mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-27 03:46:15 +08:00
upgrade to python3.8 and switch from plasma store to shared_memory
This commit is contained in:
@@ -63,23 +63,13 @@ WEB_PORT = CONFIG.get('web_port', 5000)
|
||||
DEBUG = (CONFIG.get('debug', '0') == '1')
|
||||
TENSORFLOW_DEVICE = CONFIG.get('tensorflow_device')
|
||||
|
||||
def start_plasma_store():
|
||||
plasma_cmd = ['plasma_store', '-m', '400000000', '-s', '/tmp/plasma']
|
||||
plasma_process = sp.Popen(plasma_cmd, stdout=sp.DEVNULL, stderr=sp.DEVNULL)
|
||||
time.sleep(1)
|
||||
rc = plasma_process.poll()
|
||||
if rc is not None:
|
||||
return None
|
||||
return plasma_process
|
||||
|
||||
class CameraWatchdog(threading.Thread):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, plasma_process, stop_event):
|
||||
def __init__(self, camera_processes, config, tflite_process, tracked_objects_queue, stop_event):
|
||||
threading.Thread.__init__(self)
|
||||
self.camera_processes = camera_processes
|
||||
self.config = config
|
||||
self.tflite_process = tflite_process
|
||||
self.tracked_objects_queue = tracked_objects_queue
|
||||
self.plasma_process = plasma_process
|
||||
self.stop_event = stop_event
|
||||
|
||||
def run(self):
|
||||
@@ -93,12 +83,6 @@ class CameraWatchdog(threading.Thread):
|
||||
break
|
||||
|
||||
now = datetime.datetime.now().timestamp()
|
||||
|
||||
# check the plasma process
|
||||
rc = self.plasma_process.poll()
|
||||
if rc != None:
|
||||
print(f"plasma_process exited unexpectedly with {rc}")
|
||||
self.plasma_process = start_plasma_store()
|
||||
|
||||
# check the detection process
|
||||
detection_start = self.tflite_process.detection_start.value
|
||||
@@ -172,8 +156,6 @@ def main():
|
||||
client.connect(MQTT_HOST, MQTT_PORT, 60)
|
||||
client.loop_start()
|
||||
|
||||
plasma_process = start_plasma_store()
|
||||
|
||||
##
|
||||
# Setup config defaults for cameras
|
||||
##
|
||||
@@ -189,11 +171,16 @@ def main():
|
||||
|
||||
# Queue for clip processing
|
||||
event_queue = mp.Queue()
|
||||
|
||||
# create the detection pipes
|
||||
detection_pipes = {}
|
||||
for name in CONFIG['cameras'].keys():
|
||||
detection_pipes[name] = mp.Pipe(duplex=False)
|
||||
|
||||
# Start the shared tflite process
|
||||
tflite_process = EdgeTPUProcess(TENSORFLOW_DEVICE)
|
||||
tflite_process = EdgeTPUProcess(result_connections={ key:value[1] for (key,value) in detection_pipes.items() }, tf_device=TENSORFLOW_DEVICE)
|
||||
|
||||
# start the camera processes
|
||||
# create the camera processes
|
||||
camera_processes = {}
|
||||
for name, config in CONFIG['cameras'].items():
|
||||
# Merge the ffmpeg config with the global config
|
||||
@@ -236,6 +223,8 @@ def main():
|
||||
frame_shape = (config['height'], config['width'], 3)
|
||||
else:
|
||||
frame_shape = get_frame_shape(ffmpeg_input)
|
||||
|
||||
config['frame_shape'] = frame_shape
|
||||
|
||||
frame_size = frame_shape[0] * frame_shape[1] * frame_shape[2]
|
||||
take_frame = config.get('take_frame', 1)
|
||||
@@ -275,12 +264,13 @@ def main():
|
||||
}
|
||||
|
||||
camera_process = mp.Process(target=track_camera, args=(name, config, frame_queue, frame_shape,
|
||||
tflite_process.detection_queue, tracked_objects_queue, camera_processes[name]['process_fps'],
|
||||
tflite_process.detection_queue, detection_pipes[name][0], tracked_objects_queue, camera_processes[name]['process_fps'],
|
||||
camera_processes[name]['detection_fps'],
|
||||
camera_processes[name]['read_start'], camera_processes[name]['detection_frame'], stop_event))
|
||||
camera_process.daemon = True
|
||||
camera_processes[name]['process'] = camera_process
|
||||
|
||||
# start the camera_processes
|
||||
for name, camera_process in camera_processes.items():
|
||||
camera_process['process'].start()
|
||||
print(f"Camera_process started for {name}: {camera_process['process'].pid}")
|
||||
@@ -291,7 +281,7 @@ def main():
|
||||
object_processor = TrackedObjectProcessor(CONFIG['cameras'], client, MQTT_TOPIC_PREFIX, tracked_objects_queue, event_queue, stop_event)
|
||||
object_processor.start()
|
||||
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, plasma_process, stop_event)
|
||||
camera_watchdog = CameraWatchdog(camera_processes, CONFIG['cameras'], tflite_process, tracked_objects_queue, stop_event)
|
||||
camera_watchdog.start()
|
||||
|
||||
def receiveSignal(signalNumber, frame):
|
||||
@@ -300,11 +290,9 @@ def main():
|
||||
event_processor.join()
|
||||
object_processor.join()
|
||||
camera_watchdog.join()
|
||||
for name, camera_process in camera_processes.items():
|
||||
for camera_process in camera_processes.values():
|
||||
camera_process['capture_thread'].join()
|
||||
rc = camera_watchdog.plasma_process.poll()
|
||||
if rc == None:
|
||||
camera_watchdog.plasma_process.terminate()
|
||||
tflite_process.stop()
|
||||
sys.exit()
|
||||
|
||||
signal.signal(signal.SIGTERM, receiveSignal)
|
||||
@@ -368,9 +356,6 @@ def main():
|
||||
'pid': tflite_process.detect_process.pid
|
||||
}
|
||||
|
||||
rc = camera_watchdog.plasma_process.poll()
|
||||
stats['plasma_store_rc'] = rc
|
||||
|
||||
return jsonify(stats)
|
||||
|
||||
@app.route('/<camera_name>/<label>/best.jpg')
|
||||
@@ -448,8 +433,6 @@ def main():
|
||||
app.run(host='0.0.0.0', port=WEB_PORT, debug=False)
|
||||
|
||||
object_processor.join()
|
||||
|
||||
plasma_process.terminate()
|
||||
|
||||
if __name__ == '__main__':
|
||||
main()
|
||||
|
Reference in New Issue
Block a user