = start_or_restart_ffmpeg(ffmpeg_cmd, frame_size, ffmpeg_process)
|
||||||
|
time.sleep(10)
|
||||||
|
else:
|
||||||
|
print(f"{name}: ffmpeg_process is still running but didnt return any bytes")
|
||||||
|
continue
|
||||||
|
|
||||||
|
# limit frame rate
|
||||||
|
frame_num += 1
|
||||||
|
if (frame_num % take_frame) != 0:
|
||||||
|
continue
|
||||||
|
|
||||||
|
fps_tracker.update()
|
||||||
|
fps.value = fps_tracker.eps()
|
||||||
|
detection_fps.value = object_detector.fps.eps()
|
||||||
|
|
||||||
|
frame_time = datetime.datetime.now().timestamp()
|
||||||
|
|
||||||
|
# Store frame in numpy array
|
||||||
|
frame[:] = (np
|
||||||
|
.frombuffer(frame_bytes, np.uint8)
|
||||||
|
.reshape(frame_shape))
|
||||||
|
|
||||||
|
# look for motion
|
||||||
|
motion_boxes = motion_detector.detect(frame)
|
||||||
|
|
||||||
|
# skip object detection if we are below the min_fps and wait time is less than half the average
|
||||||
|
if frame_num > 100 and fps.value < expected_fps-1 and duration < 0.5*avg_wait:
|
||||||
|
skipped_fps_tracker.update()
|
||||||
|
skipped_fps.value = skipped_fps_tracker.eps()
|
||||||
|
continue
|
||||||
|
|
||||||
|
skipped_fps.value = skipped_fps_tracker.eps()
|
||||||
|
|
||||||
|
tracked_objects = object_tracker.tracked_objects.values()
|
||||||
|
|
||||||
|
# merge areas of motion that intersect with a known tracked object into a single area to look at
|
||||||
|
areas_of_interest = []
|
||||||
|
used_motion_boxes = []
|
||||||
|
for obj in tracked_objects:
|
||||||
|
x_min, y_min, x_max, y_max = obj['box']
|
||||||
|
for m_index, motion_box in enumerate(motion_boxes):
|
||||||
|
if area(intersection(obj['box'], motion_box))/area(motion_box) > .5:
|
||||||
|
used_motion_boxes.append(m_index)
|
||||||
|
x_min = min(obj['box'][0], motion_box[0])
|
||||||
|
y_min = min(obj['box'][1], motion_box[1])
|
||||||
|
x_max = max(obj['box'][2], motion_box[2])
|
||||||
|
y_max = max(obj['box'][3], motion_box[3])
|
||||||
|
areas_of_interest.append((x_min, y_min, x_max, y_max))
|
||||||
|
unused_motion_boxes = set(range(0, len(motion_boxes))).difference(used_motion_boxes)
|
||||||
|
|
||||||
|
# compute motion regions
|
||||||
|
motion_regions = [calculate_region(frame_shape, motion_boxes[i][0], motion_boxes[i][1], motion_boxes[i][2], motion_boxes[i][3], 1.2)
|
||||||
|
for i in unused_motion_boxes]
|
||||||
|
|
||||||
|
# compute tracked object regions
|
||||||
|
object_regions = [calculate_region(frame_shape, a[0], a[1], a[2], a[3], 1.2)
|
||||||
|
for a in areas_of_interest]
|
||||||
|
|
||||||
|
# merge regions with high IOU
|
||||||
|
merged_regions = motion_regions+object_regions
|
||||||
|
while True:
|
||||||
|
max_iou = 0.0
|
||||||
|
max_indices = None
|
||||||
|
region_indices = range(len(merged_regions))
|
||||||
|
for a, b in itertools.combinations(region_indices, 2):
|
||||||
|
iou = intersection_over_union(merged_regions[a], merged_regions[b])
|
||||||
|
if iou > max_iou:
|
||||||
|
max_iou = iou
|
||||||
|
max_indices = (a, b)
|
||||||
|
if max_iou > 0.1:
|
||||||
|
a = merged_regions[max_indices[0]]
|
||||||
|
b = merged_regions[max_indices[1]]
|
||||||
|
merged_regions.append(calculate_region(frame_shape,
|
||||||
|
min(a[0], b[0]),
|
||||||
|
min(a[1], b[1]),
|
||||||
|
max(a[2], b[2]),
|
||||||
|
max(a[3], b[3]),
|
||||||
|
1
|
||||||
|
))
|
||||||
|
del merged_regions[max(max_indices[0], max_indices[1])]
|
||||||
|
del merged_regions[min(max_indices[0], max_indices[1])]
|
||||||
|
else:
|
||||||
|
break
|
||||||
|
|
||||||
|
# resize regions and detect
|
||||||
|
detections = []
|
||||||
|
for region in merged_regions:
|
||||||
|
|
||||||
|
tensor_input = create_tensor_input(frame, region)
|
||||||
|
|
||||||
|
region_detections = object_detector.detect(tensor_input)
|
||||||
|
|
||||||
|
for d in region_detections:
|
||||||
|
box = d[2]
|
||||||
|
size = region[2]-region[0]
|
||||||
|
x_min = int((box[1] * size) + region[0])
|
||||||
|
y_min = int((box[0] * size) + region[1])
|
||||||
|
x_max = int((box[3] * size) + region[0])
|
||||||
|
y_max = int((box[2] * size) + region[1])
|
||||||
|
det = (d[0],
|
||||||
|
d[1],
|
||||||
|
(x_min, y_min, x_max, y_max),
|
||||||
|
(x_max-x_min)*(y_max-y_min),
|
||||||
|
region)
|
||||||
|
if filtered(det, objects_to_track, object_filters, mask):
|
||||||
continue
|
continue
|
||||||
|
detections.append(det)
|
||||||
|
|
||||||
# compute the coordinates of the person and make sure
|
