mirror of
https://github.com/blakeblackshear/frigate.git
synced 2025-09-26 11:31:28 +08:00
Improve 640x640 model detection of small objects (#20190)
* Allow larger models to have smaller regions * remove unnecessary hailo resize * Update benchmark * Fix table * Update nvidia specs
This commit is contained in:
@@ -180,12 +180,12 @@ Inference speeds will vary greatly depending on the GPU and the model used.
|
||||
✅ - Accelerated with CUDA Graphs
|
||||
❌ - Not accelerated with CUDA Graphs
|
||||
|
||||
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time
|
||||
| --------------- | ------------------------ | ------------------------- | -------------------------- |
|
||||
| RTX 3050 | t-320: 8 ms s-320: 10 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||
| RTX 3070 | t-320: 6 ms s-320: 8 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||
| RTX A4000 | | | 320: ~ 15 ms |
|
||||
| Tesla P40 | | | 320: ~ 105 ms |
|
||||
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time |
|
||||
| --------------- | ------------------------------------- | ------------------------- | --------------------------- |
|
||||
| RTX 3050 | t-320: 8 ms s-320: 10 ms s-640: 28 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
|
||||
| RTX 3070 | t-320: 6 ms s-320: 8 ms s-640: 25 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
|
||||
| RTX A4000 | | | 320: ~ 15 ms |
|
||||
| Tesla P40 | | | 320: ~ 105 ms |
|
||||
|
||||
### Apple Silicon
|
||||
|
||||
@@ -197,10 +197,11 @@ Apple Silicon can not run within a container, so a ZMQ proxy is utilized to comm
|
||||
|
||||
:::
|
||||
|
||||
| Name | YOLOv9 Inference Time |
|
||||
| --------- | ---------------------- |
|
||||
| M3 Pro | t-320: 6 ms s-320: 8ms |
|
||||
| M1 | s-320: 9ms |
|
||||
| Name | YOLOv9 Inference Time |
|
||||
| --------- | ------------------------------------ |
|
||||
| M4 | s-20: 10 ms |
|
||||
| M3 Pro | t-320: 6 ms s-320: 8 ms s-640: 20 ms |
|
||||
| M1 | s-320: 9ms |
|
||||
|
||||
### ROCm - AMD GPU
|
||||
|
||||
@@ -234,7 +235,7 @@ The MX3 is a pipelined architecture, where the maximum frames per second support
|
||||
| YOLOv9s | 640 | ~ 41 ms | ~ 110 |
|
||||
| YOLOX-Small | 640 | ~ 16 ms | ~ 263 |
|
||||
| SSDlite MobileNet v2 | 320 | ~ 5 ms | ~ 1056 |
|
||||
|
||||
|
||||
Inference speeds may vary depending on the host platform. The above data was measured on an **Intel 13700 CPU**. Platforms like Raspberry Pi, Orange Pi, and other ARM-based SBCs have different levels of processing capability, which may limit total FPS.
|
||||
|
||||
### Nvidia Jetson
|
||||
|
Reference in New Issue
Block a user