diff --git a/frigate/data_processing/common/license_plate/mixin.py b/frigate/data_processing/common/license_plate/mixin.py index 48c191876..60066c48d 100644 --- a/frigate/data_processing/common/license_plate/mixin.py +++ b/frigate/data_processing/common/license_plate/mixin.py @@ -634,37 +634,13 @@ class LicensePlateProcessingMixin: else: gray = image - # detect noise with Laplacian variance - laplacian = cv2.Laplacian(gray, cv2.CV_64F) - noise_variance = np.var(laplacian) - brightness = cv2.mean(gray)[0] - noise_threshold = 70 - brightness_threshold = 150 - is_noisy = ( - noise_variance > noise_threshold and brightness < brightness_threshold - ) - - # apply bilateral filter and sharpening only if noisy - if is_noisy: - logger.debug( - f"Noise detected (variance: {noise_variance:.1f}, brightness: {brightness:.1f}) - denoising" - ) - smoothed = cv2.bilateralFilter(gray, d=15, sigmaColor=100, sigmaSpace=100) - sharpening_kernel = np.array([[-1, -1, -1], [-1, 9, -1], [-1, -1, -1]]) - processed = cv2.filter2D(smoothed, -1, sharpening_kernel) - else: - logger.debug( - f"No noise detected (variance: {noise_variance:.1f}, brightness: {brightness:.1f}) - skipping denoising and sharpening" - ) - processed = gray - # apply CLAHE for contrast enhancement grid_size = ( max(4, input_w // 40), max(4, input_h // 40), ) clahe = cv2.createCLAHE(clipLimit=1.5, tileGridSize=grid_size) - enhanced = clahe.apply(processed) + enhanced = clahe.apply(gray) # Convert back to 3-channel for model compatibility image = cv2.cvtColor(enhanced, cv2.COLOR_GRAY2RGB)