#########
|
||||||
# the location isnt outide the bounds of the image (can happen from rounding)
|
# merge objects, check for clipped objects and look again up to N times
|
||||||
y_location = min(int(obj['ymax']), len(self.mask)-1)
|
#########
|
||||||
x_location = min(int((obj['xmax']-obj['xmin'])/2.0), len(self.mask[0])-1)
|
refining = True
|
||||||
|
refine_count = 0
|
||||||
|
while refining and refine_count < 4:
|
||||||
|
refining = False
|
||||||
|
|
||||||
# if the person is in a masked location, continue
|
# group by name
|
||||||
if self.mask[y_location][x_location] == [0]:
|
detected_object_groups = defaultdict(lambda: [])
|
||||||
continue
|
for detection in detections:
|
||||||
|
detected_object_groups[detection[0]].append(detection)
|
||||||
|
|
||||||
self.detected_objects.append(obj)
|
selected_objects = []
|
||||||
|
for group in detected_object_groups.values():
|
||||||
|
|
||||||
with self.objects_parsed:
|
# apply non-maxima suppression to suppress weak, overlapping bounding boxes
|
||||||
self.objects_parsed.notify_all()
|
boxes = [(o[2][0], o[2][1], o[2][2]-o[2][0], o[2][3]-o[2][1])
|
||||||
|
for o in group]
|
||||||
|
confidences = [o[1] for o in group]
|
||||||
|
idxs = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)
|
||||||
|
|
||||||
def get_best_person(self):
|
for index in idxs:
|
||||||
return self.best_person_frame.best_frame
|
obj = group[index[0]]
|
||||||
|
if clipped(obj, frame_shape): #obj['clipped']:
|
||||||
|
box = obj[2]
|
||||||
|
# calculate a new region that will hopefully get the entire object
|
||||||
|
region = calculate_region(frame_shape,
|
||||||
|
box[0], box[1],
|
||||||
|
box[2], box[3])
|
||||||
|
|
||||||
def get_current_frame_with_objects(self):
|
tensor_input = create_tensor_input(frame, region)
|
||||||
# make a copy of the current detected objects
|
# run detection on new region
|
||||||
detected_objects = self.detected_objects.copy()
|
refined_detections = object_detector.detect(tensor_input)
|
||||||
# lock and make a copy of the current frame
|
for d in refined_detections:
|
||||||
with self.frame_lock:
|
box = d[2]
|
||||||
frame = self.shared_frame_np.copy()
|
size = region[2]-region[0]
|
||||||
|
x_min = int((box[1] * size) + region[0])
|
||||||
|
y_min = int((box[0] * size) + region[1])
|
||||||
|
x_max = int((box[3] * size) + region[0])
|
||||||
|
y_max = int((box[2] * size) + region[1])
|
||||||
|
det = (d[0],
|
||||||
|
d[1],
|
||||||
|
(x_min, y_min, x_max, y_max),
|
||||||
|
(x_max-x_min)*(y_max-y_min),
|
||||||
|
region)
|
||||||
|
if filtered(det, objects_to_track, object_filters, mask):
|
||||||
|
continue
|
||||||
|
selected_objects.append(det)
|
||||||
|
|
||||||
# convert to RGB for drawing
|
refining = True
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_BGR2RGB)
|
else:
|
||||||
# draw the bounding boxes on the screen
|
selected_objects.append(obj)
|
||||||
for obj in detected_objects:
|
|
||||||
vis_util.draw_bounding_box_on_image_array(frame,
|
|
||||||
obj['ymin'],
|
|
||||||
obj['xmin'],
|
|
||||||
obj['ymax'],
|
|
||||||
obj['xmax'],
|
|
||||||
color='red',
|
|
||||||
thickness=2,
|
|
||||||
display_str_list=["{}: {}%".format(obj['name'],int(obj['score']*100))],
|
|
||||||
use_normalized_coordinates=False)
|
|
||||||
|
|
||||||
for region in self.regions:
|
# set the detections list to only include top, complete objects
|
||||||
color = (255,255,255)
|
# and new detections
|
||||||
cv2.rectangle(frame, (region['x_offset'], region['y_offset']),
|
detections = selected_objects
|
||||||
(region['x_offset']+region['size'], region['y_offset']+region['size']),
|
|
||||||
color, 2)
|
|
||||||
|
|
||||||
# convert back to BGR
|
|
||||||
frame = cv2.cvtColor(frame, cv2.COLOR_RGB2BGR)
|
|
||||||
|
|
||||||
return frame
|
|
||||||
|
|
||||||
|
if refining:
|
||||||
|
refine_count += 1
|
||||||
|
|
||||||
|
# now that we have refined our detections, we need to track objects
|
||||||
|
object_tracker.match_and_update(frame_time, detections)
|
||||||
|
|
||||||
|
# put the frame in the plasma store
|
||||||
|
object_id = hashlib.sha1(str.encode(f"{name}{frame_time}")).digest()
|
||||||
|
plasma_client.put(frame, plasma.ObjectID(object_id))
|
||||||
|
# add to the queue
|
||||||
|
detected_objects_queue.put((name, frame_time, object_tracker.tracked_objects))
|
||||||
|
|
||||||
|
print(f"{name}: exiting subprocess")
|
||||||
Reference in New Issue
Block a user