Improve 640x640 model detection of small objects (#20190)

* Allow larger models to have smaller regions

* remove unnecessary hailo resize

* Update benchmark

* Fix table

* Update nvidia specs
This commit is contained in:
Nicolas Mowen
2025-09-23 14:49:54 -06:00
committed by GitHub
parent 2f99a17e64
commit 7e2f5a3017
3 changed files with 26 additions and 16 deletions

View File

@@ -180,12 +180,12 @@ Inference speeds will vary greatly depending on the GPU and the model used.
✅ - Accelerated with CUDA Graphs
❌ - Not accelerated with CUDA Graphs
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time
| --------------- | ------------------------ | ------------------------- | -------------------------- |
| RTX 3050 | t-320: 8 ms s-320: 10 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
| RTX 3070 | t-320: 6 ms s-320: 8 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
| RTX A4000 | | | 320: ~ 15 ms |
| Tesla P40 | | | 320: ~ 105 ms |
| Name | ✅ YOLOv9 Inference Time | ✅ RF-DETR Inference Time | ❌ YOLO-NAS Inference Time |
| --------------- | ------------------------------------- | ------------------------- | --------------------------- |
| RTX 3050 | t-320: 8 ms s-320: 10 ms s-640: 28 ms | Nano-320: ~ 12 ms | 320: ~ 10 ms 640: ~ 16 ms |
| RTX 3070 | t-320: 6 ms s-320: 8 ms s-640: 25 ms | Nano-320: ~ 9 ms | 320: ~ 8 ms 640: ~ 14 ms |
| RTX A4000 | | | 320: ~ 15 ms |
| Tesla P40 | | | 320: ~ 105 ms |
### Apple Silicon
@@ -197,10 +197,11 @@ Apple Silicon can not run within a container, so a ZMQ proxy is utilized to comm
:::
| Name | YOLOv9 Inference Time |
| --------- | ---------------------- |
| M3 Pro | t-320: 6 ms s-320: 8ms |
| M1 | s-320: 9ms |
| Name | YOLOv9 Inference Time |
| --------- | ------------------------------------ |
| M4 | s-20: 10 ms |
| M3 Pro | t-320: 6 ms s-320: 8 ms s-640: 20 ms |
| M1 | s-320: 9ms |
### ROCm - AMD GPU
@@ -234,7 +235,7 @@ The MX3 is a pipelined architecture, where the maximum frames per second support
| YOLOv9s | 640 | ~ 41 ms | ~ 110 |
| YOLOX-Small | 640 | ~ 16 ms | ~ 263 |
| SSDlite MobileNet v2 | 320 | ~ 5 ms | ~ 1056 |
Inference speeds may vary depending on the host platform. The above data was measured on an **Intel 13700 CPU**. Platforms like Raspberry Pi, Orange Pi, and other ARM-based SBCs have different levels of processing capability, which may limit total FPS.
### Nvidia Jetson