mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-26 19:41:29 +08:00
Improve 640x640 model detection of small objects (#20190)
* Allow larger models to have smaller regions * remove unnecessary hailo resize * Update benchmark * Fix table * Update nvidia specs
This commit is contained in:
@@ -180,12 +180,12 @@ Inference speeds will vary greatly depending on the GPU and the model used.
|
||||
✅ - Accelerated with CUDA Graphs
|
||||
❌ - Not accelerated with CUDA Graphs
|
||||
|
||||
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time
|
||||
| --------------- | ------------------------ | ------------------------- | -------------------------- |
|
||||
| RTX 3050 | t-320: 8 ms s-320: 10 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||
| RTX 3070 | t-320: 6 ms s-320: 8 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||
| RTX A4000 | | | 320: ~ 15 ms |
|
||||
| Tesla P40 | | | 320: ~ 105 ms |
|
||||
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time |
|
||||
| --------------- | ------------------------------------- | ------------------------- | --------------------------- |
|
||||
| RTX 3050 | t-320: 8 ms s-320: 10 ms s-640: 28 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||
| RTX 3070 | t-320: 6 ms s-320: 8 ms s-640: 25 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||
| RTX A4000 | | | 320: ~ 15 ms |
|
||||
| Tesla P40 | | | 320: ~ 105 ms |
|
||||
|
||||
### Apple Silicon
|
||||
|
||||
@@ -197,10 +197,11 @@ Apple Silicon can not run within a container, so a ZMQ proxy is utilized to comm
|
||||
|
||||
:::
|
||||
|
||||
| Name | YOLOv9 Inference Time |
|
||||
| --------- | ---------------------- |
|
||||
| M3 Pro | t-320: 6 ms s-320: 8ms |
|
||||
| M1 | s-320: 9ms |
|
||||
| Name | YOLOv9 Inference Time |
|
||||
| --------- | ------------------------------------ |
|
||||
| M4 | s-20: 10 ms |
|
||||
| M3 Pro | t-320: 6 ms s-320: 8 ms s-640: 20 ms |
|
||||
| M1 | s-320: 9ms |
|
||||
|
||||
### ROCm - AMD GPU
|
||||
|
||||
@@ -234,7 +235,7 @@ The MX3 is a pipelined architecture, where the maximum frames per second support
|
||||
| YOLOv9s | 640 | ~ 41 ms | ~ 110 |
|
||||
| YOLOX-Small | 640 | ~ 16 ms | ~ 263 |
|
||||
| SSDlite MobileNet v2 | 320 | ~ 5 ms | ~ 1056 |
|
||||
|
||||
|
||||
Inference speeds may vary depending on the host platform. The above data was measured on an **Intel 13700 CPU**. Platforms like Raspberry Pi, Orange Pi, and other ARM-based SBCs have different levels of processing capability, which may limit total FPS.
|
||||
|
||||
### Nvidia Jetson
|
||||
|
@@ -33,10 +33,6 @@ def preprocess_tensor(image: np.ndarray, model_w: int, model_h: int) -> np.ndarr
|
||||
image = image[0]
|
||||
|
||||
h, w = image.shape[:2]
|
||||
|
||||
if (w, h) == (320, 320) and (model_w, model_h) == (640, 640):
|
||||
return cv2.resize(image, (model_w, model_h), interpolation=cv2.INTER_LINEAR)
|
||||
|
||||
scale = min(model_w / w, model_h / h)
|
||||
new_w, new_h = int(w * scale), int(h * scale)
|
||||
resized_image = cv2.resize(image, (new_w, new_h), interpolation=cv2.INTER_CUBIC)
|
||||
|
@@ -269,7 +269,20 @@ def is_object_filtered(obj, objects_to_track, object_filters):
|
||||
|
||||
def get_min_region_size(model_config: ModelConfig) -> int:
|
||||
"""Get the min region size."""
|
||||
return max(model_config.height, model_config.width)
|
||||
largest_dimension = max(model_config.height, model_config.width)
|
||||
|
||||
if largest_dimension > 320:
|
||||
# We originally tested allowing any model to have a region down to half of the model size
|
||||
# but this led to many false positives. In this case we specifically target larger models
|
||||
# which can benefit from a smaller region in some cases to detect smaller objects.
|
||||
half = int(largest_dimension / 2)
|
||||
|
||||
if half % 4 == 0:
|
||||
return half
|
||||
|
||||
return int((half + 3) / 4) * 4
|
||||
|
||||
return largest_dimension
|
||||
|
||||
|
||||
def create_tensor_input(frame, model_config: ModelConfig, region):
|
||||
|
Reference in New Issue
Block a user